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In these three lectures, I shall try to give an indication of some 

of the things happening at the moment in modular representation theory, 

by presenting three topics of current interest. The choice of topics 

is, of course, to a large extent an indication of my own research in- 

terests, and it should be pointed out that I am ignoring many very 

interesting areas. For the purpose of these talks, all groups consid- 

ered will be finite, and all modules finitely generated. 



Lecture i Uses of almost split 

sequences in Group representation theory 

Since this is a conference on the representations of algebras, 

it seems appropriate to begin with two applications of the almost 

split sequences of Auslander and Reiten, to the theory of group repre- 

sentations. The first of these is really something which works for 

all Artin algebras, but we can obtain further information in the case 

of a group algebra. The second application uses the finite generation 

of group cohomology to say that the possible shape of the Auslander- 

Reiten quiver for a group algebra is very restricted in comparison 

with what can happen for an arbitrary Artin algebra. 

I.i The first ' application: ...... representation ' rings 

Let kG be the group algebra of a (finite) group G over a field k 

of characteristic p. The representation ring a(G) is the free abelian 

group on the set of (f.g.) indecomposable kG-modules, with multipli- 

cation given by tensor product. Since we have a Krull-Schmidt theorem 

for kG-modules, this multiplication is well defined. We also set 

A(G) = a(G) ~ g. We introduce the bilinear form ( , ) given by ex- 

tending (U,V) = dim k HOmkG (U,V) bilinearly to a(G) and A(G). 

Problem: Find elements To(V) ~ A(G) corresponding to the inde- 

composable modules V such that for U indecomposable, 

=~i if U ~ V 
(u, To(V)) 

otherwise. 

Note that if such elements exist, they are necessarily unique. 

Note also that since A(G) is not necessarily finite dimensional, the 

elements To(V) do not necessarily linearly span A(G). 

Case 1 V = P is projective indecomposable. 

In this case, if U is an indecomposable module with U ~ P then 

(U,P) = (U, Rad P). 

Moreover, 

(P,P) - (P, Rad P) = dim (End P/J(End P)). 



Definition 

For V indecomposable let 

d V = dim (End V/J(End V)) 

(= 1 if k is algebraically closed). 

Thus we may take 

1 ( p  _ Rad P ) .  To(P ) = ~pp 

Case 2 V non-projective indecomposable. 

In this case, there is an almost split sequence 

0 + ~2V + X v ÷ V + 0. 

By the defining properties of almost split sequences, a homomor- 

phism from an indecomposable U to V lifts to a homomorphism to X V if 

and only if it is not an isomorphism. Hence 

(U,V) + (U,~2V) if U ~ V 

( U , X v )  = 
(U,V) + (U,~2V) - d V if U ~ V. 

Thus we may take 

1 (v + ~2v - Xv). 

Combining the two cases we have 

~V (V - Rad V) if V projective 

To(V) = 

~d v (V + ~2V - X V) otherwise 

where 0 + ~2V + K V ÷ V ÷ 0 is almost split. 

We may extend T o to an antilinear map on A(G) by defining 

To(Z aiVi) = Z aiTo(Vi ) . 

Then for x = E aiV i ~ A(G), we have (x,T0(x)) = E Iai 12 > 0 with 

equality if and only if x = 0. This can be thought of as a non-singu- 

larity statement. 

Theorem If x is a non-zero element of A(G), then there exists y e A(G) 

with (x,y) ~ 0. 

Corollary Suppose U I and U 2 are kG-modules such that for all modules 

V, dim k HOmkG(UI,V) = dim k HOmkG(U2,V). Then U 1 ~ U 2. 



So far, we have not really used anything which is special to 

group algebras, and everything really works in greater generality. 

However, for group algebras we may put the above into a more symmetric 

form as follows. We introduce a new bilinear form by bilinearly ex- 

tending to A(G) the form given by 

< U,V > = dimension of space of homomorphisms from U to V which 

factor through a projective module 

= rank of ~ g on U Q V 
geG 

= number of copies of P1 in a direct sum decomposition 

of U* @ V. 

(Here, U is the vector space dual of U with the usual kG-module struc- 

ture, and P1 is the projective cover of the trivial one-dimensional 

kG-module i.) 

Since P1 is self-dual, this form is symmetric, whereas ( , ) is 

not in general. The relationship between the two forms is given as 

follows. Let 

u = Pl - U(1) , v = P1 - ~(i) 

as elements of A(G), where ~ is the Heller operator of taking the 

kernel of the projective cover, and U is the dual operator of taking 

the cokernel of the injective hull. 

Lemma 

(i) u = v 

(ii) UV = 1 

(iii) (V,W) = < v.V,W > = < V,u.W > 

(iv) < V,W > = (u.V,W) = (V,v.W). 

Thus it is easy to pass back and forth between the two bilinear 

forms. In particular in order to obtain elements TI(V) c A(G) such 

that for U,V indecomposable, 

< U'~I(V) > = ~i if U ~ V 

otherwise 

we may simply take 

~l(V) = U.~o(V) 

fSoc(V) if V is projective 

~X - ~(V) - U(V) otherwise 

where 0 + ~(V) ÷ X + ~(V) ÷ 0 is an almost split sequence. 



