```
The Loewy structure of the projective indecomposable
modules for Ag in characteristic 2
```

D. J. Benson

Yale University
New Haven, Conn. 06520

Introduction

The purpose of this paper is to establish the Loewy series for the projective indecomposable modules for A_{9} over a splitting field of characteristic 2.

Since this paper depends very heavily on the results of [6], we shall number our sections as though this were a continuation of [6]. To avoid repetition we shali refer to results of [6], simply by their section number. We take (S, R, F) to be a splitting 2-modular system for A_{9} and all its subgroups, and A_{8} is regarded as a subgroup of A_{9} stabilizing a point, A_{7} a subgroup of A_{8} stabilizing a further point, and so on. S_{n} denotes the subgroup of A_{n+2} stabilizing an unordered pair of points, and containing $A_{n}(n \leq 7)$.

The simple FA_{9}-modules are denoted $\mathrm{I}, 8_{1}, 8_{2}, 8_{3}, 20_{1}, 20_{2}$, 26, 48, 78 and 160. 8_{1} and 8_{2} are related by an outer automorphism of A_{9}, but are not dual or algebraically conjugate, 20_{1} and 20_{2} are related by an outer automorphism of A_{9}, and are dual, but are not algebraically conjugate. The ordinary and 2-modular character tables, decomposition matrix and Cartan matrix for A_{9} have been extracted from James [2] and presented in Appendix 5.

FA $_{0}$ has two blocks, whose idempotents we shall denote by f_{0}
(principal block containing the simple modules $I, 8_{1}, 8_{2}, 20_{1}, 20_{2}, 26$ and 78) and f_{1} (non-principal block containing the simple modules 8_{3}, 48 and 160). Throughout the paper, \pm will denote 1 or 2 , and $\{1, j\}=\{1,2\}$.

The main result of this paper is the following theorem.
Theorem 2. The Loewy structures of the projective indecomposable modules for FA_{g} are as follows.
(1) Principal Block

78
I
20_{i}

(ii) Non-principal Block

8_{3}	48		160
48	160	$8_{3}{ }^{48}$	8_{3}
8_{3}	8_{3}	160	48
48	160	83	8_{3}
8_{3}	48	160	

(see also section 6.1)
The notation and tools for this paper are the same as in [6], with the addition of the following.

We shall write $(M, N)_{A}^{n}$ for $\operatorname{dim} \operatorname{Ext}_{A}^{n}(M, N)$.

Lemma 6. (Ext Reciprocity). Let $H \leq G, M$ an FH-module and N an FG-module. Then

$$
\left(M, N \not{ }_{F H}\right)_{\mathrm{FH}}^{\mathrm{n}}=\left(\mathrm{M}^{\mathrm{FG}}, \mathrm{~N}\right)_{\mathrm{FG}}^{\mathrm{n}}
$$

Proof. This follows from Lemma 2 by dimension shifting and induction on n . //

Lemma 7. Let M_{1}, M_{2} and M_{3} be FG-modules. Then

$$
\left(M_{1}, M_{2} \otimes M_{3}\right)_{F G}=\left(M_{1} \otimes M_{2}^{*}, M_{3}\right)_{F G}
$$

Section 5.

Restriction and induction between A_{8} and A_{9}; calculation of dim Ext ${ }_{A_{9}}^{1}$ for simplemodules
5.1. Restriction and induction of simple modules.

Using Brauer characters, we see that
5.1.1. $I_{A_{9}}{ }^{+} A_{8}=I$
5.1.2. $\left(20_{i}\right)_{A_{9}}{ }^{\downarrow} A_{8}=20_{i}$

By block theory,
5.1.3. $78{ }_{A_{9}}{ }^{+} A_{8}=14 \oplus 64$
5.1.4. ${ }^{14} \mathrm{~A}_{8}{ }^{\mathrm{A}^{\mathrm{A}} 9}=48 \oplus 78$
5.1.5. $\quad\left(20_{1}\right) A_{8}{ }^{\dagger}{ }^{A} 9=20_{1} \oplus 160$
5.1.6. $I_{A_{8}}{ }^{A} A_{9}=I \oplus 8_{3}$

