
Proceedings of Symposia in Pure Mathematics
Volume 47 (1987)

Some Remarks on the Decomposition Numbers
for the Symmetric Groups

DAVE BENSON

1. Introduction. One of the main techniques for analyzing the irreducible
representations of finite Chevalley groups in their own characteristic is the sum
formula of Jantzen [14-16]. Recently, Schaper, a student of Jantzen, wrote
a thesis [20] in which he develops a similar formula for the symmetric groups
in arbitrary characteristic. The main purpose of this paper is to present some
calculations which I have been performing using this formula in characteristic
two and to formulate some conjectures and questions based on the results.

Two particular outcomes of these calculations are worth pointing out in this
introduction. One is that it seems to be worth pursuing the 2-modular reduc
tions of the spin representations of the symmetric groups to obtain information
about questions not easily answered by other methods. Some explicit conjectures
appear in §4. The other outcome worth mentioning concerns an old conjecture
of Brauer. The conjecture states that the power of p dividing the degree of a
p-modular irreducible character should be at most the power of p dividing the
group order [3, p. 166]. The first known counterexample to this conjecture ap
peared in J. Thackray's thesis [22] in 1981; namely he used a digital computer to
construct an irreducible 2-modular character of MacLaughlin's simple group of
degree 7. 29 , whereas the order of the group is only divisible by 27 • We present
here the second known counterexample, a 2-modular irreducible character of 6 15

of degree 4096 = 212 (corresponding to the partition (7,6,2)), whereas the order
of 6 15 is only divisible by 21 1. One advantage of our counterexample is that the
calculations can be checked (and were made) entirely by hand (some think this
is a disadvantage!). It seems plausible that the symmetric groups should provide
further counterexamples to the conjecture. In particular, the characters com
ing from 2-modular reductions of spin representations are all divisible by high
powers of two, and the character of degree 4096 may be written in terms of spin
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characters as (13,2) - (14,1) (i.e., (14,1) is equal to the 2-modular irreducible
D(8,6,1) of degree 832, while (13,2) = D(8,6,1) + D(7,6,2)).

2. Schaper's thesis. Since Schaper's version of the Jantzen sum formula is
not readily available in the literature (I have not seen his thesis myself; 1 simply
guessed the formula and was informed by several sources that it was to be found
there!), 1 think it is worth saying a few words to indicate the nature of this
formula.

Let ~ = (~l, ... , ~s) be a partition of n (written ~ ~ n), i.e., ~1 ~ ~2 ~

... ~ ~s > 0 and 2::=1 ~i = n. Denote by S>"the Specht module [7, p. 13],
defined over the integers, corresponding to A. This is given as a submodule of the
permutation module M>" on the cosets of the Young subgroup 6>"1x ... x 6>...
corresponding to A. The natural symmetric bilinear form on M>"given by making
the permutation basis orthonormal (i.e., length one and inner product zero) gives
rise to a nonsingular bilinear form ( , ) on S>".

Let p be a prime number, and denote by S>"the reduction modulo p of S>".
Following Jantzen [14-16], we define a filtration on S>"as follows. Denote by
S>"(r)the submodule of S>"consisting of those elements XES>" with the property
that for all y E s-, (x,y) is divisible by pro Denote by S>"(r) the image of S>"(r)
in S>"under reduction modulo p, This gives a filtration

with S>"(r) = 0 for sufficiently large r . Note that by [7, Theorems 4.9 and
11.1], the module D>" = S>"/S>"(l) is always zero or irreducible, and is zero if
and only if ~ is p-singular (i.e., has a part repeated p or more times). Every
irreducible module for the symmetric group over F p arises exactly once this way
and is absolutely irreducible. Schaper's formula gives the value of the sum of
the Brauer characters x(S>"(r)) of the modules in the above sequence in terms
of things we can compute.

Now recall from James and Kerber [12, p. 77 ff.] the definition and elementary
properties of ,8-numbers, and their relationship to hooks and skew-hooks (=
rim-hooks). In particular, recall that if ~ = (~1,"" ~s) is a partition, then any
sequence of the form (~1-1+t, ~2-2+t, ... ,~s-s+t, -s-l+t, ... , -t+t) (t ~ s)
is a sequence of ,8-numbers corresponding to A. If (,81,... , ,8t) is a sequence of
integers, we define X(,8l, ... ,,8t) to be zero if two of the ,8i are equal or if any
of the ,8i are negative, and to equal plus or minus the ordinary character of
the representation of the symmetric group corresponding to the partition whose
,8-numbers are {,81" .. ,,8t} otherwise. The sign is equal to the signature of the
permutation 7r of {I, 2, ... ,t} for which ,81r(I)> ,81r(2)> ... > ,81r(t).