Note that not only do the elements TI(V) take on a more symmetric 

form than To(V), but also the simple modules are among the list. The 

elements TI(V ) are called the atoms, and in some sense they may be 

thought of as irreducible representations and irreducible glues. Every 

representation then has a formal expression as a (possibly infinite) 

sum of atoms, namely the composition factors and the glues holding it 

together. For further details see [7]. 

1.2 The second application: We bb' s theorem 

Suppose U and V are indecomposable kG-modules. A map ~ : U + V 

is irreducible if k is not an isomorphism, and wherever ~ = B~ is a 

factorization of ~ as a composite of two maps, either ~ has a left in- 

verse or ~ has a right inverse. 

Let Rad(U,V) be the space of non-isomorphisms from U to V, and 

Rad2(U,V) be the space spanned by the homomorphisms of the form ~8 with 

e Rad(U,W) and B e Rad(W,V) for some indecomposable module W. Then 

the set of irreducible maps is precisely Rad(U,V)\Rad2(U,V). The space 

Irr(U,V) = Rad(U,V)/Rad2(U,V) is an EndkG(U) - EndkG(V) bimodule, and 

we write (auv,a~v) for its length as such. (Note that if k is algebra- 

= , = dimklrr(U,V)) ically closed then aUV auv 

The AuslandervReiten quiver of kG-modules is the directed graph 

whose vertices are the indecomposable kG-modules, and with a labelled 

edge U i (auv'auv),, v if Irr(U,V) ~ 0. We write .-------*, for 

(1,1) 
, :.. This graph is locally finite, and if U is non-injective 

(note that injective and projective are the same for modules over group 

algebras) aUV is the number of copies of V as a direct summand of the 

middle term of the almost split sequence starting with U, while if V 

' is the number of copies of U as a direct is non-projective then aUV 

summand of the middle term of the almost split sequence terminating 

with V. Thus the graph may be viewed as all the almost split sequences 

spliced together. 

The stable quive ~ is obtained from the Auslander-Reiten quiver by 

removing all projective modules together with all edges attached to 

them. (Note that for a more general Artin algebra we must remove all 

preprojective and preinjective modules). To a connected component Q 

of the stable quiver, we may associate a tree, called its tree class, 

as follows. Choose a vertex x of Q, and form the tree of paths starting 

at x, and having no three consecutive nodes of the form ~2y ~ z ÷ y 



(recall that in our case ~2 is the Auslander-Reiten translation). Then 

the isomorphism type of this (undirected) tree is independent of the 

chosen vertex x. Moreover, if we consider a directed labelled edge 

( auv' %v) ( %v' auv ) 
y . ~. z to be equivalent to z 6 ,, y, we obtain 

( a~z, az.v) 
a well-defined undirected labelled tree B, with edges y , ~ z. 

Riedtmann [20] has shown that one may then consider Q as a quotient 

of a "universal quiver" 7ZB by an "admissible" group of automorphisms 

(admissible means that no vertex is an image of an adjacent vertex). 

The tree class of a connected component of the stable quiver for 

an arbitrary Artin algebra is fairly unrestricted in shape. However, 

as we shall see, only a very restricted set of labelled trees occur 

in the case of a group algebra, and the fundamental reason for this 

seems to be the finite generation of cohomology. 

If V is a kG-module, we form the Poincar4 series 

Co 

nv(t ) = Z tndim(Pn ), 
n=O 

where 

''" ÷ P2 + P1 ÷ Po ÷ V ÷ 0 

is a minimal projective resolution of V. It follows from the finite 

generation of cohomology that ~v(t) is a rational function of t of the 

form p(t)/ g I - t , where k I ..... k s are the degrees of homogeneous 
j = l  . 

generators of H (G,k) (and are hence independent of V), and p(t) is a 

polynomial with integer coefficients. 

Proposition s ( tkj) 

Let f(t) be a rational function of the form p(t)/ H I - = 
. j=l 

Z a.t l, where p(t) is a polynomial with integer coefficients and the 
i=O z 
a. are non-negative integers. Let c be the order of the pole of f(t) 
l 

at t = i. Then 

(i) There is a positive number I such that a ~ In c-I for all 
n c-2 

large enough n, but there is no positive number ~ such that a n ~ wn 

for all large enough n. 

(ii) lim (~ki).f(t).(l - t) c is a positive integer. 
t+l l 

If c is the order of the pole of Ov(t) at t = I, c is called the 

complexity of V, written CXG(V ). According to part (i) of the above 

proposition, it measures the rate of growth of the dimensions of the 

minimal projective resolution. According to (ii), the number 



CXG (v) 
~(V) = lira (~ ki).~v(t). (l-t) 

t+l i 

is a positive integer. 

Proposition 

(i) ~(V) = n(~V) 

(ii) If 0 ÷ V' ÷ V + V" + 0 is a short exact sequence of modules 

of the same complexity, then n(V) 4 ~(V') + ~(V"). In particular if 

0 ÷ ~2V + X v + V + 0 is almost split then n(Xv) 4 2n(V). 