Now $\left(4_{1}\right)_{A_{8}}+{ }^{A} 9$ has composition factors $8_{1}+8_{2}+20_{2}$, and

$$
\begin{aligned}
& \left(20_{2},\left(4_{1}\right)_{A_{8}}{ }^{A} 9\right)_{A_{9}}=\left(20_{2}{ }^{A_{8}}, 4_{1}\right)_{A_{8}}=0 \\
& \left(\left(4_{1}\right)_{A_{8}}^{\dagger} A_{9}, 20_{2}\right)_{A_{9}}=\left(4_{1}, 20_{2}{ }^{\dagger} A_{8}\right)_{A_{8}}=0
\end{aligned}
$$

Thus $\left(4_{1}\right)_{A_{8}}{ }^{A}{ }^{A} 9$ is uniserial, with 20_{2} in the-middle. Since we haven't yet chosen which is which of the conjugacy classes 9 A and 9 B for Ag, we may choose whichever we like of 8_{1} and 8_{2} to be the bottom composition factor of $\left(4_{1}\right)_{A_{8}}{ }^{A^{A}} 9$. We choose that
5.1 .7

$$
\left(4_{1}\right)_{A_{8}}{ }^{A} 9=\begin{gathered}
8_{2} \\
20_{2} \\
8_{1}
\end{gathered}
$$

Duallzing this, we get

5.1 .8

$$
\left(4_{2}\right)_{A_{8}}{ }^{A^{A} 9}=\begin{gathered}
8_{1} \\
20_{1} \\
-8_{2}
\end{gathered}
$$

$$
\left(8_{i}\right)_{A_{9}} \downarrow_{A_{8}}=4_{i}^{4}
$$

By 5.1 .6 and 2.1 .1 we have
$5.1 .10 \quad(8)_{3} A_{9}{ }^{\dagger} A_{8}=I_{A_{8}}{ }^{A^{A}}{ }_{9} \psi_{A_{8}}-I=I_{A_{7}}{ }^{A}{ }^{A} 8=\frac{I}{I}$

By Lemma $7,\left(I, 8_{3}^{2-}\right)_{A_{9}} \leq\left(I, 8_{3} \otimes 8_{3}\right)_{A_{9}}=1$. Since the composition factors of 8_{3}^{2-} are $I+I+26$, and the module is self-dual, we have
5.1 .11

$$
8_{3}^{2-}=\frac{I}{26}
$$

Thus by 5.1 .10 and 2.3 we have
5.1 .12

$$
{ }^{26} A_{9}{ }^{+} A_{8}=\begin{gathered}
6 \\
14 \\
6
\end{gathered}
$$

By 5.1.4, 5.1.3, Lemma 5 and 3.3.2,

$$
\begin{aligned}
&{ }^{48} A_{9}{ }^{\dagger} A_{8}={ }^{14} A_{8}{ }^{\uparrow}{ }^{A} 9 t_{A_{8}}-78 t_{A_{8}} \\
&=14+14 A_{7}{ }^{\uparrow} A_{8}-14-64 \\
&=M_{56}^{1} \\
&=4_{1}{ }^{14} 4_{2} \\
& 6 \\
& 44
\end{aligned}
$$

Similarly, by 5.1.5 and 4.6,

$$
{ }^{160} A_{9}{ }^{\dagger} A_{8}=\left(20_{1}\right)_{A_{8}}{ }^{A^{A}} \downarrow_{A_{8}}-20_{1}=20 A_{7} \uparrow^{A_{8}}
$$

Now ${ }^{6} A_{8}{ }^{\dagger}{ }^{A} 9$ has composition factors $I+I+26+26$. Thus by 5.1.1, Frobenius reciprocity and the fact that $(I, I){ }_{A_{9}}^{1}=0$ (since A_{9} is simple), we have

$$
6_{A_{8}}+A_{9}=I_{26}^{26} I
$$

Also, by Brauer characters we have
5.1 .16

$$
{ }_{64} A_{8}+A_{9}=P_{78}
$$

5.2 Calculation of dim Ext ${ }_{A_{9}}^{1}$

In this section we work out $(M, N)_{A_{9}}^{1}$ for M and N simple. This Information is displayed in Appendix 6.

