The Loewy structure of the projective indecomposable modules for A_0 in characteristic 2

D. J. Benson Yale University New Haven, Conn. 06520

Introduction

The purpose of this paper is to establish the Loewy series for the projective indecomposable modules for A_g over a splitting field of characteristic 2.

Since this paper depends very heavily on the results of [6], we shall number our sections as though this were a continuation of [6]. To avoid repetition we shall refer to results of [6], simply by their section number. We take (S,R,F) to be a splitting 2-modular system for A_9 and all its subgroups, and A_8 is regarded as a subgroup of A_9 stabilizing a point, A_7 a subgroup of A_8 stabilizing a further point, and so on. S_n denotes the subgroup of A_{n+2} stabilizing an unordered pair of points, and containing A_n (n \leq 7).

The simple FA_9 -modules are denoted I, 8_1 , 8_2 , 8_3 , 20_1 , 20_2 , 26, 48, 78 and 160. 8_1 and 8_2 are related by an outer automorphism of A_9 , but are not dual or algebraically conjugate. 20_1 and 20_2 are related by an outer automorphism of A_9 , and are dual, but are not algebraically conjugate. The ordinary and 2-modular character tables, decomposition matrix and Cartan matrix for A_9 have been extracted from James [2] and presented in Appendix 5.

1433

Copyright © 1983 by Marcel Dekker, Inc.

0092-7872/83/1113-1433\$3.50/0

 FA_9 has two blocks, whose idempotents we shall denote by f_0 (principal block containing the simple modules I, 8_1 , 8_2 , 20_1 , 20_2 , 26 and 78) and f_1 (non-principal block containing the simple modules 8_3 , 48 and 160). Throughout the paper, i will denote 1 or 2, and $\{i,j\} = \{1,2\}.$

The main result of this paper is the following theorem.

<u>Theorem 2</u>. The Loewy structures of the projective indecomposable modules for $FA_{\rm e}$ are as follows.

(i) Principal Block

Ι 20₁ 20₂ 26 26 78 I I I I I I I 8₁ 8₁ 8₂ 8₂ 20₁ 20₁ 20₂ 20₂ 20₂ 20₂ 26 26 26 26 26 26 78 78 I III I I I I I I 8₁ 8₁ 8₂ 8₂ 20₁ 20₂ 26 26 78 I I 201 202 78 I Ι 20, 20, 78 I ⁸i 20₁26 ⁰1 8 78 I 8 20,26 I I I ⁸i II 20, 20, 20, 26 26 I I 8 j 8₁ I 8 20 26 8 20₁26 78 I ⁸i 20₁ 20₁ 1 I 78 1 20₁

26 78 $\begin{matrix} \mathbf{I} & \mathbf{I} & \mathbf{8}_{1} & \mathbf{8}_{2} \\ \mathbf{20}_{1} & \mathbf{20}_{2} & \mathbf{26} & \mathbf{26} & \mathbf{26} & \mathbf{78} \end{matrix}$ 1 20₁ .20₂ 26 I I I I I I 8₁ 8₁ 8₂ 8₂ 20₁ 20₂ 20₂ 20₂ 26 26 26 26 78 78 1 1 8₁ 8₂ 26 26 78 $\begin{bmatrix} I & I & I & I & 8_1 & 8_1 & 8_2 & 8_2 \\ 20_1 & 20_2 & 26 & 26 & 26 & 78 \end{bmatrix}$ I I 8₁ 8₂ Ι 20₁ 20₂ 26 I 81 82 I I 78 26 1. ²⁰1 ²⁰2 I 78

(ii) Non-principal Block

⁸ 3	48	160
48 160	8 ₃ 48	⁸ 3
⁸ 3 ⁸ 3	160	48
48 160	83	83
83	48	160

(see also section 6.1)

•

The notation and tools for this paper are the same as in [6], with the addition of the following.

We shall write $(M,N)^n_A$ for dim $Ext^n_A(M,N)$.

Lemma 6. (Ext Reciprocity). Let $H \leq G$, M as FH-module and N an FG-module. Then

$$(M,N+_{FH})_{FH}^{n} = (M+_{FG}^{FG},N)_{FG}^{n}$$

<u>Proof.</u> This follows from Lemma 2 by dimension shifting and induction on n. //

Lemma 7. Let M_1 , M_2 and M_3 be FG-modules. Then

$$(M_1, M_2 \otimes M_3)_{FG} = (M_1 \otimes M_2^*, M_3)_{FG}$$

Section 5.