If (a,b) is a node in the Young diagram corresponding to A, we denote by h~b

its hook length [12, p. 56]. We denote by "» the p-adic valuation on integers,
namely vp(pCtg) = a if p f q.

We may now state Schaper's formula.
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THEOREM (SCHAPER [20]). The Brauer character L:r>Ox(8),(r)) agrees
on p-reqular conjugacy classes with the ordinary character

),b

I: I:(lIp(h~J - IIp(h~c))
1~a~b~3c=1

Note that the formula obtained by taking dimensions on both sides of Schaper's
formula may be found in James and Murphy [13], where some examples and con
sequences are also given.

The way the formula is used is as follows. If we know the decomposition
numbers for partitions dominated by a given partition (in the sense of James
[7, p. 8]), then the formula tells us whether or not the decomposition numbers
for the given partition are zero and also gives an upper bound. This may be
applied to p-singular as well as p-regular partitions, and indeed often more deli
cate information is obtained from the p-singular ones. This corresponds to using
Jantzen's formula outside the restricted fundamental region.

REMARK. One can show that 8),(r)/8),(r + 1) is a self-dual module (in
Jantzen's case the corresponding subquotient supports a "contravariant form").
However, these subquotients are not always semisimple. For example if p = 2,
>.= (4,1 2 ) , n = 6 then 8),(2)/8),(3) is a uniserial module with composition
factors D(6), D(4,2), D(6).

3. Decomposition numbers for 6 14 and 6 15 mod 2. Using Schaper's for
mula together with the following techniques, we established the decomposition
matrices given in the appendix. An explanation of these tables may be found in
§5.

(i) Restriction and induction. As well as the obvious information given by the
fact that restriction and induction coefficients must be nonnegative, we also use
the information given by the Frobenius reciprocity statement

This, together with the self-duality of the irreducible modules, can often be
used to eliminate possibilities. The idea is that the restriction of a large irre
ducible 6 n -module to 6 n - 1 cannot have small modules in the socle, since this
would imply that the induced module from the small module would map onto
the large module. The same technique may be used with the roles of restriction
and induction reversed.

(ii) Spin representations. Schur [21] and Morris [18, 19] have investigated the
ordinary characters of the proper double covers of 6 n (there are two isoclinic
proper double covers). Of course, these must be expressible as positive linear
combinations of the 2-modular irreducible characters of 6 n . This often gives
strong information about partitions not easily accessible by other means. See
also the conjectures in §4.
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(iii) First row and first column removal. James [9] has shown that the coeffi-
. f D(A \ ). -S(AI,tt2, ... ,tttl. h h ffi . f D(\ \ )cients 0 1""'''8 in IS t e same as t e coe cient 0 "2,''''''8

. -S(tt2, ... ,tttl Thi b . h h fi f h ..m . IS may e seen as saying t at t erst rows 0 t e partitions
may be removed if they are equal. He also shows that the same is true for first
column removal. In fact, Donkin [2] has recently found a pleasing generalization
of this to the removal of arbitrary rectangles in the upper left-hand comer of the
partition.

(iv) We have also made use of James's results [6] on partitions of the form
(>'1>>'2)and (>'1,>'2,1).

(v) Occasionally in desperation, we use inner tensor products and the as
sociated reciprocity laws. Thus, for example, the last question to resolve for
the decomposition matrix of 6 14 mod 2 was: "How many copies of D(13,1)

h . -S(7,4,2,1)7" I . h h h . . hare t ere in . t IS easy to s ow t at t e answer IS 5 + "t Wit
/ = 0,1, or 2. But then we see that D(l3,1) 181D(8,4,2) has composition factors
D(7,4,3) + D(7,4,2,1) +/. D(13,1). If / f. 0, then by self-duality there is a nonzero
homomorphism D(13,1) --+ D(l3,1) 181D(8,4,2) and hence there is a nonzero homo
morphism D(l3,1) 181D(13,1) --+ D(8,4,2). This is absurd since dimD(13,1) = 12
and dim D(8,4,2) = 2510.