First we attack the non-principal block.
5.2.1 Lemma. For M a simple FA_{9}-module

$$
\left(8_{3}, M\right)_{A_{9}}^{1}= \begin{cases}1 & \text { if } M=48 \\ 0 & \text { or } 160 \\ \end{cases}
$$

Proof. For M a simple $F_{9} . f_{1}$-module, by 5.1 .6 and Lemma 6 we have

$$
\left(8,{ }_{3}, M\right)_{A_{Q}}^{1}=\left(I_{A_{8}} \uparrow^{A} 9, M\right)_{A_{9}}^{1}=\left(I, M t_{A_{8}}\right)^{1}
$$

By 5.1.10,

$$
\left(I, 83^{\dagger} A_{8}\right)_{A_{8}}^{I}=\left(I, I_{A_{7}} \uparrow^{A_{8}}\right)_{A_{8}}^{1}=(I, I)_{A_{7}}^{1}=0
$$

By 5.1.23 and 2.5,

$$
\begin{aligned}
\left(I, 48 t_{A_{8}}\right)_{A_{8}}^{1} & =\left(I, M_{56}^{1}\right)_{A_{8}}^{1}=\left(I, M_{56}\right)_{A_{8}}^{I}-\left(I, M_{8}\right)_{A_{8}}^{1} \\
& =(I, I)_{\left(A_{5} \times 3\right) 2}^{1}-(I, I)_{A_{7}}^{1}=1 .
\end{aligned}
$$

By 5.1.14 and 1.2,

LOEWY SERIES FOR THE PROJECTIVE MODULES FOR A 9

$$
\left(I, 160{ }_{A_{8}}\right)_{A_{8}}^{1}=\left(I, 20_{A_{7}}+{ }^{A_{8}}\right)_{A_{8}}^{1}=(I, 20)_{A_{7}}^{1}=1
$$

5.2.2 Lemma. For M a simple FA_{9}-miodule,

$$
(48, M)_{A_{9}}^{1}=\left\{\begin{array}{ll}
1 & \text { if } M=8 \\
0 & \text { otherwise }
\end{array} \text { or } 48\right.
$$

Proof. For M a simple FA_{9}. f_{1}-module, by 5.1 .4 we have

$$
(48, M)_{A_{9}}^{1}=\left(14 A_{8}{ }^{A_{9}}, M\right) \frac{1}{A_{9}}=\left(14, M \dagger_{A_{8}}\right)_{A_{8}}^{1}
$$

By 5.1.13 and 2.5,

$$
\begin{aligned}
\left(14,48 \psi_{A_{8}}\right)^{I} & =\left(14, M_{56}^{1}\right)_{A_{8}}^{I}=\left(14, M_{56}\right)_{A_{8}}^{1}-\left(14, M_{8}\right)_{A_{8}}^{1} \\
& =\left(14 \psi_{\left(A_{5} \times 3\right) 2}, I\right)_{\left(A_{5} \times 3\right) 2}^{1}-\left(14 t_{A_{7}}, I\right)_{A_{7}} \\
& =\left(14 \psi_{S_{5}}, I\right)_{S_{5}}^{1}-1 \\
& =\left(I_{S_{5}}{ }^{A}{ }^{A} \psi_{S_{5}}-I_{A_{6}} \uparrow^{A_{7}} \psi_{S_{5}}, I\right)_{S_{5}}^{1}-1 \\
& =(I, I)_{S}^{1}+(I, I)_{A_{4}}^{1}+(I, I)_{S_{3}}^{1} \times 2-(I, I)_{A_{5}}^{1}-(I, I)_{S}^{1}-1 \\
& =1+0+2-0-1-1=1 .
\end{aligned}
$$

By 5.1.14 and 1.2,
$\left(14,160 \psi_{A_{8}}\right)_{A_{8}}^{1}=\left(14,20{ }_{A_{7}} \uparrow^{A_{8}}\right)_{A_{8}}^{1}=(14,20)_{A_{7}}^{1}=0 . \quad / /$
5.2.3 Lemma. For M a simple FA_{9}-module,

$$
(160, M)_{A_{9}}^{1}= \begin{cases}1 & \text { if } M=8_{3} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. The only case left to consider here is $(160,160)_{A_{9}}^{1}$. By 5.1.4, 5.1.5 and 1.2,

$$
\begin{align*}
& (160,160)_{A_{9}}^{1}=\left((20)_{1} A_{8}{ }^{\uparrow} A_{9,160}\right)_{A_{9}}^{1}=\left(20_{1}, 160 \psi_{A_{8}}\right)^{1} A_{8} \\
& =\left(20_{1}, 20_{A_{7}} \dagger^{A} 8\right)_{A_{8}}^{1}=(20,20)_{A_{7}}^{1}=0 .
\end{align*}
$$

Now we turn to the principal block.
5.2.4 Lemma. For M a simple $F A_{9}$-module,

$$
(I, M)_{A_{Q}}^{1}=\left\{\begin{array}{ll}
2 & \text { if } M=26 \\
1 & \text { if } M=20_{i} \\
0 & \text { otherwise }
\end{array} \text { or } 78\right.
$$