Restriction and induction between A8 and A9; calculation of dim Ext¹ for simple modules 5.1. Restriction and induction of simple modules. Using Brauer characters, we see that 5.1.1. $I_{A_0} + A_8 = I$ 5.1.2. $(20_{i})_{A_{0}} + A_{g} = 20_{i}$ By block theory, 5.1.3. $78_{A_0} + A_{R_0} = 14 \oplus 64$ 5.1.4. $14_{A_0} \uparrow^{A_0} = 48 \oplus 78$ 5.1.5. $(20_{i})_{A_{0}} + ^{A_{9}} = 20_{i} \oplus 160$ 5.1.6. $I_{A_0} \uparrow^A 9 = I \oplus 8_3$ Now $(4_1)_{A_2} + \frac{A_2}{2}$ has composition factors $8_1 + 8_2 + 20_2$, and $(20_2, (4_1)_{A_8}, *^{A_9})_{A_9} = (20_2 *_{A_8}, 4_1)_{A_8} = 0$ $((4_1)_{A_8}^{+A_9}, 20_2)_{A_9} = (4_1, 20_2 + A_8)_{A_8} = 0$ Thus $\binom{4}{1}_{A_{g}}^{A_{g}}$ is uniserial, with 20_{2} in the middle. Since we haven't yet chosen which is which of the conjugacy classes 9A and 9B for A_{0} , we may choose whichever we like of 8_{1} and 8_{2} to be the bottom composition factor of $(4_1)_{A_R}^{A_R}$. We choose that $(4_1)_{A_8} + {}^{A_9} = {}^{B_2}_{20_2}_{B_1}$ 5.1.7

Dualizing this, we get

5.1.8
$$(4_2)_{A_8} + A_9 = 20_1$$

Thus by Frobenius reciprocity

LOEWY SERIES FOR THE PROJECTIVE MODULES FOR A O

5.1.9
$$(8_1)_{A_9} *_{A_8} = 4_1^{i_1}_{i_2}$$

By 5.1.6 and 2.1.1 we have

5.1.10
$$(8_3)_{A_9} + 8_8 = I_{A_8} + 9_{A_8} - I = I_{A_7} + 8_8 = 6_1$$

By Lemma 7, $(I, 8_3^{2-})_{A_9} \leq (I, 8_3 \otimes 8_3)_{A_9} = 1$. Since the composition factors of 8_3^{2-} are I + I + 26, and the module is self-dual, we have

5.1.11
$$8_3^{2-} = \frac{1}{26}$$

Thus by 5.1.10 and 2.3 we have

5.1.12
$$26_{A_{9}} + A_{8} = 14_{6}$$

By 5.1.4, 5.1.3, Lemma 5 and 3.3.2,

$$48_{A_{9}} + A_{8} = 14_{A_{8}} + 49_{A_{8}} - 78_{A_{8}}$$

$$= 14 + 14_{A_{7}} + 48_{A_{7}} - 14_{A_{7}} - 64 \qquad (5.1.13)$$

$$= M_{56}^{1}$$

$$= 46_{A_{7}}^{A_{4}} + 46_{A_{7}}^{A_{4}}$$

Similarly, by 5.1.5 and 4.6,

$$160_{A_9} + A_8 = (20_1)_{A_8} + A_9 + A_8 - 20_1 = 20_{A_7} + A_8$$

14

(5.1.14)

Now $6_{A_8}^{A_9}$ has composition factors I + I + 26 + 26. Thus by 5.1.1, Frobenius reciprocity and the fact that $(I,I)_{A_9}^{I} = 0$ (since A_9 is simple), we have

5.1.15
$$6_{A_8}^{+A_9} = I_{26}^{26}$$

Also, by Brauer characters we have

5.1.16
$$64_{A_8} + 69 = P_{78}$$
.

5.2 <u>Calculation of</u> dim $Ext^{1}_{A_{q}}$

In this section we work out $(M,N)^1_{A_9}$ for M and N simple. This information is displayed in Appendix 6.

First we attack the non-principal block.

5.2.1 Lemma. For M a simple FAq-module

$$(8_3, M)_{A_9}^1 = \begin{cases} 1 & \text{if } M = 48 & \text{or } 160 \\ 0 & \text{otherwise} \end{cases}$$

Proof. For M a simple FA9.f1-module, by 5.1.6 and Lemma 6 we have

$$(8_3, M)^1_{A_9} = (1_{A_8} + {}^{A_9}, M)^1_{A_9} = (1, M + {}_{A_8})^1_{A_8}$$
.