4. Some conjectures and questions. In some sense, the most important
reason for performing extensive calculations is in order to see general patterns
and make sensible conjectures. I do not claim that all of the following conjectures
are sensible. Some are much more likely to be right than others.

For the purpose of this section, we only work in characteristic two. Most of
our conjectures are either meaningless or false in odd characteristic, although
some may have analogues.

First, we treat the subject of restriction and induction. The following conjec
ture seems quite likely to be true.

CONJECTURE 1. Let A = (AI, ... ,A 8 ) f- n. Then DA 16n _ 1 is irreducible if
and only if all the Ai are congruent modulo two. In this case the restriction is
D(AI-l,A2, ... ,A8 ) •

Thus, for example, the module D(7,6,2) for 6 15 , of dimension 4096, is the
restriction of the module D(8,6,2) for 6 16 , also of dimension 4096.

Reducing to a minimal counterexample by the method of first column removal
(note that first column removal holds for restriction coefficients, while first row
removal doesn't), and by using the induction-restriction techniques described in
§3, one can see that Conjecture 1 follows from the following conjecture.

CONJECTURE2. Let n = Al + ... + A 8 + 1. Suppose AI, ... ,A 8 are all con
gruent modulo two. Then D(AI, ... ,A8 ) appears in the socle of D(AI, ... ,A.,I) 16

n
_ 1

if and only if the Ai are even.

There are more complicated conjectures akin to Conjecture 1. For example,
we may conjecture the following.
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CONJECTURE 3. Let A = (AI, ... , As) I- n. Suppose Al ==A2 ==... ==A2r ¢.
A2r+1 ==... ==As (mod 2) for some value of r. Then

D A 1 ~ D(>\l-I,>.2 .... ,A.) ffiD(AI ..... A2r+I-I ..... A.).
6 n - 1

Or more boldly
CONJECTURE 4. Let A = (AI, ... ,As) I- n. Then DA 16 n- 1 is completely

reducible if and only if there are values 0 < rl < ... < rk (possibly k = 0) such
that Aj ==Aj+l (mod 2) unless and only unless j E {2rl,"" 2rd. In this case,
we have

D A 1 ~ D(>.I-I ..... A.) ffi D(AI ..... A2rl + I - I ..... A.)
6 n - 1

ffi··· ffi D(AI, ...• A2rk+I-I ..... >..).

Thus, for example, according to this conjecture

D(7,5.4.2.1) 1618~ V(6.5.4,2.1) ffi D(7.5.3.2.1) ffi D(7.5.4.2).

On the other hand, for induction we make the following conjecture.
CONJECTURE 5. Let A = (AI, ... ,As) I- n. Then D A j6 n+ 1 is completely

reducible if and only if all the Ai are even. In this case,

D A j6n+l~ D(AI •...• A.+I) ffi D(AI ..... A•• I).

We may form analogous conjectures for the extended decomposition matrices
of James [8]. It is shown in James [10] that the extended character table of 6 n

is in duality with the table of indecomposable direct summands of permutation
modules on Young subgroups. It follows that if we restrict or induce an extended
modular character of 6 n , we get a positive integral combination of extended
modular characters of 6 n - 1 and 6 n +1 respectively. The analogue of Conjecture
1, for example, comes out as follows.

CONJECTURE 6. Let A = (AI, ... , As) I- n. If we restrict the irreducible
extended modular character of 6 n corresponding to A to 6 n - l , then the result is

(a) zero if and only if every part of A occurs with even multiplicity,
(b) an irreducible extended modular character of 6 n - 1 if and only if the parts

of A occurring with odd multiplicity are congruent modulo two.
In this case, the restriction is the character corresponding to the partition

obtained by decreasing by one the last occurrence of the first part to appear
with odd multiplicity.

Thus, for example, according to this conjecture, the restriction of the character
corresponding to (827 26343 22) is the character corresponding to (827 262543 22).

Let us turn now to the spin representations. The basic references here are
Schur [21]and Morris [18, 19]. Let r n be one of the two isoclinic proper double
covers of 6 n. Then corresponding to a partition A = (AI, ... , As) of n into s
unequal parts, we have either one faithful irreducible representation of r n if
(n - s) is even, or two algebraically conjugate irreducible representations of r n

if (n - s) is odd. In the latter case, the characters only differ on elements of
even order, and so the reductions modulo two will have the same composition

factors. Thus we shall not distinguish them for our present purposes, and in
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each case we shall write (A) = (Al, ... , As) for the character of r n corresponding
to (Al,"" As).

