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Introduction and notation

The purpose of this paper is to establish the Loewy
series for the projective modules for AS ~ L4(2) over a
splitting field of characteristic 2,

Throughout, we shall let F denote a splitting field
in characteristic 2 for Ag and all its subgroups, and let
(S/R,F) denote a splitting 2-modular system for Ag- We de-
note each simple module for a group by its dimension, together
with a subscript if there is more than one simple module of
that dimension. A8 denotes the alternating group on 8 let-
ters, a simple group of order 8!/2 = 20160 = 26-32-5-7. Aq
denotes a subgroup of index 8 stabilizing a point, and Ag
denotes a subgroup of A, of index 7 stabilizing afurther
point.

Thus the simple FAg-modules are denoted I, 41, 45, 6,
14, 201, 202 and 64. These fall into two blocks: 64 1is

in a block of defect 0, while the rest are in the principal
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block. Since blocks of defect O
shall only be interested in the principal block.

the central idempotent for the principal block of

are easy to describe,

we

We denote

A

by

e
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0

The main result of this paper is the following theorem:

Theorem 1.

The Loewy structures of the projective inde-

composable modules for FAS.eO are as follows, where {i,j}=1{1,2}:
I
6 14 20.I 202 4i
I I I I 41 42 6 4] 6 201
41 42 14 14 201 202 I 4i 4j 14
I I I 6 6 [ [ I 6 6
41 4.I 42 42 14 14 20.I 202 4i 4. 14 14 20.
I I I 6 6 I I 6 6
14 201 202 4] 4j 14 20,
I I 6
14 201 202 4i
I I
14 201 202
I
6
I 41 42 14
I 6 6 6
4.l 41 42 42 14 14 14 20.I 202
I I I I 6 6 6 6
41 41 4; 4: 14 14 14 201 202
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14 20,
I 6 I 4,
1
4 4, 14 20, 20, 14
I I 6 6 6 I 6
4, 4, 4, 4, WU 4j 20, 20j
I I 6 6 6 I 6
.1
4, 4, 14 20, 20, 1+l 4
I 6 I
14 20, 20j
I I
20, 20, 14
T I
14 204

If A 1is a group algebra over F and M 1is a finitely
generated A-module, we write JA for the Jacobson radical of

A, and

is the iEE Loewy Layer of M. The Loewy Length of M 1is the
smallest number 1 such that M.(JA)l = 0, and the Loewy Struc-
ture for M 1is a diagram whose ith layer downwards gives the
simple summands of Li(M) with multiplicities (see for example
Theorem 1). The Head of a module is the first Loewy layer.

Let Soc (M) denote the socle of M, namely the sum of all

the simple A-submodules of M. Let S1(M) = Soc (M) and
Si(M)/Si—1(M) = Soc(M/Si_1(M)).

Then

0 <S1(M) <SZ(M) <...<S8,_

is called the Socle Series of M.
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We shall write (M,N)A for dimFHOmA(M,n), M* for

Hom_(M,F) regarded as an A-module, and P for the projective

F( M
cover of M. Homomorphisms will usually be written on the right.

The exterior nth power of M will be written M

Our main tools are the following lemmas, together with the

easy but powerful lemmas discussed in Section 4.1.

Lemmpa 1 (Scott [4]1). Any endomorphism of an FG- permuta-
tion module can be lifted to an endomorphism of the correspond-
ing RG -permutation module. Thus direct summands of FG- per-

mutation modules lift, and so their endomorphisms.

Lemma 2 (Frobenius Reciprocity). Let H < G, M and FH-
. B TG
module and N an FG-module. Then LmN#mQFH = (Mt ,N)FG and
_ G
(N¢FH,M)FH = (N,M* )FG'
Lemma 3 (Thompson [5]}). If M is an irreducible SG-module,

A
then an R-form M may be found such that the modular reduction

— A
M =M gF has any given composition factor as its unique top factor.

Lemma 4 (Landrock [3]). Let M and N be simple FG-modules.

Then the multiplicity of M in L.(P,) 1is the same as the multi-

1'°N

plicity of N* in Li(PM*).

Lemma 5 (Mackey Decomposition). Let H,K < G and M an

FH-module. Then

M8y = & Mext +¥

HxK XK

’
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where x runs over a set of H~K double coset representatives

in G.

In Section 1 and Appendices 1 -3 we collect some known re-
sults about A6, Ay and Ag. In Section 2 we examine the struc-
ture of the permutation modules for FA8 on the cosets of maxi-
mal subgroups, and in Section 3 we examine the FAa-modules induced

up from simple FA7-modules.

Section 4 is the main body of the paper, and this uses the

results of the previous sections to deduce Theorem 1.

Section 1. Preliminary results on Agr A and Ag

1.1. Characters and subgroups of A8

In this section we collect together some known facts about
the group A8 and some of its subgroups. In Appendix 1 we give
the ordinary and 2-modular character tables of AB' the decompo-
sition matrix and the Cartan matrix. These can be extracted from
James [2]. We also note the isomorphism Ag ¥ L4(2), the group
of 4 X4 matrices over GF(2).