By 5.1.10,

$$(I, 8_{3} + A_{8})^{1}_{A_{8}} = (I, I_{A_{7}} + A_{8})^{1}_{A_{8}} = (I, I)^{1}_{A_{7}} = 0.$$

By 5.1.13 and 2.5,

$$(I,48+_{A_8})_{A_8}^1 = (I,M_{56}')_{A_8}^1 = (I,M_{56})_{A_8}^1 - (I,M_8)_{A_8}^1$$
$$= (I,I)_{(A_5\times3)2}^1 - (I,I)_{A_7}^1 = 1.$$

By 5.1.14 and 1.2,

LOEWY SERIES FOR THE PROJECTIVE MODULES FOR ${\rm A}_{\rm Q}$

$$(1,160_{A_8})_{A_8}^1 = (1,20_{A_7})_{A_8}^1 = (1,20)_{A_7}^1 = 1.$$
 //

5.2.2 Lemma. For M a simple FA_9 -module,

$$(48,M)_{A_{g}}^{1} = \begin{cases} 1 & \text{if } M = 8_{3} & \text{or } 48 \\ 0 & \text{otherwise} \end{cases}$$

<u>Proof.</u> For M a simple $FA_9.f_1$ -module, by 5.1.4 we have

$$(48,M)^{1}_{A_{9}} = (14_{A_{8}} + {}^{A_{9}},M)^{1}_{A_{9}} = (14,M4_{A_{8}})^{1}_{A_{8}}.$$

By 5.1.13 and 2.5,

$$(14,48_{A_8})_{A_8}^{1} = (14,M_{56})_{A_8}^{1} = (14,M_{56})_{A_8}^{1} - (14,M_8)_{A_8}^{1}$$

$$= (14_{(A_5\times3)2},1)_{(A_5\times3)2}^{1} - (14_{A_7},1)_{A_7}$$

$$= (14_{S_5},1)_{S_5}^{1} - 1$$

$$= (1_{S_5},4^{A_7}+_{S_5},-1_{A_6},4^{A_7}+_{S_5},1)_{S_5}^{1} - 1$$

$$= (1,1)_{S_5}^{1} + (1,1)_{A_4}^{1} + (1,1)_{S_3\times2}^{1} - (1,1)_{A_5}^{1} - (1,1)_{S_4}^{1} - 1$$

$$= 1 + 0 + 2 - 0 - 1 - 1 = 1.$$

By 5.1.14 and 1.2,

$$(14,160_{A_8})^1_{A_8} = (14,20_{A_7})^{A_8}_{A_8} = (14,20)^1_{A_7} = 0.$$
 //

5.2.3 Lemma. For M a simple FA9-module,

$$(160,M)_{A_9}^1 = \begin{cases} 1 & \text{if } M = 8_3 \\ 0 & \text{otherwise} \end{cases}$$

<u>Proof.</u> The only case left to consider here is $(160,160)^1_{A_g}$. By 5.1.4, 5.1.5 and 1.2,

1439

BENSON

$$(160,160)_{A_{9}}^{1} = ((20_{1})_{A_{8}}^{+A_{9}},160)_{A_{9}}^{1} = (20_{1},160_{A_{8}}^{+})_{A_{8}}^{1}$$
$$= (20_{1},20_{A_{7}}^{+A_{8}})_{A_{8}}^{1} = (20,20)_{A_{7}}^{1} = 0. //$$

Now we turn to the principal block.

5.2.4 Lemma. For M a simple FAg-module,

$$(I,M)_{A_{g}}^{1} = \begin{cases} 2 & \text{if } M = 26 \\ 1 & \text{if } M = 20_{i} & \text{or } 78 \\ 0 & \text{otherwise} \end{cases}$$

<u>Proof.</u> By 5.1.6, if M is a simple FA_9 . f_0 -module,

$$(I,M)_{A_{9}}^{1} = (I_{A_{8}}^{+} + {}^{A_{9}}, M)_{A_{9}}^{1} = (I,M + {}_{A_{8}})_{A_{8}}^{1}.$$

By 5.1.2 and Appendix 4,

$$(1,20_{1}+A_{8})^{1}A_{8} = (1,20_{1})^{1}A_{8} = 1.$$

By 5.1.12 and Appendix 4,

$$(1,26\downarrow_{A_8})^1_{A_8} = (1,14)^1_{A_8} = 2$$

since by 3.2, there is an A_8 -module

$$\begin{array}{cccc}
 I & 6 \\
 & 1 \\
 & 14 \\
 I & 14 \\
 I & 16 \\
 I & 6 \\$$

but by Theorem 1 there is no Ag-module

By 5.1.9 and Appendix 4,

$$(\mathbf{I}, \mathbf{8}_{i} + \mathbf{A}_{8})^{1}_{\mathbf{A}_{8}} = (\mathbf{I}, \frac{4_{i}}{4_{j}})^{1}_{\mathbf{A}_{8}} = 0.$$