It follows that ~ defines a function on the tree associated with 

any connected component of the stable quiver, and that ~ is subadditive 

in the sense that 

2~(z) ~ Z ayzn(y ) 
y adjacent 

to z 

It is the existence of such a subadditive function which restricts 

the possible shape of the tree. 

Theorem. (Vi~berg, Happel, Preiser, Ringel .... ) 

Let T be a connected labelled tree, and n a subadditive function 

on T. Then T is among the following three sets. 

(i) The finite Dynkin diagrams An, Bn, C n, D n, E 6, E 7, E 8, F 4, G 2. 

(ii) The infinite Dynkin diagrams A , B , C , D , A~ . 

(iii) The Euclidean diagrams An' Bn' Cn' Dn' BCn' BDn' C~n' All' 

AI2' E6' E7' ES' F41' F42' G21' G22" 

(For pictures of these diagrams see [13]) 

Putting everything together, we obtain the following theorem. 

Theorem (Webb [17]) 

The tree class of a connected component of the stable quiver of 

kC--modules is among the list given in the above theorem. 

Webb then goes on to investigate the various possibilities in 

more detail, and finds for example that the only finite Dynkin diagram 

which occurs is the A diagram. This corresponds to a block of kG 
n 

with cyclic defect. 

A remarkable consequence of Webb's theorem is the following. 



Corollary 

If P is a (non-simple) projective indecomposable kG-module, then 

the maximal possible number of direct summands of Rad(P)/Soc(P) is four. 

Proof 

It follows from Webb's theorem that the number of non-projective 

direct summands of the middle term of an almost split sequence is four. 

Apply this result to the almost split sequence 

0 ÷ Rad(P) + P ~ Rad(P)/Soc(P) + P/Soc(P) ÷ 0. 

Remark 

Almost split sequences also exist for lattices over orders, and 

in particular over a p-adic group ring RG. The main difference from 

the modular theory is that the Auslander-Reiten translation is 2 rather 

than 2 2 . For the first application, it is no longer true that the bi- 

linear form given by rank R HOmRG(U,V ) is non-singular. For example if 

U and U' are R-forms for the same KG-module (where K is the field of 

fractions of R) then U- U' is in the radical of the form. The second 

application, however, goes through almost verbatim, see [17]. 

Lecture 2 Structure in representation rings 

In the last lecture, we saw that the bilinear forms ( , ) and 

, ) were non-singular on A(G). In this lecture, we shall investigate 

further the structure of A(G), with the idea of trying to understand 

how much of the characteristic zero (ordinary character) theory we can 

mimic in characteristic p. Let us first of all summarize the main 

features of ordinary character theory. 

It is customary when dealing with representations in characteris- 

tic zero, to work in terms of the character table. A typical entry 

in this table gives the trace of a group element on a representation. 

Why do we use the trace function? This is because the maps V ~ -~ tr(g,V) 

are precisely the algebra homomorphisms from the representation ring 

to ¢, and these homomorphisms separate representations. In particular 

in this case the representation ring is semisimple. This has the effect 

that we can compute with representations easily and effectively in terms 

of their characters: representations are distinguished by their charac- 

ters, direct sum corresponds to addition and tensor product corresponds 

to multiplication. 



In characteristic p, we may view the non-singularity of ( , ) and 

, >, explained in the last lecture, as a first step in a program to 

mimic these concepts. How much more can we achieve? 

The first problem is that Maschke's theorem no longer holds; a 

representation may be indecomposable without being irreducible. Thus 

the Grothendieck ring A(G)/A0(G,I ) (where A0(G,I ) is the "ideal of 

short exact sequences") is not the same as A(G). Brauer discovered 

the remarkable fact that the Grothendieck ring is always semisimple, 

and found the set of algebra homomorphisms from this to ~, in terms 

of lifting eigenvalues. Thus he gets a square character table, giving 

information about composition factors of modules, but saying nothing 

about how they are glued together. 

In an attempt to generalize this, we define a species of A(G) to 

be an algebra homomorphism A(G) + ~. If s is a species and x ~ A(G), 

we write (s,x) for the value of s on x. Even if we use the set of all 

species, we cannot distinguish between modules V 1 and V 2 when V 1 - V 2 

is nilpotent as an element of A(G). 

In this lecture, I shall talk about nilpotent elements of A(G), 

about various subgroups associated with species, and about the power 

maps on A(G). Finally I shall describe how to put this information 

together to obtain a kind of character theory for finite summands of 

A(G). 

2.1 Nil~otent elements of A(G) 

Definition 

Denote by A(G;p) the linear open in A(G) of those modules with 

the property that for any extension of the ground field, every direct 

summand has dimension divisible by p. 

Theorem (Benson - Carlson [5]) 

(i) A(G;p) is an ideal in A(G) 

(ii) A(G)/A(G;p) has no nilpotent elements. 

Let iH, G : A(H) + A(G) denote the induction map, and rG, H : A(G) ÷ 

A(H) the restriction map. 