We shall have cause to look at the following maximal subgroups:

'Structure' Index ,Ag-name L4(2)—name
A 8 point -
3 .
2 :L3(2) 15 - point
23:L3(2) 15 - hyperplane
Se 28 pair symplectic form
24:(S3 XS3) 35 4+4 splitting 2-dimensional subspace

(A X3).2 56 triple GF (4)-structure
5 P
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The Schur multiplier of A8 has order 2, so that

. 2
dnnExtA (I,I) =1. The automorphism group of Ag is exactly
8
58’ and the outer automorphism acts as the graph automorphism
on L,(2) (namely transpose inverse on matrices).
3

Thus the two classes of subgroups 27: L3(2) are conjugate

under the action of this outer automorphism.

1.2. Results on A7

In Appendix 2 we give the ordinary and 2-modular character

tables.of A the decomposition matrix and Cartan matrix (see

77
James [2]). The 6-dimensional irreducible FA7-module is a direct
summand of the permutation module on cosets of Agy and the 14-
dimensional irreducible is a direct summand of the permutation

module on the 21 coset of an 55 preserving a 5+2 splitting of
the 7 points; this module splits 186 ®14. The permutation mo-

dule on 35 cosets of an (A4 X3).2 preserving a 4+3 splitting

of the 7 points has structure:

6

163146)41 42.

The structures of the projective indecomposable modules in

the principal block are:

I 14 20
14 20 I I
I & I 14 @ 20 14
20 14 I I
I 14 20

Py Piyg Fao

and in the non-principal block:
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8
1, 4 6
6 6 4 4,
4, 4 6 & 6
6 6 4, 4,
4, 4, 6

P p

4, 4y Pg

(Erdmann(1]) .

If we take the 64-dimensional defect 0 representation of
Ag (which is the Steinberg representation of L4(2)), the re-
striction to A5 is exactly P14, as can be checked by Brauer

characters. Apart from this, every irreducible representation of

A8 remains irreducible upon restriction to Aq.

1.3 Results on A6

In Appendix 3 we give the ordinary and 2-modular character
tables of A6’ the decomposition matrix and the Cartan matrix
(see James [2]). There are three blocks, namely the principal
block and two blocks of defect 0. The structures of the projec-

tive indecomposables are as follows:

41 42 I
I I 41 42
4, 4, I I
I I 4, 4,
41 42 I o I
I I 4, 4,
4, 4, 1 1
I I 4, 4,
4, 4, I

P, P, P

1 2
81 = P8 82 = ?5

1 2 (Erdmann [1])
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1.4 Induction and restriction between AG and A7

Brauer characters show that

1.4.1 (4.), ¥ (4,), ¥ (4,)
1 Aq Ag 2 A Ag 2 Ag
(beware!)
The composition factors of 6, ¥ are I+I+4,. But
A A7 A6 1
7 . 1 .
(I,6, ¥, ) =(I, * ',6) =1. Since Ext, (I,I) = 0, this means that
Ay Bg'hg  TAg Ay ]
I
1.4.2 6A7¢A6 = 41
I
The composition factors of 14, are I+I+4,+4,+4,.
A Aq A6 1 1 2
But (I,14_ 4, ) = (I, + ,14) =0, and so the only possibility is

Ay Aghg TRy A

N
=
w
-
+
[}

B B e
)

The composition factors of 20A7¢A6 are 4, +81 +82. Since
the constituents are in different blocks, we have

1.4.4 20A yvA = 42 @81 $82.
776
(6 A7 \
Since (I, ) b ) = (1 ,< ) = 0, we have
\4y /A Al A A6T 41} A,
I
6 \ 41
1.4.5 ( ] l =1
478 hg
2
A7
The composition factors of (42)A + are 41 +42 + 20.

6
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Since this module is self-dual and extends to a module for 56

and S the only possibility is

7!
Aq
1.4.6 (42)A6T = 41 @42 @ 20.
A
‘ 6 6 7
Since (( > ¥ 4.) = (< . (4,), + "IA, =
4, 4,)a A, 2°a, 4, 42) 2°A, 7
the only possibility is
I
6 1
1.4.7 ( > yo=
41 42 A7 A6 ® 42
2
A7
The composition factors of (41)A + are 14 +14 and so,
A 6
. 7
since (14, ,(4,), + ) = (14, +_ (4.} ) = 1, we have
A7 1 A6 A7 A7 A6 1 A6 A6
A7 14
1.4.8 (41)A + =
6 14
Finall ] (I<I> v ) (1 +A7/I>) 0
ina since ’ = = ’ we
v 20/B7 Ag g 2g \20/'2y
have from 1.4.4
I I
1.4.9 / \ ¥ = 98, 8.
\20/a7'Ag 4, 172

Section 2. Some permutation modules for AS

2.1 Permutations on the 8 cosets of A7

Ordinary character: 1 +7.
Hence the composition factors of this FA8—module Mg are
I+I+6. Frobenius reciprocity shows that Ly(Mg) S, Mg) = I,

and so the structure is
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2.2 Permutations on the 15 cosets of 23:L3(2)

Ordinary characters: 1 +14 for each of the two classes.