1440

LOEWY SERIES FOR THE PROJECTIVE MODULES FOR ${\rm A}_{\rm q}$

By 5.1.3 and Appendix 4,

$$(1,78_{4_{8_{8}}})^{1}_{A_{8}} = (1,14 \oplus 64)^{1}_{A_{8_{8}}} = 1.$$
 //

5.2.5 Lemma. For M a simple FAq-module

$$(78,M)_{A_{9}}^{1} = \begin{cases} 1 & \text{if } M = I \\ 0 & \text{otherwise} \end{cases}$$

<u>Proof.</u> By 5.1.4, for M a simple FA_{q} .f₀-module,

$$(78,M)_{A_9}^1 = (14_{A_8}, 9,M)_{A_9}^1 = (14,M_{A_8})_{A_8}^1$$

By 5.1.2, 5.1.3, 5.1.9, 3.2, 1.2 and Appendix 4, we have

$$(14,26_{4})_{A_{8}}^{1} = (14,14)_{A_{8}}^{0} \leq (14,6_{A_{7}})_{A_{8}}^{1} = (14,6)_{A_{7}}^{1} = 0.$$

$$(14,78_{4})_{A_{8}}^{1} = (14,14 \oplus 64)_{A_{8}}^{1} = 0.$$

$$(14,8_{1})_{A_{8}}^{1} = (14,4_{4})_{A_{8}}^{1} = 0.$$

$$//$$

5.2.6 <u>Lemma</u>. For M a simple FA_9 -module, $(20_1, M)_{A_9}^1 = \begin{cases} 1 & \text{if } M = I, 8\\ 0 & \text{otherwise} \end{cases}$

Proof. By 5.1.5, for M a simple FA.f. module,

$$(20_{i}, M)_{A_{9}}^{1} = ((20_{i})_{A_{8}} + ^{A_{9}}, M)_{A_{9}}^{1} = (20_{i}, M + _{A_{8}})_{A_{8}}^{1}.$$

By 5.1.5, 5.1.9, 5.1.12 and Theorem 1, we have

$$(20_{i}, 20_{i} + A_{8})_{A_{8}}^{1} = (20_{i}, 20_{i})_{A_{8}}^{1} = 0$$

$$(20_{i}, 8_{i} + A_{8})_{A_{8}}^{1} = (20_{i}, \frac{4}{4}_{j})_{A_{8}}^{1} = 0$$

$$(20_{i}, 8_{j} + A_{8})_{A_{8}}^{1} = (20_{i}, \frac{4}{4}_{j})_{A_{8}}^{1} = 1$$

$$(20_{i}, 26_{4}A_{8})_{A_{8}}^{1} = (20_{i}, \frac{6}{14}_{4})_{A_{8}}^{1} = 0 //$$

5.2.7 Lemma. For M a simple FAg-module,

$$(26,M)_{A_{9}}^{1} = \begin{cases} 2 & \text{if } M = I \\ 1 & \text{if } M = 8_{i} \\ 0 & \text{otherwise} \end{cases}$$

Proof.

$$(26,26)_{A_{9}}^{1} \leq (6_{A_{8}}^{+} + ^{A_{9}}, 26)_{A_{9}}^{1} = (6,14)_{A_{8}}^{1} = 0 \text{ by Theorem 1}$$

$$(26,8_{i})_{A_{9}}^{1} \leq (26,(4_{i})_{A_{8}}^{+} + ^{A_{9}})_{A_{9}}^{1} \text{ by 5.1.7 and 5.1.8}$$

$$= (6,4_{i})_{A_{8}}^{1} \leq (6_{A_{7}}^{+} + ^{A_{8}}, 4_{i})_{A_{8}}^{1} \text{ by 3.2}$$

$$= (6,4_{i})_{A_{7}}^{1} = 1 \text{ by 1.2.}$$

But $(26, 8_i)_{A_9}^1 \ge 1$ by applying Lemma 3 and 5.2.4 to the 35 dimensional ordinary character of A_9 . //

5.2.8 Lemma. For M a simple FAg-module

 $(\delta_{i}, M) = \begin{cases} 1 & \text{if } M = 20_{i} & \text{or } 26 \\ 0 & \text{otherwise} \end{cases}$