Corollar~ 

A(G) /  c~ r G H ( A ( H ; p ) )  h a s  no n i l p o t e n t  e l e m e n t s .  
H~<G 
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If the Sylow p-subgroups of G are cyclic, it happens that 

-IH(A(H n r G ;p)) = 0, and so it follows that in this case A(G) has 
H4G 

no nilpotent elements. More generally, if A(G,Cyc) denotes the ideal 

in A(G) spanned by cyclic vertex modules then A(G,Cyc) has no nilpotent 

elements. 

For p odd, as soon as the Sylow p-subgroups are non-cyclic there 

are nilpotent elements in A(G), and for p = 2 the situation is more 

complicated. For further details, see Zemanek [18, 19] and Benson, 

Carlson [S]. 

2.2 Vertices and origins of species 

The Brauer species (i.e., the species of A(G) which vanish on 

Ao(G,I)) may be evaluated by first restricting down to a cyclic sub- 

group of order coprime to p, and then lifting eigenvalues. The corre- 

sponding concept for a general species is the origin, namely the mini- 

mal subgroup through which the species factors. 

Proposition 

Let s be a species of A(G). The following conditions on a sub- 

group H are equivalent. 

(i) Ker (s) > Ker (rG,H) 

(ii) Ker (s) ~ Im (iH,G) 

(iii) There is a species t of A(H) such that for all x e A(G), 

(s,x) = (t, rG,H(X)). 

Note that in (iii) the species t need not be unique. We write 

t % s and say t fuses to s if (iii) is satisfied. 

We say s factors through H if the equivalent conditions of the 

proposition are satisfied. An origin of s is a subgroup minimal among 

those through which s factors. A vertex of s is a subgroup D minimal 

with respect to the condition that there exists an indecomposable 

module with vertex D on which s does not vanish. 

A subgroup H of G is p,hypoelementary if H/Op(H) is cyclic. 

Structure Theorem (Benson-Parker [7]) 

Let s be a species of A(G). Then 

(i) All origins of s are conjugate. 

(ii) All the vertices of s are conjugate. 
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Let H be an origin of s. 

(iii) H is p-hypoelementary. 

(iv) Op(H) is a vertex of s. 

Then 

There is also a formula for the value of a species on an induced 

representation. 

The Induction Formula [7] 

Let H be a subgroup of G and V a kH-module. Then 

(s,iH,G(V)) = Z ING(Orig(So) ) n StabG(So) : NH(Orig(so))I.(so,V ) 
S 0 % s  

I n  t h i s  e x p r e s s i o n ,  s o r u n s  o v e r  t h e  s p e c i e s  o f  H f u s i n g  t o  s ,  

O r i g ( S o )  i s  a n y  o r i g i n  o f  s o ,  a n d  S t a b G ( S o )  i s  t h e  s u b g r o u p  o f  NG(H) 

s t a b i l i z i n g  t h e  s p e c i e s  s o . 

2.3 Power maps on A(G) 

In ordinary character theory, one of the ways in which the struc- 

ture of the group is reflected in the character table is via the so- 

called power maps, or Adams operations. Namely there are ring homomor- 

phisms ~n on the character ring with the property that the character 

value of g on ~n(v) is the character value of gn on V. These are usu- 

ally given in terms of the exterior power operations A n, and these 

operations make the character ring into a special lambda-ring. It 

turns out that for modular representations we must first construct the 

ring homomorphisms ~n : a(G) * a(G), and then use them to construct 

operations k n, which do not agree with the exterior power operations 

unless n < p (although they do at the level of Brauer characters), and 

the kn make a(G) ~ Z[I/p] into a special lambda-ring. It then makes 

sense to use the ~n to define the powers of a species. 

We begin by constructing the operations ~n in the case where n is 

coprime to p. Let n be a natural number coprime to p, and let T = 

< ~ :a n =i > be a cyclic group of order n. Let e be a primitive n th 

root of unity in an algebraic closure of k, and let ~ be a primitive 
th n root of unity in ¢. If V is a kG-module, then T × G acts on ~n(v) 

by letting T permute the tensor multiplicands. Denote by [~n(v)] i 
g 

the eigenspace of ~ on Qn(v) with eigenvalue e i. Then [~n(v)] i is a 
£ 

kG-module, and we may define 
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n 

~ n ( v )  = Z n i [ ~ n ( v ) ]  i e A ( G ) .  
i=l e 

Since these o p e r a t i o n s  ~n commute  w i t h  t h e  F r o b e i u s  map F a ,  we 
a 

may d e f i n e  f o r  a g e n e r a l  v a l u e  o f  n = n o P  , ( n o ' P )  = 1,  

n 

~ n ( v )  = ~ °Fa(V). 

Properties of ~n 

( i )  %n(v  ~ W) = ~ n ( v )  + # n ( w )  

(ii) ~n(v ® W) = ~n(v) . ~n(w) 

Thus ~n may be extended linearly to give a ring homomorphism 

A(G) + A(G). 