Thus the composition factors of these FAS—modules M15a and

15p are I +41 +42 +6. Since 15 is odd, these modules have

I as a direct summand. Frobenius reciprocity shows that in one

M

case the head is I +41 and the socle is I +4,, whereas in the

other case the head is I +42 and the socle is I +41. Thus the

structures are

2.2.1 M =166 M =I686

2.3 Permutations on the 28 cosets of S

Ordinary character: 1 +7 +20.
Thus the composition factors of this FA8—module M28 are
I+I+6 +6+14. By Scott's Lemma, the endomorphism ring has di-

mension 3.
I
Since M28 = (M8)2 , 1t has a submodule I A6 of structure
I

By Frobenius reciprocity, S1(M28) ~ L1(M28) ~ I 6.

O

2.3.1. Lemma. 6° I914.

e

Proof. The composition factors are I + 14, and the module

is self-dual. //
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Thus M28 has I®14 as a subquotient. Since it is self-

dual, this means the Loewy structure of M28 is

I 6
2.3.2 I 14
6
. AN
(i.e. the "diagram" for M is I 14 I).
28 N
4

2.4 Permutations on the 35 cosets of 2 :(S3 XS3)

Ordinary characters: 1+ 14 +20.
Thus the composition factors of this FAs—mOdule M35 are

I +41 +42 +6+6+14. Since 35 is odd, I 1is a direct summand.

Frobenius reciprocity shows that S1(M35) ~ L1(M35) ~ 186.
Since M35 extends to a module for S8’ there is a subgquotient
41 642. Since the module is self-dual, this forces the structure
to be

6
2.4.1 M35 =1I $41 42 14.

6

2.5. Permutations of the 56 cosets of (A5 X3).2

Ordinary characters: 1 +7 + 20 +28.

Thus the composition factors of this FA8—mOdule M are

56

I+I+41+42+6+6+6+14+14.

M56 has a direct summand isomorphic to the

module M8 described in 2.1.

2.5.1. Lemma.

Proof. We construct maps a: M8 - M56 and B: M56 - M8

as follows:
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a: point x - sum of triples containing x
g: triple {a,b,c} » a+b+c.
Then
af: pointx + 21.x+6. } y = x
Y7X
since we are in characteristic 2.
Hence af =1, and so Ba is a projection and M56 splits
as
Mg = Im{Ba) & Ker(Ba).
So
= M [ -
2.5.2 M56 M8 ®M56 where M56 Ker (Ba). //

Now Mé6 has composition factors 41 +42<+6 +6+14 +14.

By Frobenius reciprocity, S1(M ) ~ L. (M

56 4 56) ~ I ®14 and so
Sy ML)~ LML) = 14,
Next we notice that M., = (M8)3_, s0 that it reduces at
least as far as
6%~
6 & 6
62~
3= 6
2.5.3. Lemma. 6 has structure 4 4

Proof. The composition factors of 63_ are 41 +42 +6+6.

The module is self-dual and extends to a module for S

8- Hence
either the lemma holds or 6> 66664, ®4,. If so, then this
is still true as modules for A,. But for Ag, U®®3_‘;62_$63-
is a permutation module, and so 41 and 42 would be direct sum-
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mands of a permutation module. But they do not 1ift to RA7ﬂmﬂule&

contradicting Scott's lemma. /

But now this means that Mé6 has a subquotient isomorphic to

63_, and so it has Socle and Loewy Series
14
6
2.5.4 4, 4,
14
Hence
14
I 6
2.5.5 Meg = 6 ® 41 42.
I 6
14

Section 3. The induced modules from simple A7—modules

As we have already noted, the restrictions of simple A8-

modules to A7 are as follows:

I, + = I (4,), + = (4,)
Ag A, A, 1'agTA, 1A,
(4,0, ¥ (4.) 6. ¥ _
2'ag A, 2'a, Ag By = 6A7
14 4 = 14 (20,), + = (2045), ¥, =20
Ag A, A, ag A, 2'ag" A, A,
64, + =P .
Ag A, 14A7

By Frobenius reciprocity, this tells us the socle and first

Loewy layer of modules induced from A7.
A
We dealt with IA + 8 in Section 2.1, and so we only consider
7

non-trivial simple modules here.
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A A
48 +7°8
3.1. (41)A and (42)A
7 7
Ag
The composition factors of (4,), *t are 4., +4,+4,+20,,
1 Ay 1 1772 1
and S1 ;L1 ;(41)A8. Since (41)A7 is the dual of 42, and also

the image of 42 under the S7-automorphism of A7, this means

the Socle and Loewy Series are:

A 4 A 4
y 8 _ 1 48 _ 2
3.1.1 (41)A 42 201 (42)A 41 202
7 4 7 4
1 2
By
3.2. The module 6, +
—_— A7