Proof. By 5.2.6 and duality,

$$(8_{1}, 20_{1})_{A_{9}}^{1} = (20_{1}, 8_{1})_{A_{9}}^{1} = 1$$
$$(8_{1}, 20_{1})_{A_{9}}^{1} = (20_{1}, 8_{1})_{A_{9}}^{1} = 0$$

By 5.1.7, 5.1.8 and Appendix 4,

$$(8_{i}, 8_{j})_{A_{9}}^{1} \leq (8_{i}, (4_{j})_{A_{8}} + ^{A_{9}})_{A_{9}}^{1} = (4_{i}^{4}, 4_{j})_{A_{8}}^{1} = 0$$

$$(8_{i}, 8_{i})_{A_{9}}^{1} \leq (8_{i}, (4_{i})_{A_{8}} + ^{A_{9}})_{A_{9}}^{1} = (4_{i}^{4}, 4_{i})_{A_{8}}^{1} = 0$$

since there is only one copy of 4_{i} in $L_{3}(P_{4_{i}})$, and there is a module

1442

for A₈ by 3.1. //

This completes the determination of dim $\operatorname{Ext}_{A_9}^1$ (M,N) for M and N simple modules.

5.2.9 Comment

It can be seen from Appendix 6 that we may divide the simple $FA_9 \cdot f_0$ -modules into two sets $S = \{I, 8_1, 8_2\}$ and $T = \{20_1, 20_2, 26, 78\}$ in such a way that elements of each set only extend elements of the other set. Thus in a projective indecomposable module, any particular Loewy layer will be a direct sum of modules from just one of these sets.

5.3 Induction of two-step FA8-modules

In this section we shall induce up to A_9 each of the non-trivial extensions of a simple module by a simple module for A_8 .

By Frobenius reciprocity, we have

5.3.1
$$\binom{I}{14}_{A_{8}}^{A_{9}} + \stackrel{I}{78} = \stackrel{8_{3}}{18} + \stackrel{8_{3}}{48}$$

5.3.2 $\binom{I}{20_{1}}_{A_{8}}^{A_{9}} + \stackrel{I}{9} = \stackrel{I}{20_{1}} \oplus \stackrel{8_{3}}{160}$
5.3.3 $\binom{I}{6}_{A_{8}}^{A_{9}} + \stackrel{I}{9} = \stackrel{I}{\stackrel{26}{120}}_{I_{6}} \oplus \stackrel{8_{3}}{8_{3}}$
Now $(26, \binom{6}{4_{1}}_{A_{8}}^{A_{9}} + \stackrel{A_{9}}{9})_{A_{9}} = \stackrel{6}{\binom{14}{6}}_{4_{1}}^{A_{1}}_{A_{8}} = 0$, so $\operatorname{Soc}(\binom{6}{4_{1}}_{A_{8}} + \stackrel{A_{9}}{4}) = 8_{1}$.
Similarly $L_{1}(\binom{6}{4_{1}}_{A_{8}}^{A_{8}} + \stackrel{A_{9}}{4}) = 26$. However, the proof of 5.2.7 shows that the only non-trivial extension of 26 by $(4_{1})_{A_{8}}^{A_{8}} + \stackrel{A_{9}}{4}$ is

Thus $\binom{6}{4}_{i} \stackrel{A}{_{8}} \stackrel{A}{_{8}}$ has socle and Loewy series

Since A_8 contains a vertex of any A_9 -module, 8_1 is a direct summand of $8_1 + A_8 + A_9 = \binom{4}{4}_{j} A_8 + A_9$. By Frobenius reciprocity, we have $S_1 = \binom{4}{4}_{j} A_8 + A_9 = L_1 = \binom{4}{4}_{j} A_8 + A_9 = 8_1 \oplus 8_j$. Hence

5.3.5
$$\begin{pmatrix} 4_{1} \\ j \\ k_{3} \\ j \\ k_{8} \\ k_{1} \\ k_{8} \\ k_{1} \\ k_{2} \\ k_{1} \\ k_{1} \\ k_{1} \\ k_{2} \\ k_{1} \\ k_{1} \\ k_{2} \\ k_{1} \\ k_{1} \\ k_{2} \\ k_{2} \\ k_{1} \\ k_{1} \\ k_{1} \\ k_{2} \\ k_{1} \\ k_{1$$

Again by Frobenius reciprocity, we have $S_1 \begin{pmatrix} 4_1 \\ 20_1 \end{pmatrix}_{A_8} + A_9 = 20_1 \in 160$,

5.3.6
$$\begin{pmatrix} 4_{1} \\ 20_{1} \end{pmatrix}_{A_{8}} + \stackrel{A_{9}}{=} = \begin{bmatrix} 0_{1} \\ 20_{1} \\ 8_{1} \\ 20_{1} \end{bmatrix} \oplus 160.$$

Finally, we have $S_1(\binom{6}{14}_{A_8}^{+A_9}) = 26 \oplus 48 \oplus 78$ and $L_1(\binom{6}{14}_{A_8}^{+A_9}) = 26 \oplus 48$.