We now describe a certain doubling process on partitions, in terms of which
our conjectures are formulated. This is a process by which each part Ai is
replaced by two parts to make a new partition. If Ai = 2k + 1 is odd, then we
replace Ai by parts of lengths k + 1 and k, while if Ai = 2k is even, then we
replace Ai by parts of lengths k + 1 and k - 1. We call a partition "spin regular"
if the resulting parts form a partition of n into distinct parts in decreasing order.
Thus, for example, dbl(l1, 6,1) = (6,5,4,2,1), while (11,6,2) is not spin regular
because (6,5,4,2,2) are not distinct, and (11,6,4) is not spin regular because
(6,5,4,2,3,1) are not in decreasing order.

Now if (Al, ... ,As ) is a representation of r n , then each composition factor
of (A1, ... , As), its reduction modulo two, has the center of r n in its kernel and
is hence a representation of 6 n . Thus the composition factors are of the form
t». For example, for the basic spin character (n), we have (n) = Ddbl(n). The
following two theorems were stated as conjectures in the first draft of this paper.
Proofs will appear elsewhere.

THEOREM 7. Let (A) = (Al"'" As) be a spin regularpartition of n. Then
the composition factors of (Al,"" As) consist of Ddbl(A) with multiplicity a
power of two, and possibly some other composition factors, each of which is
of the form DIJ with dbl (A) t>J1,(Jor notation see James [7, p. 8]).

THEOREM 8. The module DA for en splits on restriction to An if and only
if A is of the form dbl(J1,),with J1,a spin regularpartition unih. no part congruent
to 2 (mod 4). Otherwise it remains irreducible.

Thus for example, for n = 17, the modules which split are D(9,8), D(9,7,1),

n(7,6,3,1), n(7,5,3,2), and n(6,5,3,2,1), corresponding to the doubles of (17), (16,1),

(13,4), (12,5), and (11,5,1).
It is probably slightly more tricky to see exactly what happens, say, for two

part partitions. In order to make our conjecture, we first define some functions.
We define quarter infinite matrices of types V, VI, and VII, analogous to those

of types I-IV in James [6],as follows.

1
1 1

1
1 1

1 1 1
1 1 1 1

1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1

type V
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1
1

1
1 1

1 1
1 1 1

1 1
1 1 1 1

1 1 1
1 1 1 1 1

1 1

type VI

1
2 1
1 1 1

2 1
1 1 1 1 1
2 2 2 1
1 1 1 1 1 1 1

2 2 2 1
1 1 1 1 1 1 1 1 1
2 2 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1

type VII

The matrix of type V is formed by tiling N 2 with alternate blocks of four zeros
and four ones, and then cutting off everything above the diagonal. The matrix
of type VI is formed by filling every fourth leading and trailing diagonal of N2
with ones, and then cutting off everything above the diagonal. The matrix of
type VII is formed from the matrix of type V by adding to each entry the entry
immediately above it. A k x k type V, VI, or VII matrix is given by the inter
section of the bottom k rows and the right-hand k columns of the corresponding
infinite matrix.

We then define functions e, ~, and 'r/ analogous to James' a, (3, /, and 8 as
follows. e(x, m,j) is the jth entry in the mth row of an x by x type V matrix.
~(x,m,j) and 'r/(x,m,j) are defined in the same way, replacing "type V" by
"type VI" or "type VII" , respectively.
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if 0 < j :5m ~ x and either 4 I (m - j)

or 4 I (2x + 1 - m - j),

otherwise;

if 0 < j :5m :5x and either 4 I (m - j)

or 41(2x - m - j),

if 1-t2= 0 or 1-t2is odd,

if A2 = 0 or A2 is odd,

«x,m,i) ~ C
{

I

~(x,m,j) =
o otherwise;

. {e(x,m,j) +e(x,m -l,j) if 0 < j::; m::; x,
",(x,m,J) = .o otherwise,

CONJECTURE 9. Let A = (AI,A2) be a spin regular partition of n into two
parts. Then the composition factors of (AI,A2) are all of the form Ddbl(~) with
A ~ J.l= (J.ll, J.l2) (note that this is not true for partitions into more than two
parts). The multiplicity of Ddbl(~) in (AI,A 2 ) is given as follows.