This has composition factors I+I+6+6+6+14+14 and

1 1 A8
3.2.1. Lemma. There is a homomorphism from M28 to 6A #%
B AL 4 4L 7
with one-dimensional kernel.
Proof. From Section 2.3 we see that since 6A is in a
7
different block from I and 14 , Moov is semisimple. Thus
A7 A7 28 A7
1P
(Myor 6 ) (Mogd, ,6) =
28 A, Ag 28 Aq A, = 2.
Thus from what we know of the structure of M28' since
A
51(6A + 8) = 6A , there must be a homorphism with kernel the tri-
7 8
vial submodule of MZB‘ V4
1e 14
Thus by self-duality, there is a submodule and a
6
quotient module 6 14 °
I®
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Ag
3.2.2. Lemma. 6A t has exactly one copy of I in its
7
second Loewy layer.

Proof. We certainly know that there is at least one, by 3.2.1.

Suppose that there is more than one. Since 6A is not in the

A 7

principal block, this means that L.|(6A t 8¢A ) has more than one

7 7

copy of I in it. However,
A A A
8 8 1278
(6, * %y Iy, =6, t°,1 y <1,
A7 A7 A7 A7 A7 =

a contradiction. //

This forces the Loewy length to be at least 4, and since it
is self-dual, we are left with only one possibility, namely the

that the Loewy Series is

6
3.2.3 14
6
14
6
A 6
(i.e. the "diagram" for 6, * 8 is /N ).
A7 I 16
i
I 14
\\6/

A
48

7
This has composition factors 4, +4, +6+6+14+14+64 and

3.3. The module 14A

w0
e

L, ~ 14®64. Since 64 1is projective, this module is a di-

7

rect sum of 64 and a module with S1 ~ L1 ~ 14.
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3.3.1. Lemma. (Mg, 14, + 70, = 2.

8
Proof. (M 14+ 7)) = (Mo ¥, ,14) . Mo ¥
= 567 A7 A8 56 A7 A7 56 A7

the direct sum of the permutation module on 21 cosets of an S

But is

5
fixing a 542 splitting of the 7 points, and the permutation mo-
dule on the 35 cosets of an (A4 X 3).2 fixing a 4+3 splitting

of the 7 points. The lemma now follows from Section 1.2.

Now from the structure of M56 given in 2.5.5 it follows

that every such homomorphism must kill Im(Ra), and some such

A
homomorphism is an injection from Mg,  into T4, 1 8, mus
7
14
A8 6
3.3.2 14, * ~ M!_ ©®64 (=4 4. ®64).
= 56 1 2
7 6
14
Bg
3.4. The module 20, *
Bq

This has composition factors I +I+I1I+1 +41 +14+14 +201

+ 20,420, +20,+20,+20, and S, = L, ~20,620,.
Ag Ag
3.4.1, Lemma. (20, * “,20, * )A = 4,
— 7 7 8
128 18
Proof. (20 ,20 ) = (20,20}, + (20 4. ,20 + )
—foot A, A, Ag A, A, A TR AR,

by the Mackey decomnosition theorem

= 1+3 by 1.4.4.
The lemma now follows easily. //

We shall complete the determination of the structure of this

module in Section 4.4,
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Section 4. More induced modules from A7; the final assault

4.1, Induction of projective modules

By Brauer characters, we see that

Ag Ag
+ % 2 =
P P, ©6i06s Pla), 4 P,
7 8 7 8
A A
8 8
P + 8 - p p. 4+ % - p
(4.) (4.) 6 6
2, 2'ng A, Ag
Ag
P, *°0 =P, ©6i86i06d and
A7 A8
Ag
P20, + 8 = Pl20,), ®%(20,), ®64.
7 8 8

Thus the results of Section 3, together with the structure

A

of 20, +°
Bq

mation about the structures of the projective modules for Ag-

which is yet to be determined, give us strong infor-

Namely, we are given certain filtrations for each of PI’ P4 '
1

P, P6’ P14 and PZO @on , in which we know the structures

2 1 2
of the guotient modules. We now use this to complete the deter-

mination of Ext1 for simple modules, and then to get the com-

vlete Loewy structures of the projective indecomposables. All we

need to know is how far certain composition factors can "slip past”

each other. Our main tool will be the following observations, all

of which are trivial but powerful consequences of 4.1.1:

A
We can identify JFA7+ 8 as a subring of FA8 via JFA7+A8=

® FAg ~ FAg.

JFA 8

® FA, < FA
8 = 7
FA7 FA7

7
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4.1.1. Lemma. JFA,+ " L.e < JFAB.

Proof. This follows trivially from the observation that

for each simple A7—module M,

A8 A
L, (M4 ).eo ~

14
=

By the Frobenius reciprocity theorem it is eguivalent to
the statement that for each simple AB—module N in the princi-

pal block, N+A is semisimple.

7
n A8 n
4,1,2. Lemma. (JFA7) 4 -eg < (JFAS) for all n20.