Thus

5.3.7
$$\binom{6}{14}_{A_8} + \overset{6}{19} = 1 \frac{26}{26} 1 \oplus 48$$

5.4 Induced modules from A7 to A9

The results of sections 3, 4.6 and 5.3 give us the following.

LOEWY SERIES FOR THE PROJECTIVE MODULES FOR ${\rm A}_{\rm q}$

5.4.1
$$I_{A_{7}} \stackrel{A}{\rightarrow} = I_{1} \stackrel{26}{\oplus} g_{3} \stackrel{26}{\oplus} g_{3} \stackrel{26}{\oplus} g_{3} \stackrel{26}{\oplus} g_{3} \stackrel{1}{\oplus} g_{3} \stackrel{1}{\oplus$$

5.4.2
$$(14_{A_7}^{A_8}, e_0)^{A_9} \cdot f_0 = \begin{pmatrix} 14\\6\\41_6\\2\\14 \end{pmatrix} = \begin{pmatrix} 14\\6\\4_8 \end{pmatrix} + \begin{pmatrix} 26&78\\1&1&8_1&8_2\\2&6&26\\1&6\\1&6\\2&6\\1&1&1&8_1&8_2\\2&6&78 \end{pmatrix}$$

Now $(4_1)_{A_7} + {}^{A_9} = 8_{S_7} + {}^{A_9}$, and so $(4_1)_{A_7} + {}^{A_9} \cong (4_2)_{A_7} + {}^{A_9}$. By Frobenius reciprocity, the socle and head are $8_1 \oplus 8_2$. Thus by 5.3.5, 5.3.6 and Appendix 6, there is only one possibility.

5.4.4.
$$\begin{pmatrix} 4_1 \end{pmatrix}_{A_7}^{A_9} \cdot f_0 = \begin{pmatrix} 8_1 & 8_2 \\ 20_1 & 20_2 \\ 8_2 & 6_1 \\ 20_2 & 20_1 \\ 8_1 & 8_2 \end{pmatrix}$$

We shall postpone discussion of $6_{A_7} + {}^{A_9} \cdot f_0$ until Section 6.4. Section 6.

Structure of the projective modules for FAq

6.1 The non-principal block

By Lemmas 5.2.1, 5.2.2 and 5.2.3, and the Cartan matrix given in

Appendix 5, we see that the only possible structures for the projective indecomposable modules in the non-principal block are:

83	48	160
48 160	8-	⁸ 3
⁸ 3 [⊕] ⁸ 3	48 A 160	48
160 48	⁸ 3	⁸ 3
⁸ 3	48	160`
P83	P ₄₈	P160

This should be compared with the principal block of A_7 , displayed in 1.2.

6.2 The structure of $P(20_1)_{A_0}$

It may be deduced from the Loewy structure given in Theorem 1 and from the diagram in Section 4.6 that $P_{(20_i)}_{A_8}$ has a diagram

FIGURE 6

LOEWY SERIES FOR THE PROJECTIVE MODULES FOR ${\rm A}_{\rm Q}$

This, together with the results of section 5, immediately gives the Loewy series shown in Theorem 2 for $P_{(20_1)A_9} = P_{(20_1)A_8} + f_0$.

Hence the appropriate diagram for our filtration of $P_{(20_1)A_0} \stackrel{\text{\tiny (20_2)}}{\longrightarrow} P_{(20_2)A_9}$ induced from Figure 3 is as follows.