(a) If n ==1 (mod 2) then the multiplicity is e( n 23, A2 + 1, 1-t2+ 1).
(b) If n ==2 (mod 4) then the multiplicity is

{

~(n;2,A2+1,1-t2+1)

2~ (n; 2, A2+ 1,1-t2+ 1) otherwise.

(c) If n ==0 (mod 4) then the multiplicity is

{

", (n; 4, A2+ 1,1-t2+ 1)

2", (n; 4, A2+1,1-t2+ 1) otherwise.

We now turn to the possibility of finding further formulas like those of Jantzen
and Schaper. From the work of Fong and Srinivasan [4],one knows that the block
structure of the classical Chevalley groups away from the natural characteristic
may be described in a way strongly analogous to the Nakayama conjecture for the
symmetric groups. James [11] has carried this analogy further for the unipotent
representations of the general linear groups. Thus we may consider the problem
of writing down a formula analogous to the Jantzen-Schaper formulas, for rep
resentations of general linear groups away from the natural characteristic. One
should probably restrict one's attention to the unipotent representations, which
are the ones that behave the most like Specht modules.

CONJECTURE 10. There is an analogue of the Jantzen-Schaper formulae for
representations of GLn(q) in characteristic p f q.

In [17], Lusztig writes down a conjecture for the decomposition numbers of
Weyl modules in terms of irreducible modules for semisimple algebraic groups
in characteristic p. The coefficients are given in terms of the Kazhdan-Lusztig
polynomials Py,w, evaluated at 1. One should be able to write down a corre
sponding conjecture for the decomposition numbers of the symmetric groups,
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~N~ro~O~ooro~roroO~O~~ONroO
~~O~~~~Oo~~~~~room~~~~

NM~ ~Mro~~~~Oro~NNM~ro

...-t(V")o:j' MrJNO'<:j'MffiM....-llf)
.,...; N...-t.-l _ M

-----...-t..--l.,...; N...-t...-t ..

___ ....... .. .. ...-t NNNr"1MNNNMM
_NMo;:;r __ ::'JI""1 ..

..-.. ......... 1.I)1..O ...... "", Lfl \.Q M <::j' l.!"l 'O;j' Lf) r"1 o:j' LJ) <O;f '<;f

~MN...-tO"''''''''''O'''''''''''''''''''''''''''''''
..--l ..... ..--l.,...;...-I~ro_...-Imro~mro~~l..Oro~I..O\.Qlf)----------------------

1 (14) (1 14 )
13 (131 ) (21 1 2

)

77 ( 122) (2 21 1 ° )

273 ( 113) (231 B)

637 (104) (2 41 6 )

1001 (95) (2 51 4
) 1

1001 (86) (2 51 2
) 1 1

560 (1121 ) (321 9
)

2002 (1031) (32 21 7
) 2 2 1 1

4368 (941) (32 31 5
)

6006 (851) (32 41 3
) 2 1 1 2 1 1

4576 (761 ) (32 51)

5733 (932) (3 221 6
) 3 2 1 1

12012 (842) (3 22 21 4 ) 4 2 2 1
14014 (752) (3 22 31 2

) 2 1 2 1 1
16016 ( 743) (3 321 3

)

15015 (653) (3 3 2 21) 3 1 1 1 1 1 1 1 1
23296 (8321) (4321 5

)

42042 (7421 ) (432 21 3
) 6 5 3 1 4 4 3 221

36608 (6521) (432 31)

50050 (6431) (43 221 2
) 844 2 222 1 2 1

48048 (5432) (4 2321 )

The decomposition matrix of 6 14 for the prime 2.
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and maybe even, following the above ideas, for the decomposition numbers for
the classical Chevalley groups away from the natural characteristic. This would
give us a good hold on all decomposition numbers for all simple groups modulo
all primes. Of course, the sporadic groups would have to be dealt with sepa
rately, either on an ad hoc basis using a lot of computer work, or using some
sort of geometric theory like that of Smith and Ronan.

5. Explanation of the tables. Our format for decomposition matrices of
6 n is the same as in James [7], except that since the rows corresponding to p

regular partitions determine the rest by a simple algorithm, I only provide these
rows of the decomposition matrices. Complete decomposition matrices would
take up too much space.