Proof. This follows from 4.1.1. /

4.1.3. Theorem. If M 1is any module for A7, then

(_m_ \Ds

A \ n/
M4 8 e _ M.(JFA7) .
A 0o - N "F0
Mt °. (3FAg) " (———ll——;)f ® . (grag)®
M. (JFA,)

Proof. By 4.1.2 we have

A
(M(IFa)™ 4 Blel < Mm(IFAg) ey
Hence
a
8 n

a M+ . (JFA,)
(rmemyn)? - ommeeeg = e
M. (JFR; (M. (TFA;) ™) 4

and the result follows from the third isomorphism theorem. //
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4.1.4. Corollary. If M is a module for A then

77

A A

8
LMt %) ey = Ly ((Ly ()4

8).e0.

Proof. This is just the case n =1 of the theorem. //

4.1.5. Corollary. If M 1is a module for A7 and

0 M > M~>M" >0

is a non-split short exact sequence with M' and M" simple,

then
Ag Ag
L1(M¢ ).e0 = L1(M 4 ).eo. //

41 AS
4.2. The Loewy structure of 6 /a *
7

\

4 A
Our filtration of <61)A + 8 looks like:
7

By 4.1.5, L, = 4.. We know from 2.5.4 that L,(P )
1 1 2 (41)A
has a copy of 6 in it, and so applying 4.1.3 for n=2 to 8
P we see that the L of both /41 +A8 and P
(41)A7 2 \6 /a, (41)A8
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are 42 b6 $201. This completes the determination of
dimExt1 (4,,M) and hence also of dimExt1 (4,,M) for M
Ag 1 Ag "2
simple.
Also from 2.5.4 we wee that L, (P ) has a copy of
3 (41)A8

14 in it, so that again applying 4.1.3 for n=3 we see that

L//41\ 8 has a of 14 in it. Now since dimExt! (4,,I) =0
3\\6 }A7 ) copy n . 1! ’

41y Pe i
it follows that the Loewy series for \6 /A¢ is as follows:
7

41
42 6 201
I 41 14

I 6
14
6

6

\ A
4.3. The Loewy structure of ( 4 8
\41 42 A

7

Our filtration of this module looks like:

6
I 14
I [
14
6
4 4
42 201 ® 41 202
44 4
From 2.5.5 we see that L2(P6A ) has a copy of 41 and
of 42 in it. Thus applying 4.1.3 for n=2 to P6A we see
) 7
that L, of both 6 +88 and Pg  are T@4, 04,614,
2 4, 4,/, Ag 1 ¥ %2

This completes the determination of dinlExt; (6,M) for M simple.
8
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A
4.3.1. Lemma. L 6 + 8\ does not contain copies of
Z2e2. - oEmma 3\\4, A )

20 or 42.

6 Ag I 1
proof. (( ) +°y ) = (4 )
== 41 A Aq 20 A7 41 20 A7
7
6 I
+ (( ) ¥ < ) Vo)
4 *\20 A
1 A7 A6 A-] A6 6
by the Mackey decomposition theorem
I
41 I
= 0+ ’ ® 8. 88,)
Lh4y 17 2A
42
by 1.4.5 and 1.4.9
= 0.
Also,
((Z ) ey 200, = (f 20,
178y A, 7 1 7

N

5 1
4, A, A 20/a7 A Ag

0+ (

1, 42@81 GBSZ)AG

s

PN
Z

by 1.4.4 and 1.4.5

However, if L ({6 +Ps has a copy of 20 in it
! 3\ 41}A7 S 1 !
then our knowledge of Ext) shows that there would be a map

Ay
in one of the above sets.

A
Similarly, if L3((§ ) 4 8) has a copy of 42 in it,
17A

there would be a map

A
6 ) 8
( A8 L4
4 4 2'A
1 2A7 A7 7
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for on restriction to Aq, we have

‘ 1 . 1 e 1 _
dlmExtA7(14,42) = dim EXtA7(I,42) =dim ExtA7(41,42) =0
and hence L ({6 ¢A8+ ) would have 4, in it, and hence
2\\4, Ja7 A7 2
so would L1<<4 6 4 ¢A8+ since dhnExt; (6,42) = 1.
1 2/nq A 7
However,
6 A 6
(( ) 278y A, = 4,)
41 42 A7 A7 2 A7 41 42 2 A7

by Mackey decomposition

I

4 4
- 1 2
= 0+ ( T ’ 42)A

4 6

2
by 1.4.7

= 0, a contradiction. //

Thus with the results of Section 4.2 and the fact that

\ 14
A
<2 ) +"8  has a submodule 6 (see 2.5.4), we see that the
1A 6 41
Loewy series of <4 4 ) +A8 is as follows:
1 1 A7
6
I 1 42 14
1 6
41 42 14 201 202
4 4
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8
/
/6 Ag '41\ Ag
4.4 The Loewy structures of Kf1 YL, e i e, Py
. A
Py, and P, 6/ 27 \\42/7*7 8
1 Ag 2 Ag
I
4.4.1. Lemma. There is no uniserial module 6 .
41
Proof. Applying 4.1.3. with n=3 to Pr we see that
A
any copy of 41 in L3(PI ) 1is stuck underne;th a 14, a 201
A
8