^PI_{A9} Since $P_{I_{A_{9}}} = P_{I_{A_{8}}} + f_{0}$, we may deduce from Figures 3, 4 and 7 that we have the Loewy series given in Theorem 2, and that the appropriate diagram for the induced filtration is

BENSON

6.4 The structures of
$$P_{26_{A_9}}$$
, $P_{(8_1)_{A_9}}$ and 6_{A_7} , $P_{(8_1)_{A_9}}$

By Brauer characters, we have

$${}^{P_{6}}_{A_{8}} + {}^{A_{9}} \cdot f_{0} = {}^{P_{26}}_{A_{9}} + {}^{P_{26}}_{A_{9}}$$

$${}^{P_{(4_{1})}}_{A_{8}} + {}^{A_{9}} \cdot f_{0} = {}^{P_{(4_{2})}}_{A_{8}} + {}^{A_{9}} \cdot f_{0} = {}^{P_{(8_{1})}}_{A_{9}} + {}^{P_{(8_{2})}}_{A_{9}}$$

Landrock's lemma and Figure 8 tell us that $P_{26} \stackrel{\oplus}{\to} P_{26}$ has 4 copies of I in Each of L_2 and L_8 and 12 copies in Each of L_4 and L_6 . Examining Figure 2 and Section 5.3, this makes it clear that $6_A \stackrel{+}{}^{A_9}_{7}$ has 4 copies of I in Each of L_2 and L_4 .^{*} Thus $6_A \stackrel{+}{}^{A_9}_{7}$. fo has socle and Loewy series

Similarly Figure 7 tells us that $P_{26} \stackrel{\text{fm}}{=} P_{26}$ has 2 copies of each 20_1 in each of L_3 and L_7 , and 4 copies of each 20_1 in L_5 . This and 5.4.4 now force the Loewy series for $P_{26} \stackrel{\text{fm}}{=} P_{26}$ to be as displayed in Figure 9, and so the Loewy series for P_{26} is as given in Theorem 2.

This needs further clarification. If the Loewy length of $6_A^{+}_{A_7}$ f₀ were bigger than 5, there would be copies of I in its L₆ and hence in L₁₀(P₂₆ \oplus P₂₆) (using 5.3 and 5,4.4). Thus the Loewy length is 5, and the Loewy series is as shown. In fact it is a direct sum of two isomorphic modules with socle and Loewy series I 26 I (see figure 9). 26 78 I I I 26

1448

FIGURE 9

It immediately follows from this and Figure 1 that our diagram for $P_{8_1} + P_{8_2}$ is as follows.

FIGURE 10

Thus apart from the distribution of i's and j's, the Loewy series given in Theorem 2 for P_{8_i} follows. Using Landrock's lemma and Figure 7, we see that the distribution of 20_i 's and 20_j 's in P_{8_i} is as given. But now every copy of 8_i in Figure 10 is glued either above a 20_i or below a 20_j . Hence the Loewy structure of P_{8_i} is as in Theorem 2.

6.5 <u>The structure of</u> P78Ag

By Brauer characters,

$$P_{14} + f_0 = P_{26} + P_{78}$$
.

Using Landrock's lemma and Figures 5, 7 and 8, we see immediately that our diagram for $P_{26} \neq P_{78}$ is as follows.

LOEWY SERIES FOR THE PROJECTIVE MODULES FOR A

Now subtracting out the Loewy structure of P_{26} , we obtain the Loewy structure of P_{78} given in Theorem 2. This completes the proof of Theorem 2.

References

- K. Erdmann, "Principal blocks of groups with dihedral Sylow 2-subgroups", Oomm. Algebra 5 (7), (1977), 665-694.
- G. D. James, "The representation theory of the symmetric groups", Springer-Verlag SLN682, 1978.
- P. Landrock, "The Cartan matrix of a group algebra modulo any power of its radical", submitted to Bull. A.M.S.
- L. L. Scott, "Modular permutation representations", Trans. AMS, 175 (1973), 101-121.
- 5. J. G. Thompson, "Vertices and sources", J. Algebra 6 (1967), 1-6.
- D. Berson, "The Loewy structure of the projective indecomposable modules for A₈ in characteristic 2" Comm in Algebra 11(1983), 1395-1432.