Proof. By 5.1.6, if M is a simple $F A_{9} \cdot f_{0}$-module,

$$
(I, M)_{A_{Q}}^{1}=\left(I_{A_{8}}{ }^{A_{9}}, M\right)_{A_{9}}^{1}=\left(I, M_{A_{8}}\right)_{A_{8}}^{1}
$$

By 5.1.2 and Appendix 4,

$$
\left(I, 2 O_{1}+A_{8}\right)^{1}=\left(I, 20_{1}\right)^{1} A_{8}=1
$$

By 5.1.12 and Appendx 4,

$$
\left(I, 26+A_{8}\right)_{A_{8}}^{I}=\frac{6}{(I, 14)_{A_{8}}^{1}}=2
$$

since by 3.2 , there is an A_{8}-module

but by Theorem 1 there is no A_{8}-module

$$
\begin{gathered}
\text { I } \\
6 \\
14
\end{gathered}
$$

By 5.1.9 and Appendix 4,

$$
\left(I, 8_{1}{ }^{\not} A_{8}\right)_{A_{8}}^{1}=\left(I, 4_{j}^{4}\right)_{A_{8}}^{I}=0
$$

By 5.1.3 and Appendix 4,

$$
\left(I, 78 \downarrow_{A_{8}}\right)_{A_{8}}^{1}=(I, 14 \oplus 64)_{A_{8}}^{1}=1
$$

5.2.5 Lemma. For M a simple FA_{g}-module

$$
(78, M)_{A_{9}}^{1}= \begin{cases}1 & \text { if } M=I \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By 5.1.4, for M a simple $F_{9} \cdot f_{0}$-module,

$$
(78, M)_{A_{9}}^{1}=\left(14 A_{8}{ }^{A^{A}} 9, M\right)_{A_{9}}^{1}=\left(14, M_{\psi_{A}}\right)_{A_{8}}^{1}
$$

By 5.1.2, 5.1.3, 5.1.9, 3.2, 1.2 and Appendix 4, we have

$$
\begin{aligned}
& \left(14,26{ }_{{ }_{A}}\right)_{8}^{1}{ }_{A_{8}}^{1}=(14,14)_{A_{A_{8}}}^{1} \leq\left(14,6 A_{A_{7}}{ }^{A_{8}}\right)_{A_{8}}^{1}=(14,6)_{A_{7}}^{1}=0 . \\
& \left(14,78 t_{A_{8}}\right)_{A_{8}}^{I}=(14,14 \oplus 64)_{A_{8}}^{1}=0 \text {. } \\
& \left(14,8{ }_{1}+A_{8}\right)_{A_{8}}^{I}=\left(14,{ }_{4}^{4_{j}}\right)_{A_{8}}^{1}=0 \text {. }
\end{aligned}
$$

5.2.6 Lemma. For M a simple $F A_{9}$-module,

$$
\left(20_{1}, M\right)_{A_{9}}^{1}= \begin{cases}1 & \text { if } M=I, 8_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By 5.1.5, for M a simple $E A_{g} \cdot f_{0}$-module,

$$
\left(20_{i}, M\right)_{A_{9}}^{1}=\left(\left(20_{1}\right)_{A_{8}}+{ }^{A} 9, M\right)_{A_{9}}^{1}=\left(20_{1}, M \not{ }_{A_{8}}\right)_{A_{8}}^{I}
$$

By 5.1.5, 5.1.9, 5.1.12 and Theorem 1, we have

$$
\begin{aligned}
& \left(20_{1}, 20_{i} t_{A_{8}}\right)_{A_{8}}^{1}=\left(20_{i}, 20_{i}\right)_{A_{8}}^{1}=0 \\
& \left(20_{i}, 8_{i}+A_{8}\right)_{A_{8}}^{1}=\left(20_{i},{ }_{4}{ }_{j}\right)_{A_{8}}^{1}=0 \\
& \left(20_{i}, 8{ }_{j}{ }^{4} A_{8}\right)^{1} A_{8}=\left(20{ }_{i},{ }_{4}{ }_{i}\right)_{A_{8}}^{I}=1 \\
& \left.\left(20_{i}, 26 \psi_{A_{8}}\right)^{1}=\left(2 A_{i},{ }_{6}^{6}\right)^{1}\right)_{A_{8}}^{1}=0
\end{aligned}
$$