In the decomposition matrix for 6 15 mod 2, I have not been able to eliminate
one last ambiguity, and so the answers are given in terms of a parameter 0:,

which takes on the value zero or one. It may well be that an extensive check of
inner tensor products and symmetrizations will resolve this ambiguity.
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ij
N
+

-~O~OroNro~ONWNro~N~O~N~O~ro~~~
-mM-ro-NNO~~M~~Mm~O~~~~NmM~

MmNm-~M-~ro~MOOM~_NNMroN_ro

-- -~~ ~mN~M~-_~~~MmN
M ....-I NMN_r--NLf)O"\

N

----- --------NM~~ N NN

_ ......... "'\..D['NM'l:j' __ MNNNMMo:::1'NNNr"IMMM
LnoQ*l"'1N_O ... "N-OL.il\.DO.qtLl1\.Do:::rLf)Lf)M'<;j'lf)'Cj'U1"",,,,,,

=~~~~~~~~~~~~~~~~~~~~~~~~~~

2
2 1 1

1 1
3 2
3 1

1 1
5 2 2
4 2 2 1
2 1 2 2

1-2a 2 2 1 1 2
6 2 2

1-2a 3

1 2 1 2 1 2 1 1 1112121112222121 3

Ia = 0 or 1 I
Block number:

(15) (1 1 5 )

(141) (21 13)

(132) (2 21 11 )

(123) (2 31 9 )

(114) (2~17)

(105) (2 51 5 )

(96) (2 G1 3 )

(87) (2 71)

(1221) (321 1° )

(1131) (32 21 8 )

( 1041) (32 3 16
)

(951) (32~1~)

(861) ( 32 51 2
)

(1032) (3 221 7)

(942) (3 22 21 5
)

(852) (3 22 31 3)

(762) (322~1)

(843) (3321~)

(753) (3 32 21 2)

(654) (3~21)

(9321) (4321 6 )
(8421) (43221~)

(7521) (432 31 2)

(7431) (43 221 3)

(6531) (43 22 21)

(6432) (4 2321)

* (54321)

1
14
90

350
910

1638
2002
1430

715
2835
7007

11375
11583

9100
22113
32032
25025
35035
45045
30030
42042
91000

108108
135135
128700
175175
292864

The decomposition matrix of 6 15 for the prime 2.
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-o:j1~;e

~ N ~<I'<I'

r f
5

---
-~

_~ N r ....... ...-l0J N

4 <I'M ",<I'M 6 \.OU1">j'(")

2 <4> 4 <5> 4 <6>
4 <31> 2 6 <41> 2 16 <51>

4 <32> 20 <42> 4
4 <321>

-1..O"<j'CQO ..--l\Q«;j4OJo:;j'O- N ~ "'<I'

f 7
......._-- f 8

......._--~
............ N M N .............. N ("') N M
f'-O-OU1o:;;ro::::1' 00 ('--\.Ol.ilU1<:::r................__........ _......................_-

8 <7> 8 <8>
20 <61> 48 <71>
36 <52> 2 112 <62> 4 2 2
20 <43> 2 112 <53> 4 4 2 2
28 <421> 64 <521>

48 <431> 2 2

-oo\Ooo\OOOOCOOOO
...... COl.OcoI.DOOOO N'<j'-\.OO"NO\O

N'Q'..-Ir--<o;j'\!) .................. Nr'---
-----

f
9

______ N

flO
______ ...... ...__I0JN

__ NM'<j'0Jl""l(,,") O_NMo::::1'NMo:;j'MM
O'ICO['I..OU1IJ.)U1«:j' ...-lO'lCOr--\.Ot--\OU')U1<o;j'-------- -_ ........_--_ ........- ........

16 <9> 16 <10>
56 <81> 128 <91>

160 <72> 432 <82> 2 2
224 <63> 768 <73>
112 <54> 4 2 672 <64> 8 4 4 2 2 2
240 <621> 4 2 400 <721> 2 1 1
336 <531> 4 4 2 2 800 <631> 4 2 4 2 2 1
96 <432> 2 448 <541> 2

432 <532> 2 4 2 2
96 <4321> 2

-0 o::::r0 o;jIN \..0 co <::3' oowco
_0::::1'0 l.[)M (I)m "1'o:::j'-lD

.............. -- .....ro~~

..-. ------____ .............. _..-t_NNN
_ a N rl <::j' U1 ,,~ M "'1' M <t::1'M

:::::~~~~2~~~~::2

32 <11>
144 <101>
560 <92>

1200 <83>
1440 <74> 4 2
672 <65> 4 2 1

1232 <821> 4 2 2
3168 <731> 4 2 2 2
3168 <641> 8 4 2 4 4 2 2
2464 <632> 4 6 4 2
1760 <542> 4 2 4
528 <5321> 2 2
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.-t a ~ a <:::j' N 0 a OJ CJ \.0 \"f) N ('-.I co
.-t<:;f'O\..QM0.lf---OCD<:;f',.......j<J'\MIJ)_0-1 MV')<;j'NO--rf'-\"f)M