Appendix 5. Characters of Ag

(i) Ordinary characters

18 p p' in	1440 power part d 1A	480 A A 2A	192 A A 2B	1080 A A 3A	81 A A 3B	54 A A 3C	24 A A 4A	16 B A 4B	60 A A 5A	24 AA AA 6A	6 CB CB 6B	7 A A 7A	9 B A 9A	9 B A 9B	20 AA AA 10A	12 AA AA 12A	15 AA AA 15A	15 AA AA B**	j9 fusion
+	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	:
+	8	4	0	5	-1	2	2	0	3	1	0	· 1	-1	-1	-1	-1	0	0	:
o	21	1	-3	-3	3	0	-1	1	1	1	0	0	0	0	1	-1	b15	**	ł
0	21	1	-3	-3	3	0	-1	1	1	1	0	0	0	0	1	-1	**	b15	۱.
+	27	7	3	9	0	0	1	-1	2	1	0	-1	0	0	2	1	-1	-1	:
+	28	4	-4	10	1	1	0	0	3	-2	-1	0	1	1	-1	0	0	0	:
+	35	-5	3	5	-1	2	-1	-1	0	1	0	0	2	-1	0	-1	0	0	1
+	35	-5	3	5	-1	2	-1	-1	0	1	0	0	-1	2	0	-1	0	0	ł
+	42	6	2	0	-3	3	0	2	-3	0	-1	0	0	0	1	0	0	0	:
+	48	8	0	6	3	0	0	0	-2	2	0	-1	0	0	-2	0	1	l	:
+	56	-4	0	11	2	2	-2	0	1	-1	0	0	-1	-1	1	1	1	1	:
+	84	4	4	-6	3	3	0	0	1	-2	1	0	0	0	-1	0	-1	-1	:
+	105	5	1	15	-3	-3	-1	1	0	-1	1	0	0	0	0	-1	0	0	:
+	120	0	8	0	3	-3	0	0	0	0	-1	1	0	0	0	0	0	0	:
+	162	6	-6	0	0	0	0	-2	-3	0	0	1	0	0	1	0	0	0	:
+	168	4	0	-15	-3	0	-2	0	3	1	0	0	0	0	-1	1	0	0	:
+	189	-11	-3	9	0	0	1	1	-1	1	0	0	0	0	-1	1	-1	-1	:
÷	216	-4	0	-9	0	0	2	0	1	-1	0	-1	0	0	1	-1	1	1	:

(ii) <u>2-modular characters</u>

18 p po p'pa ind	1440 wer rt 1A	1080 A A 3A	81 A A 3B	54 A A 3C	60 A A 5A	7 A A 7A	9 A A 9A	9 B A 9B	15 AA AA 15A	15 AA AA B**	S9 fusion
+	1	1	1	1	1	1	1	1	1	1	:
+	8,	-4	-1	2	-2	1	2	-1	1	1	E E
+	8,	-4	-1	2	-2	1	-1	2	1	1	1
+	8	5	-1	2	3	1	-1	-1	0	0	:
o	201	-4	2	-1	0	-1	-1	-1 1	15-1	**	•
o	20,	-4	2	-1	0	-1	-1	-1	**	b15-1	ł
+	26	8	-1	-1	1	-2	-1	-1	-2	-2	:
+	48	6	3	0	-2	-1	0	0	1	1	:
+	78	6	-3	-3	-2	1	0	0	1	1	:
+	160	-20	-2	-2	0	-1	1	1	0	0	:

(11:	i)	Decomposition Matrix									
	I	⁸ 1	⁸ 2	20 ₁	²⁰ 2	26	78	⁸ 3	48	160	
1	1				•	•		_			
21	1			1	•	•					
21	1				1						
27	1	•				1	•				
28	2	•			•	1					
35	1	1				1					
35	1	•	1			1	•				
42		1	1		•	1					
84	2	1	1	1	1	1					
105	1	•		•		1	1				
120	2	•		1	1	•	1				
162	2	1	1	1	1	1	1				
189	3	1	1	1	1	2	1				
8								1	•		
48								•	1		
56								1	1		
168								1	•	1	
216								1	1	1	

М

(iv)	Cartan	Matrix

	I	⁸ 1	⁸ 2	²⁰ 1	202	26	78	⁸ 3	48	160
I	32	8	8	10	10	16	8			
⁸ 1	8	5	4	3	3	6	2			
് <mark>8</mark>	8	4	5	3	3	6	2			
²⁰ 1	10	3	3	5	4	4	3			
²⁰ 2	10	3	3	4	5	4	3			
26	16	6	6	4	4	12	4			
78	8	2	2	3	3	3	4			1
⁸ 3								4	2	2
48								2	3	1
160								2	1	2

Appendix 6.	dim	Ext ¹ Ag	(M,N)	for	M,N	simple
-------------	-----	---------------------	-------	-----	-----	--------

	I	⁸ 1	⁸ 2	20 ₁	²⁰ 2	26	78	⁸ 3	48	160
I	0	0	0	1	1	2	1			
81	0	0	0	1	0	1	0			
⁸ 2	0	0	0	0	1	1	0			
201	1	0	1	0	0	0	0			
202	1	1	0	0	0	0	0			
26	2	1	1	0	0	0	0			
78	1	0	0	0	0	0	0			
⁸ 3								0	1	1
48								1	1	0
160								1	0	0

Received: November 1982 Revised: January 1983