5.2.7 Lemma. For M a simple $F A_{9}$-module,

$$
(26, M)_{A_{9}}^{1}= \begin{cases}2 & \text { if } M=I \\ 1 & \text { if } M=8_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Proof.

$$
\begin{aligned}
& (26,26)_{A_{9}}^{1} \leq\left(6{ }_{A_{8}}+{ }^{A} 9,26\right)_{A_{9}}^{1}=(6,14)_{6}^{\frac{1}{A_{8}}}=0 \text { by Theorem 1 } \\
& \left(26,8_{i}\right)^{1} A_{9} \leq\left(26,\left(4_{i}\right)_{A_{8}}{ }^{A^{A}}{ }^{1}\right)_{A_{9}}^{1} \quad \text { by } 5.1 .7 \text { and } 5.1 .8 \\
& \left.=\frac{6}{6}{ }_{6} 4_{i}\right)^{1} A_{8} \leq\left(6 A_{7}{ }^{\dagger}{ }^{A} 8,4_{i}\right)^{1} A_{8} \text { by } 3.2 \\
& =\left(6,4{ }_{i}\right)_{A_{7}}^{1}=1 \text { by } 1.2 .
\end{aligned}
$$

But $\left(26,8 i_{i}\right)_{A_{9}}^{1}>1$ by applying Lemma 3 and 5.2 .4 to the 35 dimensional ordinary character of A_{9}. //
5.2.8 Lemma. For M a simple $F A_{9}$-module

$$
\left(8_{1}, M\right)= \begin{cases}1 & \text { if } M=20_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By 5.2.6 and duality,

$$
\begin{aligned}
& \left(8_{1}, 20_{i}\right)_{A_{9}}^{1}=\left(20_{j}, 8_{1}\right)_{A_{9}}^{1}=1 \\
& \left(8_{i}, 20_{j}\right)_{A_{9}}^{1}=\left(20_{i}, 8_{i}\right)_{A_{9}}^{1}=0
\end{aligned}
$$

By 5.1.7, 5.1.8 and Appendix 4,

$$
\begin{aligned}
& \left(8_{i}, 8_{j}\right)_{A_{9}}^{1} \leq\left(8_{i},\left(4_{j}\right) A_{8}{ }^{+A^{9}}\right)_{A_{9}}^{1}=\left(4_{j}^{i}, 4_{j}\right)_{A_{8}}^{1}=0 \\
& \left(8_{i}, 8_{i}\right)_{A_{9}}^{1} \leq\left(8_{i},\left(4_{i}\right) A_{8}{ }^{A} 9\right)_{A_{9}}^{1}=\left(4_{j}, 4_{i}\right)_{A_{8}}^{1}=0
\end{aligned}
$$

since there is only one copy of 4_{1} in $L_{3}\left(P_{4_{i}}\right)$, and there is a module

for A_{8} by 3.1. //
This completes the determination of $\operatorname{dim~Ext}_{A_{9}}^{1}(M, N)$ for M and N simple modules.

5.2.9 Comment

It can be seen from Appendix 6 that we may divide the simple
$\mathrm{FA}_{9} \cdot \mathrm{f}_{0}$-modules into two sets $\mathrm{S}=\left\{\mathrm{I}, 8_{1}, 8_{2}\right\}$ and $\mathrm{T}=\left\{2 \mathrm{O}_{1}, 2 \mathrm{O}_{2}, 26,78\right\}$ in such a way that elements of each set only extend elements of the other set. Thus in a projective indecomposable module, any particular Loewy layer will be a direct sum of modules from just one of these sets.

5.3 Induction of two-step FA_{8}-modules

In this section we shall induce up to A_{0} each of the non-trivial extensions of a simple module by a simple module for A_{8}.

By Frobendus reciprocity, we have

Similarly $L_{1}\left(\binom{6}{4}_{A_{8}}{ }^{4}{ }^{A} 9\right)=26$. However, the proof of 5.2 .7 shows that the only non-trivial extension of 26 by $\left(4_{i}\right)_{A_{8}}{ }^{A_{9}}$ is

Thus $\left({ }_{4}^{6}\right) A_{8}{ }^{A^{A}} 9$ has socle and Loewy series

26
5.3 .4

Since A_{8} contains a vertex of any A_{9}-module. 8_{i} is a direct summand of $8_{i} \downarrow_{A_{8}}{ }^{4} 9=\left(4_{4}^{4}\right) A_{8}{ }^{4} 9$. By Frobenius reciprocity, we have $S_{1}\left(\left(_{4}^{4}\right) A_{j}{ }^{4}{ }^{A} 9\right)=L_{1}\left(\left(_{4}^{i}{ }_{j} A_{8}{ }^{A^{A} 9}\right)=8_{1} A 8_{j}\right.$. Hence 5.3.5