or a 202.‘4/

4.4.2, Corollary. There is a non-split group extension 24

Proof. By 4.4.1. the image of the cup-product map

Ext] (1,6) ®Ext) (6,4,) > Ext>
A ag e

~_ 2
(I,4,) =H"(Ag,4.)
8 A8 1 8’71

is non-zero. /(’
7

6 A8
,f
We first examine the structure of 41 . From
6/ A
2.5.3 we see that P6 has a quotient module
A
8

A

g8°
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6\ ag 6
S
Hence f41 has a quotient module 4, . Now from 3.2
\6 A7 6
6 14
we also know that it has a quotient 14 .
6y A /6 A
+ 8 / , 8 3 6
Hence 41‘ Kj1 . (JFAB) has Loewy series
o a, [ \&/a,

6
I 41 14
I 6
and socle series
6
41 14
I I [ 6
6\ a
'*8
If there were a copy of I in Ly 41/ then there would
41 \ 6 A
be a uniserial module 6 contradicting lemma 4.4.1. Hence
6\ A
\ 4 8
there are two copies of I in L5 41 and hence the
complete Loewy series is: \6 A7
6
I 41 14
I 6 6
42 14 14 201
I I 6
4 14
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4 A
1
Now we attack 6 t 7. We know from Section 2.2 that
42 A 4‘]
P(4 ) has quotlent module 6 , and hence by 4.1.3 with
1/A

4
2
n=3 we see that “ ) has 42 in it. Now our know-
42A7

ledge of dunExt - together with the results of Sections
4 A
4.2 and 4.3 tell us that the Loewy series of 61 8 is as
42 A7
follows:
41
42 6 201
I 41 42 14
I 6
41 14 202
6
42
Thus the Loewy series for P4 and P4 are as in The-
1 2

orem 1. We can demonstrate our filtrations diagramatically as

follows:
4.
1
4. 20, 6
3 i
4 I 14 4.
i J
1 6 6 ‘
14 4i 20 14 ! 4i
6 I I 6 |
4. 14 L4 20
] J i
6
| i
Figure 1

Now, since L4(P4.) has 2 copies of 6 in it, L4(P6) has
i

two copies of each 4i in it by Landrock's lemma. Thus the Loewy

series of P6 is as in Theorem 1, and our filtrations can be shown

diagramatically as in Figure 2.



6

14 41 42
6 6 6
14 42 201 14 42 41 202 14
6 I I 6 I I
41 14 41 202 42 14
6 6

42
Figure 2

0yt

NOSNHE
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{1 ¢A8

4.5, The Loewy structure of (14 )
Y
7

Our filtration of this module looks like:

I
I
14
41 42 & 64
14
I
Now from 3.2 we know that PI has a guotient module 14.
A 6
Since ©L,(20, * 8) = 20, ®20,, an application of 4.1.3 to P
108, 1 2 L In,
A
shows that (1&)A 178 must have a guotient module 14 . Thus
A 7 6
[T 478 .
\14}A7 -€q has Loewy series
I
6 14
I 6
41 42
6
14
(I Ay _ (1) Mg
and \14}A7T = \14/A7¢ -eq ®64d.

By Thompson's Lemma on the ordinary characters of dimension

21, we see that

dimExt! (I1,20.) > 1, i=1,2.
Ag i® =
Ag
Thus our argument also shows that the L of P t ".e, =P
2 IA7 0 IA8
is exactly 6 & 14 83201 @202. This completes the determination of

dimExt1As(I,M) for M simple.
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Ag
4.6, The Loewy structure of 20}\ 4
7
We are now ready to complete the work of Section 3.4.
I Ag
4.6.1 Lemma . ( , 20, 4+ 7)) = 0, i=1,2.
— 20‘1 A, A8
) _ I
Proof. Since P20i¢A7 = P2O&3P20@P20$P4i we see that 20,
remains indecomposable on restriction to Ag. Thus
A
I 3 I
{ ;20 4 %) = (5, 20) =0. /
20, A, Ag 20 A,
I Ag
4.6.2. Lemma. ( , 20, 4 ) = 1.
e 201 202 A7 A8
Proof. Since dim Ext; (L,20) = 1, we have
7
I A I
= ® 20
(20 20 ) M 20
1 2 Ag A7
Hence
A
I 8 I
( , 20, 4+ 7)) = (,,®20, 20) =1. J
201 202 A7 Ag 20 A7
Ag Bg
4.6.3. Lemma. Rad(20, +* “)/Soc{(20_ + 7)) =4, 64_ & X, where
A7 A, 1 2
X has composition factors I +I+I+14+14+14+ 20,| + 202.
Ag
Proof. Since 20A 4 extends to a module for SB’ there
7
is a subquotient 41 6942. By self-duality and since dj_m};‘.xt1 (4i,I) =

By
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8
= dimExt; (41,14) =0 (Section 4.1), this means that 416342
3 A A
is a direct summand of Rad(20, * 3)/Sc>c(2oA + 8y,
7 7
4.6.4. Lemma. dimExt. (14,20.) = 0.
— A8 1
Proof. Apply 4.1.3 to Py with n=2. /
A
7
4.6.5. Lemma. Soc(X) = I.