_ ...... ...... tf) r'J

__ _ ...-1 .......

..........--IN .-t....-l,....,..-tNNMNN
N.-tOr'P<:::j'lJ)NM<:::1'tf'lC"1<:;f'<:;f'M"1'

::::::2::::C:::::'~C:~C:~~~:::'

32
320

1408
3520
5280
4224
1792
5600
7776
3840
5632
7392
1760
3520
2816

64
352

1728
4928
8800
9504
4224
4992

18304
32032
27456
22464
41600
22464
18304

9152
13728

4576

<12>
<111>
<102>

<93>
<84>
<75>

<921>
<831>
<741>
<651>
<732>
<642>
<543>

<6321>
<5421>

<13>
<121>
<112>
<103>

<94>
<85>
<76>

<1021>
<931>
<841>
<751>
<832>
<742>
<652>
<643>

<73 21 >
<6421>
<5431>

2
2 1

8 4 2
8 8 4 4 2 1

4 4 2 2
8 8 4 4 2 2 2 2

2

124 4 6 4 4 4
4 2 2
4 4 6 4 4 2

2

-C..J<:;f'OJ<:;f'O<:;f'<:;f'ONOOroOrororooro
_\"f)OI.D\"f)\.O\.Or--r--OJ<:;f'_NOOO<:;f'

NC"')t.f) Mtf)Lf'lNCOtf)r-C-.JON"<:;f
..--l NN .......NCOMCO

--- -------_ ...................
___ ....... N r"l ........ ........N _ ..-; ....... C-J N ~>I M CJ N M
MN_O<:;f'tf)WCM<:;f'UlM<:;f'tf)<:;f'M<:;f'<:;f'

::::::~~~~::~~~~~~S~~~

8 4 2
4

2 2
4 2 1 2 2 1

16 8 4 4 4 2 4 2
20 8 4 2 4 4 2 2 2 2 1

4 2 2
12 4 6 4 2 2 2

20 4 6 4 4 8 2 4 2 2
8 6 4 2
2

12 4 6 4 4 2 2 2
4 2 2 1

Reductions of spin modules modulo two (cont.)
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-N~ro707ooro~mroo~o7~ONroo
~~o~~~~oo~~---roO~7-77