Again by Frobenius reciprocity, we have $S_{1}\left(\left(_{20}^{4}\right)_{i} A_{8}{ }^{A}{ }^{A}\right)_{A_{9}}=20{ }_{i} \oplus 160$, and so
5.3 .6

$$
\left(\begin{array}{c}
4 \\
\left(20_{i}\right.
\end{array} A_{8} \uparrow^{A_{9}}={ }^{8_{j}}{ }^{20_{j}}+160\right.
$$

Finally, we have $S_{1}\left(\left(_{14}^{6}\right)_{A_{8}}{ }^{A} 9\right)=26 \oplus 48 \oplus 78$ and $L_{1}\left(\left({ }_{14}^{6}\right){ }_{A_{8}}{ }^{A^{A}} 9\right)=26 \oplus 48$.
Thus
5.3 .7

$$
\left({ }_{14}^{6}\right)_{A_{8}}^{4^{A} 9}=I_{26}^{26} I_{78}^{2} \oplus 48
$$

5.4 Induced modules from A_{7} to A_{9} The results of sections $3,4.6$ and 5.3 give us the following.

5.4 .3

Now $\left(4_{i}\right)_{A_{7}}{ }^{A^{A} 9}=8_{S_{7}}{ }^{+A} 9$, and so $\left(4_{1}\right)_{A_{7}}{ }^{+A} 9 \cong\left(4_{2}\right)_{A_{7}}{ }^{+}{ }^{A} 9$. By Frobenius rectprocity, the socle and head are $8_{1} \oplus 8_{2}$. Thus by 5.3.5, 5.3.6 and Appendix 6, there is only one possibility.
5.4.4.

$$
\left(4_{1}\right)_{A_{7}}{ }^{A_{9}} \cdot f_{0}=\begin{array}{cc}
8_{1} & 8_{2} \\
20_{1} & { }^{2} 0_{2} \\
8_{2} & 8_{1} \\
20_{2} & 20_{1} \\
8_{1} & 8_{2}
\end{array}
$$

We shall postpone discussion of ${ }^{6} \mathrm{~A}_{7}{ }^{4}{ }^{\mathrm{A}} 9 . \mathrm{f}_{0}$ until Section 6.4.

Section 6

Structure of the projective modules for FA_{9}

6.1 The non-principal block

Appendix 5, we see that the only possible structures for the projective indecomposable modules in the non-principal block are:

8_{3}		48			160
48	160			8	83
83	$\oplus 8_{3}$	48	A	3 160	48
160	48			83	83
83		48			160°
	$\mathrm{P}_{8}{ }_{3}$			P_{48}	

This should be compared with the principal block of A_{7}, displayed in 1.2.

6.2 The structure of ${ }^{\mathrm{P}}\left(2 \mathrm{O}_{1}\right)_{\mathrm{A}_{9}}$

It may be deduced from the Loewy structure given in Theorem 1 and from the diagram in Section 4.6 that $P_{\left(20_{i}\right)} A_{8}$ has a diagram

FIGURE 6

This, together with the results of section 5 , imediately gives the Loewy series shown in Theorem 2 for ${ }^{P}\left(20_{1}\right) A_{9}=P_{\left(20_{1}\right)} A_{8}{ }^{A_{9}} \cdot{ }^{f} 0^{\circ}$

Hence the appropriate diagram for our filtration of $\left.{ }^{\mathrm{P}}\left(2 \mathrm{O}_{1}\right) \mathrm{A}_{9}{ }_{(20}{ }_{2}\right)_{\mathrm{A}_{9}}$ induced from Figure 3 is as follows.