Proof. Lemmas 4.6.1 and 4.6.2 show that there is exactly

one copy of I 1n Soc(X). There can be no copies of 20i in

Soc(X) since dimEnd_ (20, 4+ “) = 4 (Lemma 3.4.1). There can

be no copies of 14 in Soc(X) by Lemma 4.6.4.

I
Thus X has the form Y where Y has composition factors
I
I+I+14 +14+20.I +202.
4.6.6. Lemma. Soc(Y) = 14
Proof. Since dimExt; (1,I1) = 0, Soc(Y) can contain
8
no copies of I. Since Y is self-dual and extends to a module

for Sgr if Soc(Y¥) contains a copy of 20, then 20, is a

summand of Y for 1i=1,2. But then the other direct summand
14

would have to have Loewy series I I whereas dJ'.mEb{t;g(I,M) =1
14

from Section 4.5. //
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Thus by 4.6.4 the structure of Y is:

14
I

I 4, 4

20 20

20 20

(i.e. the "diagram" is

20 20 ).

4.7. The remaining projective indecomposable modules

BENSON

From Section 4.6 we have a quotient of P20 with Loewy

series
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20 8
1
I 41
14
I
201 202
I
14
I
201 202
Since this accounts for all the copies 20.I and 202 in PZO .
1
this means that the Loewy length is at least 13.
By Landrock's Lemma we see that P has a copy of 6 in

201
its L4 and L6’ and a copy of 42 in its LS’ and ul in its L7.
Thus all the composition factors are accounted for and the

Loewy structure of Psy is as given in Theorem 1.
i

Hence the appropriate diagram for our filtration of P20 ®P20
1 2
is as follows:

20, 20,
I 4, 4, | 1
14 14
I 6 6 I
20, 20, 4, 4, 20, 20,
I 6 6 I
14 14
by ba
1 1
20, 20, 20, 20,
I I
14 14
I I
Figure 3 201 202

Now we have enough information to see that PI has the

Loewy series given in Theorem 1, and the appropriate diagram

for our filtration is as given in fiqure 4.
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I
6 f 14 201 202
I I 6 I I 41 42 I
41 42 201 202 14 14
6 6 I I 6 6 I
14 41 42 14 201 202 41 42
I I 1 € 6
.201 202 14
I I
14 101 202
I I
201 202 14
I
Figure 4
A
14 8 .
4.7.1., Lemma. ( t Tle has Loewy series
L ot \14/A7 0
14
6
41 42 14
6 6
41 42 14
6
14
14
Proof. From Section 3.2 we know there is a module 6 .
14

Thus applying 4.1.3 with n=3 to Pqy we see that
11\ A 14 A7 14
+"8.e, has 6 as quotient. Thus it also has 6 as
14784 0 14 14
a submodule, and so since dim Ext; (6,6) =0 from Section 4.3

8
the result follows. //

This now gives us enough information to see that the Loewy
series for P14 given in Theorem 1 is correct, and the appropri-

ate diagram for our filtration is as in Figure 5.
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8
14
6 I
41 42 14 201 202
6 6 6 I I
14 41 42 41 42 14 14
I I 6 6
14 201 202 41 42
I 6
14
I
201 202
I
14
Figure 5 .

This completes the proof of Theorem 1, and the determination
of dinlExt; (M,N) for M and N simple. This information is

8
displayed in Appendix 4.

Notation for character tables

The only irrationalities we come across in our character

tables are:

bn = I%(—1+s/n) if n =1 (mod4)

1%(—1+i\/n) if n = 3 {(mod 4)
i.e. the "Gauss sum" of half the primitive nth roots of unity.

Under the column headed "ind" is given the Frobenius-Schur

indicator of the representation, namely

+ 1if the representation is orthogonal

- 1if the representation is symplectic
but not orthogonal
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0 if the representation is neither

symplectic nor crthogonal.

(In characteristic 0 this is A Z x(g2).)
IG1 g€G

The top row carries the centralizer orders.
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Appendix 1.

Characters of

(1)

20160
p power
p' part
ind 1A
1
7
14
20
21
21
21
28
35
45
45

-
-

64
70

+ + + OO0 + + O O + + + + +

(ii)

Ordinary characters

A

© = = W P W o

-1
-1
-1

-1

o O O

192 96 180 18 16
A A A A
A A A A A
2A 2B 34 3B 4A
1 1 1 1 1
-1 3 4 1 -1
6 2 -1 2 2
4 4 5 -1 0
-3 1 6 0 1
-3 1 -3 0 1
-3 1 -3 0 1
-4 4 1 1 0
3 -5 5 2 -1
-3 -3 0 0 1
-3 =3 0 0 1
8 0 -4 -1 0
0 s} 4 =2 0
-2 2 -5 1 -2
2 - modular characters
20160 180 18
P power A
p' part A A
ind 1A 3a 3B
+ 1 1 1
0 41 -2 1
0 42 -2 1
+ 6 3 0
+ 14 2 -1
0 20, -4 -1
0 202 -4 -1
+ 64 4 -2