NM~ ~Mro~~7~oro~GN~~m
_M<::l" rlNN07MC'\M_Lf)- N M

r 14

-----____ _ N

__ Nrl7 __ NM NNNMMNNNMrI
7MN_OL1)~_O~L1)~M7~7L1)M7L1)77

~~~~~~~~~~~~~~~~~~~~~~

2

2

1
1
2
1

tj
N

+
-7o~oroNm70N~Nro~N~07N~07ro~~7

-~M-ro-NNO~~M77MQ~OL1)~~7NmM~
MmNQ-~M_L1)ro~MOOM~_NNMroN_ro

-- -77 ~mN~M7--7~~MmN
M ...... NMN-r'--NU1O'\

N

2

2

168 844 2 2

4
2 2

4 2 2
124 8 2 4 2 2 2
4 2 2 2
16128446 4 4 4 2
2410124106 6 4 2 4 4 2 2

12 8 4 6 6 4 2 4 2 2
4 4

1612 8 4 1210 8 2 4 4 2
4 6 4 2

168 8 12 6 8 4 4 4
2

<14>
<131>
<122>
<113>
<104>

<95>
<86>

<1121>
<1031>

<941>
<851>
<761>
<932>
<842>
<752>
<743>
<653>

<8321>
<7421>
<6521>
<6431>
<5432>

64
768

4160
13312
27456
36608
27456

6720
28224
59136
68992
31680
40768
96096
91520
59904
40768
40768
87360
49918
54912

9152

-------_____ --- __ N NN

__ NMqL1) __ NM7 __ MNNNMMqNNNMMMM
L1)7MN-O~r---N-OL1)~07L1)~7L1)L1)M7L1)7L1)7~

------Qro---Qro-mror---ror---~C'\ror---r---~~L1)---------------------------
128
832

4928
17472
40768
64064
64064
27456
17600
83200

202176
292864
228800
137984
392000
256608
246400
312000
384384

81536
81536

224224
228800
202176
145598
64064

9152

<15>
<141>
<132>
<123>
<114>
<105>

<96> 4 4 2
<87> 8 4 2

<1221>
<1131> 2
<1041> 8 4 4 4

<951>
<861> 16 8 4 2 844 2 4 4

<1032> 4 4 2 2
<942> :kO-4a 8 4 2 4 4 2 4 2 2
<852>32-4a 16 8 8 884 4 4 8 4 4 4 2
<762> 20 12 8 4 4 2 2 2 2
<843> 16 8 4 2 4 4 2 2
<753> 20 8 10 6 4 2 2 4 2 2 1
<654> 8 8 6 4 2 4 2

<9321>4-2a 1 1
<8421>&4a 8 4 6 2 4 2 2

<7521>E-2a 8 4 6 4 4 6 4 4 4 2 2 1
<7431> 8 4 6 4 2 221
<6531> 12 8 6 4 2 6 5 4 4 2
<6432> 2

<54321> 2

Reductions of spin modules modulo two (cont.)



394 DAVE BENSON

REFERENCES

1. R. W. Carter and G. Lusztig, On the modular representations of the general linear and
symmetric groups, Math. Z. 136 (1974), 193-242.

2. S. Donkin, A note on decomposition numbers for general linear groups and symmetric
groups, Math. Proc. Cambridge Philos. Soc. 97 (1985), 57--{)2.

3. W. Feit, The representation theory of finite groups, North Holland, Amsterdam, 1982.
4. P. Fong and B. Srinivasan, The blocks of finite general linear and unitary groups, Invent.

Math. 69 (1982), 109-153.
5. J. A. Green, Polynomial representations of GL n, Lecture Notes in Math., No. 830,

Springer- Verlag, Berlin, 1980.
6. G. D. James, Representations of the symmetric group over the field of order 2, J. Algebra

38 (1976),280-308.
7. __ , The representation theory of the symmetric groups, Lecture Notes in Math., No.

682, Springer-Verlag, Berlin, 1978.
8. __ , The decomposition of tensors over fields of prime characteristic, Math. Z. 172

(1980),161-178.
9. __ , On the decomposition matrices of the symmetric groups. III, J. Algebra 71 (1981),

115·-122.
10. __ , Trivial source modules for symmetric groups, Arch. Math. (Basel) 41 (4) (1983),

294-300.
11. __ , Representations of general linear groups, London Math. Soc. Lecture Note Ser.,

No. 94, Cambridge University Press, Cambridge, 1984.
12. G. D. James and A. Kerber, The representation theory of the symmetric group, Ency

clopaedia of Mathematics, Vol. 16, Addison-Wesley, Reading, Mass., 1981.
13. G. D. James and G. E. Murphy, The determinant of the Gram matrix for a Specht module,

J. Algebra 59 (1979), 222-235.
14. J. C. Jantzen, Darstellunqen halbeinfacher Gruppen und Kontravariante Formen, J. Reine

Angew. Math. 290 (1977), 117-141.
15. __ , Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Alqebren,

Math. Ann. 226 (1977), 53--{)5.
16. __ , Weyl modules for groups of Lie type, Finite Simple Groups II, M. Collins, ed.,

Academic Press, New York, 1980.
17. G. Luszt ig, Some problems in the representation theory of finite Chevalley groups, Proc.

Sympos. Pure Math. 37 (1980).
18. A. O. Morris, The spin representation of the symmetric group, Proc, London Math. Soc.

(3) 12, 55-76 (1962).
19. __ , The spin representation of the symmetric group, Canad. J. Math. 17 (1965), 543

549.
20. K. D. Schaper, Characterformeln fUr Weyl-Moduln und Specht-Moduln in Primcharacter

istic, Diplomarbeit, Universitat Bonn, 1981.
21. 1. Schur, Uber die Darstellunq der symmetrischen und der alternierenden Gruppe durch

qebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1910), 155-250.
22. J. Thackray, Modular representations of some finite groups, Ph.D. Thesis, Cambridge,

1981.

MATHEMATICAL INSTITUTE, ST. GILES, OXFORD


	1. Introduction
	2. Schaper's thesis
	3. Decomposition numbers for S14 and S15 mod 2
	4. Some conjectures and questions
	5. Explanation of the tables
	References