(iii) ~n(a(G)) c a(G) 

(iv) (this is the hardest part to prove) ~m~n = ~mn 

(v) If b is a Brauer species corresponding to a p'-element g, g 
then 

(bg,~nx) = (b n,X). 
g 

(vi) If we define 

~l(x) 1 0 
~2(x) ~l(x)  2 

1 
k n ( x )  = n--[ • "n -1  

~(x) • • ~l(x) 

then In(a(G) ~[I/p]) c a(G) Q Z[i/p], and these operations I n make 
Z 

a(G) ~[i/p] into a special lambda-ring, for which the ~n are the psi- 
Z 

operations. 

Definitions 
th 

If s is a species of A(G), we define its n 

(sn,x) = ( s , , n ( x ) ) .  

Then  s n i s  a g a i n  a s p e c i e s .  
a 

If H is a p-hypoelementary group and n = p n o with 
[ ] 

we let H [nj be the unique subgroup of index (IHl,n o) in H. 

power via 

(no, p) = i, 

Theorem 

(i) If H is an origin of a species s, then H [n] is an origin of s n. 
n 

(ii) If D is a vertex of s, then D is also a vertex of s . 
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2.4 Finite summands of A(G) 

We now project all the information we have onto a finite dimen- 

sional summand of A(G) satisfying certain natural hypotheses, and find 

that we obtain a type of character theory analogous to Brauer's. 

Hypothesis 1 

A(G) = A ~ B is an ideal direct sum decomposition, with projec- 

tions ~i : A(G) + A and z2 : A(G) ÷ B. The summand A satisfies the fol- 

lowing four conditions. 

(i) A is finite dimensional 

(ii) A is semisimple 

(iii) A is freely spanned as a vector space by indecomposable modules 

(iv) A is closed under taking dual modules. 

Remarks 

(i) Any finite dimensional semisimple ideal I is a direct suramand, 

since 

A(G) = I Q n Ker(s), 
s 

where s runs over the set of species of A(G) not vanishin9 on I. 

(ii) If A satisfies (i), (ii) and (iii) of hypothesis I, then the 

span in A(G) of A and the duals of modules in A satisfy (i), (ii), 

(iii) and (iv). 

(iii) If A 1 and A 2 are summands satisfying hypothesis i, then so 

are A 1 + A 2 and A 1 n A 2. 

, E x a m p l e s  

( i )  L e t t i n g  A ( G , 1 )  d e n o t e  t h e  l i n e a r  s p a n  o f  t h e  p r o j e c t i v e  m o d -  

u l e s ,  a n d  A o ( G , 1 )  b e  t h e  l i n e a r  s p a n  o f  e l e m e n t s  o f  t h e  f o r m  X' - X - X "  

w h e r e  0 ~ X ÷ X' * X" ~ 0 i s  a s h o r t  e x a c t  s e q u e n c e ,  we h a v e  

A(G) = A(G,I) ~ Ao(G,I), 

and this decomposition satisfies hypothesis i. This case is called 

the Brauer case. 

(ii) Letting A(G,Cyc) denote the linear span of the cyclic vertex 

modules, and Ao(G,Cyc) be the linear span of elements of the form 

X' -X-X" where 0 ~ X ÷ X' ~ X" ÷ 0 is a short exact sequence which 

splits on restriction to every cyclic subgroup, we have 

A(G) = A(G,Cyc) ~ Ao(G,Cyc). 
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By the results mentioned in 2.1, this satisfies hypothesis 1. We call 

this the cyclic vertex case. 

(iii) Let G be the Klein four group and k an algebraically closed 

field of characteristic two. Then A(G) has infinitely many summands 

satisfying hypothesis 1. The quotient of A(G) by the sum of all these 

is isomorphic to ~[X,X-I], where X and X -I are the images of u and v 

(see the first lecture). 

Lemma 

Suppose A(G) = A ~ B as in hypothesis I. Then 

(i) < , > and ( , ) are non-singular on A. 

(ii) A(G,I) c A. 

Thus the Brauer case is the unique minimal case of our theory. 

Definitions 

Let Sl,...,s n be the species of A, and Vl,...,V n be the indecom- 

posable modules freely spanning A. Let G i = Wl(Vi) (see the first 

lecture). 

The atom table of A is the matrix 

Tij = (sj,G i) = (sj,~l(Gi)) 

The representation table of A is the matrix 

Uij = (sj,Vi). 

The entries in these tables are algebraic integers. I don't know 

whether they are always cyclotomic integers; nor do I know whether 

( s j ,Vi )  = ~ in general .  
In the example of the Brauer case, T.. is the table of Brauer 

13 
characters of irreducible modules, and Uij is the table of Brauer 

characters of projective indecomposable modules. In general, Tij also 

has some rows "of degree zero": 

irreducible 
modules 

irreducible 
glues 

Brauer Non-Brauer 
species species 

O 

T.. 
13 

projective 
indecomposable 
modules 

non-projective 
indecomposable 
modules 

Brauer Non-Brauer 
species species 

0 

Uij 
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One can also find uniquely defined numbers cj = CG(S j) (which 

play the r$1e of centralizer orders although they need not in general 

be positive or rational) such that for x e A(G), y E A, 

( s j ,x  )(sj,y) 
< x,y > = L j cj 

(compare the usual formula for inner product of characters). 