FIGURE 7
6.3 The Structure of $\mathrm{P}_{\mathrm{I}_{\mathrm{A}_{9}}}$

Since $P^{P_{I_{9}}}=P_{I_{A_{8}}}{ }^{A_{9}} \cdot{ }^{\prime} f_{0}$, we may deduce from Figures 3,4 and 7 that
we have the Loewy serfes given in Theorem 2, and that the appropriate diagram for the induced filtration is

FIGURE 8
6.4 The structures of $P_{26}, P_{A_{9}}\left(8_{i}\right) A_{9}$ and ${ }^{6} A_{7}{ }^{A_{9}}$

By Brauer characters, we have

$$
\begin{aligned}
& P_{6} A_{8}{ }^{A_{9}} \cdot \mathrm{~F}_{0}=P_{26} A_{9}{ }^{\oplus} P_{26} A_{9} \\
& P_{\left(41_{1}\right)} A_{8}{ }^{A_{9}} \cdot f_{0}=P_{\left(44_{2}\right)} A_{8}{ }^{A_{9}} \cdot f_{0}=P_{(8,)} A_{9} P_{\left.(8)_{2}\right)}^{A_{9}}
\end{aligned}
$$

Landrock's lemma and Figure 8 tell us that $P_{26} \oplus \mathrm{P}_{26}$ has 4 copies of I in each of L_{2} and L_{8} and 12 copies in each of L_{4} and L_{6}. Examining Figure 2 and Section 5.3, this makes it clear that ${ }^{6} A_{7}{ }^{+A_{9}}$ has 4 copies of I in each of L_{2} and $L_{4^{*}}{ }^{*}$ Thus ${ }^{6} A_{7}{ }^{A}{ }^{A_{9}} \cdot f_{0}$ has socIe and Loewy series

		26	26	
6.4 .1	I	I	I	I
	26	26	78	78
	I	I	I	I
		26	26	

Similarly Figure 7 tells us that $P_{26}{ }^{\oplus} P_{26}$ has 2 copies of each 20_{1} in each of L_{3} and L_{7}, and 4 copies of each 20_{1} in L_{5}. This and 5.4.4 now force the Loewy series for $P_{26} \oplus P_{26}$ to be as displayed in Figure 9, and so the Loewy series for P_{26} is as given in Theorem 2.


```
    (using 5.3 and 5,4.4). Thus tne Loewy length is 5, and the Loewy series is as
    shown. In fact it is a direct sum of two isomorphic modules with socle and Loewy
```


It immediately follows from this and Figure 1 that our diagram for $\mathrm{P}_{8_{1}} \oplus \mathrm{P}_{8_{2}}$ is as follows.

FIGURE 10

Thus apart from the distribution of i 's and $j^{\prime} s$, the Loewy series given in Theoren 2 for P_{8} follows. Using Landrock's lema and Figure 7, we see that the distribution of 20_{1} 's and 20_{j} 's in $P_{8_{i}}$ is as given. But now every copy of 8_{i} in Figure 10 is glued either above a 20 or below a 20_{j}. Hence the Loewy structure of $\mathrm{P}_{6_{i}}$ is as in Theorem 2 .
6.5 The structure of $P_{78} A_{9}$

By Brauer characters,

$$
P_{14} A_{8}+{ }^{A} 9 \cdot F_{0}=P_{26} \oplus P_{78}
$$

Using Landrock's lemma and Figures 5,7 and 8 , we see immediately that our diagram for $\mathrm{P}_{26}{ }^{\text {A }} \mathrm{P}_{78}$ is as follows.

FIGURE 11

Now subtracting out the Loewy structure of P_{26}, we obtain the Loewy structure of P_{78} given in Theorem 2. This completes the proof of Theorem 2 .

References

1. K. Erdmann, "Principal blocks of groups with dihedral Sylow 2-subgroups", Cam. Algebra 5 (7), (1977), 665-694.
2. G. D. James, "The representation theory of the symmetric groups", SpringerVerlag SLN682, 1978.
3. P. Landrock, "The Cartan matrix of a group algebra modulo any power of its radical", submitted to Bull. A.M.S.
4. L. L. Scott, "Modular permutation representations", Trans, AMS, 175 (1973), 101-121.
5. J. G. Thompson, "Vertices and sources", J. Algebra 6 (1967), 1-6.
6. D. Benson, "The Loewy structure of the projective indecomposable modules for A_{8} in characteristic $2^{\prime \prime}$ Comm in Algebra 11(1983), 1395-1432.