-1

-1

-1

3

[¢]
>

1
O = - O O O N K = = O = N =

o N~ T~ =
oW oW N

(=R I T I SRR e

_- O O

8

BA

o W
= >

1
O~ O O O +H © O QO +H © + =

7

L

7A

DO
w
*

*¥ 1 O O O ©C O M
*

* U
o

o = O

2
b15-1
ok

-1

1429

7 15 15
A AA AA
A AA AA s8
* 15A B** fusion
1 1 1 :
0 -1 -1 :
0 -1 -1
1 4] 0
0 1 1
0 bl5 ** :
0 ** bls .
0 1 1 H
0 0 0
* ) 0 .
7 0 o0 !
0 1 1
1 -1 -1 :
0 0 0
15
AR
AA S8
B** fusion
1
*x .
-bl5 .
-2 :
2 :
*k A
B15-1 !

-1 :
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(iii) Decomposition Matrix (iv) Cartan Matrix
14 42 6 14 204 202 64 1 4, 4, 6 14 20, 202 64
1y . .. . . . 1116 4 4 8 8 6 6
711 1 41 4 5 4 6 4 2 1
4. 1 1 1 . 42 4 4 56 4 1 2
2014. 1 1 6] 8 6 6 12 8 2 2
211 11 148 4 4 8 8 3 3
21l . .. .1 . 20l 6 2 1 2 3 4 2.
2111 . .. . . 1 202 6 1 2 2 3 2 4
281, 1 1 1 1 64 1
351 1 1 2 1 .
4511 11 1 1
4511 1 1 1 1
5612 . .. 11 1
7012 1 11 1 1 1
64[_47 1
Appendix 2. Characters of Ag
(1) Ordinary characters
2520 24 36 9 4 5 12 7 7
P power A A A A A AA A A
p' part A A A A A AA A A s7
ind 1A 2A 3Aa 3B 4A 5a 6A JA B¥* fusion
+ 1 1 1 1 1 1 1 1 1
+ 6 2 3 0 0 -1 -1 -1 :
0 10 -2 1 1 0 1 b7 ok
0 10 -2 1 1 0 1 ** b7 l
+ 14 2 2 -1 0 -1 2 0 0 :
+ 14 2 -1 2 0 -1 -1 0 Q :
+ 15 -1 3 0 -1 0 -1 1 1 :
+ 21 1 -3 0 -1 1 0 0
+ 35 -1 -1 -1 1 0 -1 0 0
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(ii) 2 - Modular characters

2520 36 9 5 7 7

p power A A A A A
p' part A A A A A s7
ind 1A 34 3B 5A 7A B** fusion
+ 1 1 1 1 1 1
0 4l -2 1 -1 -b7 **
0 42 -2 1 =1 ** _p7
+ 6 3 0 1 -1 -1
+ 14 2 -1 -1 0 0
- 20 -4 -1 0 -1 -1

(iii) Decomposition Matrix (iv) Cartan Matrix
1 14 20 41 42 6 1 14 20 4l 42 6

11 14 2 72
15] 1 1 . 14 2 3 1
211 1 . 1 20| 2 1 2
35| 1 1 1 4l 2 1 2
14| . 1 . i 42 1 2 2
6 L1 6| 2 2 4
10 . 1 1

10 1 1

14 1 1 1

Appendix 3. Characters of A6

(1) Ordinary characters

360 8 9 9 4 5 5

P power A A A A A A
p' part A A A A A A S6
ind 1A 2A 3A 3B 4A 5A B* fusion
+ 1 1 1 1 1 1 1
+ 5 1 2 -1 -1 0 0
+ 5 1 -1 2 -1 0 0
+ 8 0 -1 -1 0 -b5 *
+ 8 0 -1 -1 0 *  -b5 .
+ 9 1 0 0 1 -1 -1 :
+ 10 -2 1 1 0 0 0
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(ii) 2 - Modular characters (iii) Decomposition Matrix
360 9 9 5 5 1 4, 4, 8, 8,
p power A A A A e ]
p' part A A A A 501 1
ind 1A 3A 3B b5A B* 511 1
+ 1 1 1 1 1 91 1 1
-4 b om2-l wlz 11
- 42 -2 i -1 -1 a 1
8l -1 -1 -bb * 8| 1
8 -1 -1 ¥ —b5

(iv) Cartan Matrix

1 2 1 2
1( 8 4 4
4l 4 3 2
42 4 2 3
8l 1
82 1
Appendix 4

dinlExt; (M,N) for M,N simple.
8

1 41 42 6 14 20l 202 64
110 0 0 1 1 1 1
41 0 0 11 0 1 0
42 0 1 0 1 0 0 1
611 1 1 0 1 0 0
14| 1 0 0 1 0 0 0
20l 1 1 0 o 0 0 0
202 1 0 1 0 0 0 0

64 0
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