Also, letting pj = (sj,u) we have 

pj(sj,x )(sj,y) 
(x,y) = L j cj 

If s is a species of A which factors through H, and t is a species 

of A' 2 rG,H(A) which fuses to s, then 

CG(S ) = ING(Orig(t)) n StabG(t) :NH(Orig(t)) I • cH(t), 

and we can rewrite the induction formula in the form 

s•%s cG(s) 
(s,iH,G(V)) = ~ (So'V) 

O 

where s runs over those species of A' fusing to s. 
0 

Just as in ordinary character theory, when we give tables Tij and 

Uij as above, we usually also mark in information about the "centralizer 

orders" ej. If the summand is closed under the operations ~n described 

in 2.3, we may also mark on information about powers of species. 

Example 

G = $3, A = A(G), k --~-3 

C. = 
J 

G I 

G 2 

G 3 

G 4 

G 5 

% 

s I s 2 s 3 s 4 s 5 s 6 

6 2 12 -4 -4 -4 

i I i 1 1 1 

i -i i I -i I 

0 0 3 -i -i -i 

0 0 3 -i i I 

0 0 -3 -i i -i 

0 0 -3 -I -i i 

s I s 2 s 3 s 4 s 5 s 6 

V I 3 

V 2 

V 3 

V 4 

V 5 

V 6 

I 0 

3 -i 0 

I i I 

i -I I 

2 0 -I 

2 0 -i 

0 0 0 

0 0 0 

I i I 

i -i -i 

i -i i 

i i -i 

T.. U, . i j  I j  
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2 2 2 2 2 2 
s 1 = s 2 = s 1 s 3 = s 4 = s 5 = s 6 = s 3 

For p odd, sPl = si 

Orig(sl) = 1 Orig (s2) = C 2 

Orig(s3) = Orig(s4) = C 3 Orig(s 5) = Orig(s6) = S 3. 

See the appendix of [4] for further examples. 

Lecture 3 Varieties for modules and a 

problem of Steenrod 

Having spent some time looking at the structure of A(G), we are 

led to a desire to understand better the behaviour of tensor products 

and direct sums of modules (or you could say that this was the motiva- 

tion for studying A(G) in the first place). One of the most interest- 

ing recent ideas in this area is Carlson's idea of associating varie- 

ties to modules. To each module V we associate a homogeneous sub- 

variety XG(V) of Spec HeV(G,k), the spectrum of the even cohomology 

ring of G. These varieties have the properties that XG(V ~ W) = 

XG(V ) u XG(W), XG(V Q W) = XG(V ) n XG(W) , and if V is indecomposable 

then the projective variety XG(V) corresponding to XG(V ) is connected. 

It also turns out that the dimension of XG(V) is equal to the complex- 

ity of V, as defined in the first lecture. Thus at the level of repre- 

sentation rings, if X is a homogeneous subset of Spec HeV(G,k), then 

the linear span A(G,X) of the modules V with XG(V ) ~ X is an ideal in 

A ( G ) .  

Finally, we give an application of these varieties to obtain in- 

formation about a problem of Steenrod in algebraic topology. 

3.1 Definition and ~roperties of the varieties 

This subject started off with some work of Quillen [14, 15] de- 

scribing the structure of the set of prime ideals of the even equivar- 

cohomology ring of a compact Lie group H~V(x) iant with coefficients 

in a permutation representation X. His main results, when interpreted 

for finite groups, give a description of Spec HeV(G, Z/p Z) in terms 

of the elementary abelian p-subgroups and their normalizers (the 

Quillen stratification theorem). In particular he was able to prove 
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the following theorem. 

Theorem 

An element x of HeY(G, 7z/p 2~) is nilpotent if and only if 

resG,E(X) is nilpotent for all elementary abelian p-subgroups E of G. 

At the level of varieties, this means that 

Spec HeY(G, 2[/p 77) = u resG, E Spec HeY(E, 7Z/p ~). 
E~<G 

elementary 
abe i Jan 

Corollary 

The (Krull) dimension of Spec HeV(G, ~/p ~) is equal to the maxi- 

mum rank of an elementary abelian p-subgroup of G. 

The next step was taken by Chouinard [ii], who showed that an 

arbitrary module in characteristic p is projective if and only if its 

restriction to every elementary abelian p-subgroup is projective. 

The connection between the above two results was unclear, until 

Alperin and Evens [i] found the appropriate common generalization. 

They formulated the concept of complexity which I defined in the first 

lecture, and showed that the complexity of an arbitrary module in char- 

acteristic p is equal to the maximal complexity of its restrictions to 

the elementary abelian p-subgroups. Chouinard's result is the case of 

complexity zero, while the corollary above of Quillen's results is the 

case of the trivial one-dimensional module (after a bit of reinterpre- 

tation). 