Appendix 5. Characters of A_{9}

(i) Ordinary characters

181440	480	192	1080	81	54	24	16	60	24	6	7	9	9	20	12	1.5	15	
p power	A	A	A	A	A	A	B	A	AA	CB	A	B	B	AA	AA	AA	AA	
p'part	A	A	A	A	A	A	A	A	AA	CB	A	A	A	AA	AA	AA	AA	± 9
ind 1 A	2 A	2B	3A	3B	3 C	4A	4 B	5A	6A	6B	7A	9A	9B	10A	12A	15A	B**	fusion
$+1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	:
$+8$	4	0	5	-1	2	2	0	3	1	0	1	-1	-1	-1	-1	0	0	:
- 21	1	-3	-3	3	0	-1	1	1	1	0	0	0	0	1	-1	b15	**	1
- 21	1	-3	-3	3	0	-1	1	1	1	0	0	0	0	1	-1		b15	
+ 27	7	3	9	0	0	1	-1	2	1	0	-1	0	0	2	1	-1	-1	:
+ 28	4	-4	10	1	1	0	0	3	-2	-1	0	1	1	-1	0	0	0	:
$+35$	-5	3	5	-1	2	-1	-1	0	1	0	0	2	-1	0	-1	0	0	
$+35$	-5	3	5	-1	2	-1	-1	0	1	0	0	-1	2	0	-1	0	0	
$+42$	6	2	. 0	-3	3	0	2	-3	0	-1	0	0	0	1	0	0	0	:
$+48$	8	0	6	3	0	0	0	-2	2	0	-1	0	0	-2	0	1	1	:
$+56$	-4	0	11	2	2	-2	0	1	-1	0	0	-1	-1	1	1	1	1	:
$+84$	4	4	-6	3	3	0	0	-1	-2	1	0	0	0	-1	0	-1	-1	:
$+105$	5	1	15	-3	-3	-1	1	0	-1	1	0	0	0	0	-1	0	0	:
+ 120	0	8	0	3	-3	0	0	0	0	-1	1	0	0	0	0	0	0	:
+ 162	6	-6	0	0	0	0	-2	-3	0	0	1	0	0	1.	0	0	0	:
+ 168	4	0	-15	-3	0	-2	0	3	1	0	0	0	0	-1	1	0	0	:
+ 289	-11	-3	9	0	0	1	1	-1	1	0	0	0	0	-1	1	-1	-1	:
+ 216	-4	0	-9	0	0	2	0	1	-1	0	-1	0	0	1	-1	1	1	:

(ii) 2-modular characters

181440		1080	81	54	60	7	9	9	15	15	
p power		A	A	A	A	A	A	B	AA	AA	
p'part		A	A	A	A	A	A	A	AA	AA	S9
ind	1A	3A	3B	3 C	5A	7A	9A	98	15A	B**	fusio
$+$	1	1	1	1	1	1	1	1	1	1	:
+		-4	-1	2	-2	1	2	-1	1	1	1
+	82	-4	-1	2	-2	1	-1	2	1	1	
+	83	5	-1	2	3	1	-1	-1	0	0	:
	20_{1}	-4	2	-1	0	-1	-1	-1	b15-1	**	1
-	$2 \mathrm{O}_{2}$	-4	2	-1	0	-1	-1	-1	**	b15-1	\checkmark
+	26	8	-1	-1	1	-2	-1	-1	-2	-2	:
+	48	6	3	0	-2	-1	0	0	1	1	:
+	78	6	-3	-3	-2	1	0	0	1	1	:
$+$	160	-20	-2	-2	0	-1	1	1	0	0	:

(iii)

Decomposition Matrix

(iv) Cartan Matrix

$\begin{array}{lllllllllll}I & 8_{1} & 8_{2} & 20_{1} & 20 & 26 & 78 & 8_{3} & 48 & 160\end{array}$

I	32	8	8			10	16				
81	8	5	4		3	3	6				
${ }^{8} 8$	8	4	5		3	3	6				
20_{1}	10	3	3		5	4	4				
20_{2}	10	3	3		4	5	4	3			
26	16	6	6		4	4	12	4			
78	8	2	2		3	3	3	4			
83									4	2	2
48									2	3	1
160										1	2

Appendix 6. dim $\operatorname{Ext}_{A_{9}}^{1}(M, N)$ for M, N simple

		I	81	8_{2}	20_{1}	$2 \mathrm{O}_{2}$	26	78	83	48	160
	I	0	0	0	1	1	2	1			
	81	0	0	0	1	0	1	0			
M	82	0	0	0	0	1	1	0			
	20_{1}	1	0	1	0	0	0	0			
	20_{2}	1	1	0	0	0	0	0			
	26	2	1	1	0	0	0	0			
	78	1	0	0	0	0	0	0			
	83								0	1	1
	48								1	1	0
	160								1	0	0

Received: November 1982
Revised: January 1983