The final (?) stage of generalization was Carlson's notion of 

varieties for modules, which we now describe. 

Definitions 

Suppose k is algebraically closed. Denote by X G the affine vari- 

ety Spec H (G,k), where H (G,k) = H (G,k) in case p = 2, and HeV(G,k), 

the even cohomology ring, in case p ~ 2 (to ensure commutativity). 

Then X G is a union of lines through the origin, so we may form a pro- 

jective variety XG = Proj H'(G,k) of one smaller dimension. 

Denote by AnnG(V) the ideal of H'(~,k) consisting of those ele- 

ments annihilating H (G,V) (note that H (G,V) is an H'(G,k)-module via 

cup-product). The Support of a module V, written XG(V), is the sub- 

variety of X G consisting of those prime ideals which contain AnnG(V~S) 

for some module S (it turns out to be sufficient to restrict our atten- 
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tion to the cases where S is simple, and it also turns out to be suf- 

ficient to take S = V ). Denote by IG(V) the ideal of H (G,k) con- 

sisting of those elements x such that for all modules S, there exists 

* x j a positive integer j with H (G,V ~ S). = 0 (again the same remarks 

apply to choices of S). Then XG(V ) = Spec(H (G,k)/IG(V)) ~ XG, and 

XG(V) = Proj(H'(G,k)/IG(V)) is a projective (closed) subvariety of XG" 

If H is a subgroup of G, denote by tH, G the map from X H to X G 

induced by resG, H :H (G,k) + H (H,k). The following theorem summarizes 

some of the main properties of these cohomology varieties. 

Theorem (Properties of XG(V)) 

Let H ~ G, and V be a kG~module and W a kH-module. 

( i )  d im(XG(V))  =.CXG(V ) • 

(ii) XG(V) = XG(V ) = XG(V Q V ) = XG(~V) 

( i i i )  XH(V+ H) = tH1G(XG(V))  

(iv) XG(W+ G) = tH,G(XH(W)) 

(here, we have used +H and +G to denote restriction and induction) 

(v) If 0 ~ V 1 ÷ V 2 ~ V 3 ÷ 0 is a short exact sequence of kG- 

modules then 

XG(Vi) ~ XG(V j) u XG(Vk), {i,j,k} = {1,2,3} 

(vi) x GIv®v') = xG(v) u XG(V') 
(vii) (Avrunin, Scott [2]) XG(V Q V') = XG(V) n XG(V' ) 

(viii) XG(V) = {0} if and only if V is projective 

(ix) XG(V) = u t E G(XE(V+E)) as E ranges over the elementary 
E ' 

abelian p-subgroups of G. 

(x) If V and V' are indeeomposable modules in the same con- 

nected component of the stable quiver (see the first lecture), then 

XG(V ) = X G ( V ' ) .  
( x i )  G i v e n  a c l o s e d  h o m o g e n e o u s  s u b v a r i e t y  X ~ X G t h e r e  i s  a 

m o d u l e  V w i t h  XG(V) = X. 

( x i i )  G i v e n  a c l o s e d  homogeneous  r a t i o n a l  s u b v a r i e t y  ( r a t i o n a l  

means  s t a b l e  u n d e r  t h e  F r o b e n i u s  m o r p h i s m )  X ~ X G t h e r e  i s  a Z - f r e e  

ZG-modu le  U w i t h  XG(U @ k )  = X. 

( x i i i )  I f  XG(V ) n XG(V' ) = {0} t h e n  E x t ~ G ( V , V ' )  = 0 f o r  a l l  i > 0.  

( x i v )  ( C a r l s o n ,  [ 9 ] )  I f  XG(V) 5 X 1 u X2, w h e r e  X 1 and  X 2 a r e  

c l o s e d  h o m o g e n e o u s  s u b v a r i e t i e s  o f  X G w i t h  X 1 n X 2 = { 0 ) ,  t h e n  we may 

write V = V 1 ~ V 2 with XG(Vl) ~ X 1 and XG(V 2) ~ X 2. In particular if 

V is indecomposable then XG(V) is topologically connected. 
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3.2 ElenTentary ..abel ian subgroup.s and rank...varie.t..i.9., s 

Avrunin and Scott [2] have shown that XG(V ) has a stratification 

similar to Quillen's stratification of XG, in terms of the restric- 

tions of V to the elementary abelian subgroups. If we define 

XE(V) = XE(V)\ u t E ,  (XE,(V)) 
E'<E ,E 

XG,E(V) = tE,G(X (V)) 

then we have the following theorem. 

Theorem (Quillen stratification for modules) 

XG(V ) is a disjoint union of the locally closed subvarieties 

X~,E(V ) as E runs over a set of representatives of eonjugacy classes 

of elementary abelian p-subgroups of G. The group WG(E) = NG(E)/CG(E) 

acts freely on X~(V), and tE, G induces a finite homeomorphism 
+ 

X~(V)/WG(E ) + XG,E(V) 

(i.e., homeomorphism in the Zariski topology; Quillen calls this map 

an 'inseparable isogeny'). 

The natural map 

li~ XE(V ) ÷ XG(V ) 
E 

is a bijective finite morphism. 

This means that in order to be able to calculate effectively the 

varieties XG(V) , we may restrict our attention to the case where G = E 

is elementary abelian. In this case, XE(V) turns out to be naturally 

isomorphic to another variety YE(V) defined as follows. Let J = J(kE) 

be the Jacobson radical of the group ring (of eodimension 1 in kE). 

If x • J then 1 + x is an invertible element of kE of order p. 

P r o p o s i t i o n  ( C a r l s o n  [ 8 ] )  

S u p p o s e  V i s  a k G - m o d u l e .  I f  x , y e J a n d  x - y • j 2  t h e n  

V+k<l +x> is free if and only if V+k< l +y> is free. 

For V ~ O, we now define YE(V) to be the subset of YE = j/j2 con- 

sisting of zero together with the image in YE of the set of x 6 J such 

that V+k< 1 +x> is not free. For V = O, we define YE(V) = ~. Since 

x • YE(V) if and only if the rank of the matrix representing x is less 

than dim(V)/p, YE(V) is defined by polynomial equations (namely the 
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vanishing of certain minors), and is hence a subvariety of YE" 

The following theorem was conjectured by Carlson [8] and proved 

by Avrunin and Scott [2]. 

Theorem 

There is a natural isomorphism YE ~ XE which has the property 

that for every module V, the image of YE(V) is XE(V ). 

The following corollary was first proved by Dade [12] using com- 

pletely different techniques. 

Corolla r~ 

Let V be a kE-module. Then V is free if and only if for every 

x ~ j\j2, V+k< 1 +x> is free. 

The following example demonstrates how effective a computational 

device the above theorem gives. 

Carlson's Favourite Example 

Let E be an elementary abelian group of order 8, and k an alge- 

braically closed field of characteristic two. Consider the following 

family of representations Va,b, c. 

E = < Xl,X2,X 3 : x 2 = [xi,x j] -- 1 > 

b 1 11 x3 Ii i c 1 ljl 
i, x 3 - 1 form a basis for j/j2, and we see The elements x I - i, x 2 - 

that Va,b,c+k<l+kl(Xl_l)+k2(x2_l)+k3(x3_l) > is free if and only if the 

I 
X + k2a ~3 c 

2 × 2 minor ~ O. 

k 3 k I + k2b 

Thus YE(Va,b,c) (and hence XE(Va,b,c)) is the variety in affine 

3-space defined by the (homogeneous) equation 

(X 1 + aX2)(X 1 + bX2) = cX~. 
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3.3 Application to a problem .of Steenrod 

Let G be a finite group, R a commutative ring, and V an RG- 

module. An RGyMo0re space of type (V,n) is a topological space X 

with an action of G defined on it (i.e., a G-space) with 

Hi (X;R) = {~ i = n 

otherwise 

RG-modules. Here, Hi denotes reduced singular homology. We say as 

V is realizable if an RG-Moore space of type (V,n) exists for some n. 

Steenrod's problem: Which modules are realizable? 

Remark By the universal coefficient theorem, if V is a Z-free real- 

izable ZG-module, then V ~ R is a realizable RG-module for all R. 
Z 

For a brief historical introduction to this problem, see Vogel 

[16]. In this paper he also shows that every ZG-module is realizable 

provided IGI is square-free. The first example of a non-realizable 

representation was provided by G. Carlsson [I0] for an elementary 

abelian group of order p2. To do this, he showed that the annihilator 

in H (G,Fp) of H (G,V) is invariant under the Steenrod algebra for 

any realizable FpG-module V. He then produced a ~-free XG-module such 

that the reduction modulo p did not have this property. This technique 

may be extended to show the following. Let T denote the total Steenrod 

operation Z pi (or Z Sq i if p = 2). Since T acts as an algebra 
i~O i~O 

endomorphism on H'(G,%), we have an induced map on X G. 

T h e o r e m  ( B e n s o n ,  H a b e g g e r  [ 6 ] )  

S u p p o s e  V i s  a r e a l i z a b l e  F G - m o d u l e .  T h e n  f o r  e v e r y  d i r e c t  s u m -  
P 

m a n d  W o f  V, XG(W) i s  a T - i n v a r i a n t  s u b s e t  o f  X G. 

Such subsets are in fact not very thick on the ground. 

Proposition 

If X is a T-invariant subset of X G then X is of the form EutE'G(XE) 

for some collection of elementary abelian subgroups E of G. 

Note that by property (xii) of cohomology varieties (section 3.1), 
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every closed homogeneous rational subvariety of X G is of the form 

XG(U~ k ) for some Z-free ZG-module U, and so we have a plentiful 
Z 

supply of non-realizable Z-free ZG-modules as soon as G has a non- 

cyclic elementary abelian subgroup. 

For the elementary abelian group of order four, it turns out that 

the above theorem gives a necessary and sufficient condition for F2C- 

modules to be realizable. This is not true in general, as there exist 

non-realizable modules for F2Q 8, where Q8 is the quaternion group of 

order 8. 
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