D. Benson

Matematisk Institut
Aarhus Universitet
NY Munuegade
8000 Aarhus C
DANMARU

Introduction and notation

The purpose of this paper is to establish the Loewy series for the projective modules for $A_{8} \cong L_{4}(2)$ over a splitting field of characteristic 2.

Throughout, we shall let F denote a splitting field in characteristic 2 for A_{8} and all its subgroups, and let ($S, R, F)$ denote a splitting 2 -modular system for A_{8}. we denote each simple module for a group by its dimension, together with a subscript if there is more than one simple module of that dimension. A_{8} denotes the alternating group on 8 letters, a simple group of order $8: / 2=20160=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$. A_{7} denotes a subgroup of index 8 stabilizing a point, and ${ }^{A_{6}}$ denotes a subgroup of A_{7} of index 7 stabilizing afurther point.

Thus the simple $E A_{8}$-modules are denoted $I, 4_{1}, 4_{2}, 6$, 14, $20_{1}, 20_{2}$ and 64. These fall into two blocks: 64 is in a block of defect 0 , while the rest are in the principal
block. Since blocks of defect 0 are easy to describe, we shall only be interested in the principal block. We denote the central idempotent for the principal block of ${ }^{\prime} A_{j}$ by e_{0} The main result of this paper is the following theorem:

Theorem 1. The Loewy structures of the projective indecomposable modules for $\mathrm{FA}_{8} \cdot \mathrm{e}_{0}$ are as follows, where $\{i, j\}=\{1,2\}$:

				I		4			42		14					
				I		6			6		6					
4_{1}	4_{1}		2		${ }^{4} 2$			14		14		14		20		$\mathrm{2O}_{2}$
I	I	I		I		I			6		6		6		6	
4_{1}	41		42		4.			14		14		14		20		$2 \mathrm{O}_{2}$
			I		I			6		6		6				
					41		4	42		14						
								6								

If A is a group algebra over F and M is a finitely generated A-module, we write JA for the Jacobson radical of A, and

$$
L_{i}(M)=M \cdot(J A)^{i-1} / M \cdot(J A)^{i}
$$

is the $i^{\text {th }}$ Loewy Layer of M. The Loewy Length of M is the smallest number 1 such that $M .(J A)^{l}=0$, and the Loewy Structure for M is a diagram whose $i^{\text {th }}$ layer downwards gives the simple summands of $L_{i}(M)$ with multiplicities (see for example Theorem 1). The Head of a module is the first Loewy layer.

Let $\operatorname{Soc}(M)$ denote the socle of M, namely the sum of all
the simple A-submodules of M. Let $S_{\mathcal{l}}(M)=\operatorname{Soc}(M)$ and

$$
S_{i}(M) / S_{i-1}(M)=\operatorname{Soc}\left(M / S_{i-1}(M)\right) .
$$

Then

$$
0<S_{1}(M)<S_{2}(M)<\ldots<S_{1-1}(M)<S_{1}(M)=M
$$

is called the Socle Series of M.

We shall write $(M, N)_{A}$ for $\operatorname{dim}_{F} \operatorname{Hom}_{A}(M, n), \quad M^{*}$ for $\operatorname{Hom}_{F}(M, F)$ regarded as an A-module, and P_{M} for the projective cover of M. Homomorphisms will usually be written on the right.

The exterior $n^{\text {th }}$ power of M will be written M^{n-}.

Our main tools are the following lemmas, together with the easy but powerful lemmas discussed in Section 4.1.

Lemma 1 (Scott [4]). Any endomorphism of an $F G$ - permutation module can be lifted to an endomorphism of the corresponding RG - permutation module. Thus direct summands of $F G-p e r-$ mutation modules lift, and so their endomorphisms.

Lemma 2 (Frobenius Reciprocity). Let $H \leqq G, M$ and $F H-$ module and N an FG-module. Then $\left(M, N t_{F H}\right)=\left(M T^{\rho G}, N\right)_{F G}$ and $\left({ }^{(} \psi_{\mathrm{FH}}{ }^{\mathrm{M}}\right)_{\mathrm{FH}}=\left(\mathrm{N}, \mathrm{M} \uparrow^{\Gamma}{ }^{\mathrm{G}}\right)_{\mathrm{FG}}$.

Lemma 3 (Thompson [5]). If M is an irreducible SG-module, then an R-form \hat{M} may be found such that the modular reduction $\bar{M}=\hat{M} \underset{R}{\otimes} F$ has any given composition factor as its unique top factor.

Lemma 4 (Landrock [3]). Let M and N be simple FG-modules. Then the multiplicity of M in $L_{i}\left(P_{N}\right)$ is the same as the multiplicity of N^{*} in $L_{i}\left(P_{M^{*}}\right)$.

Lemma 5 (Mackey Decomposition). Let $H, K \leqq G$ and M an FH-module. Then

$$
M \uparrow^{G} \downarrow_{K}=\underset{H \times K}{\oplus} M \otimes x^{\oplus} \psi_{H^{x}}{ }_{\cap K} \uparrow^{K},
$$

where x runs over a set of $H-K$ double coset representatives in G.

In Section 1 and Appendices $1-3$ we collect some known results about A_{6}, A_{7} and A_{8}. In Section 2 we examine the structure of the permutation modules for FA_{8} on the cosets of maximal subgroups, and in Section 3 we examine the FA_{8}-modules induced up from simple FA_{7}-modules.

Section 4 is the main body of the paper, and this uses the results of the previous sections to deduce Theorem 1 .

Section 1. Preliminary results on A_{6}, A_{7} and A_{8}
1.1. Characters and subgroups of A_{8}

In this section we collect together some known facts about the group A_{8} and some of its subgroups. In Appendix 1 we give the ordinary and 2 -modular character tables of A_{8}, the decomposition matrix and the Cartan matrix. These can be extracted from James [2]. We also note the isomorphism $A_{8} \cong L_{4}(2)$, the group of 4×4 matrices over GF(2).

We shall have cause to look at the following maximal subgroups:

Structure'	Index	A_{8}-name	$L_{4}(2)$-name
A_{7}	8	point	-
$2^{3}: L_{3}(2)$	15	-	point
$2^{3}: I_{3}(2)$	15	pair	hyperplane
S_{6}	28	symplectic form	
$2^{4}:\left(S_{3} \times S_{3}\right)$	35	$4+4$ splitting	2-dimensional subspace
$\left(A_{5} X 3\right) .2$	56	triple	GF (4)-structure

The Schur multiplier of A_{8} has order 2, so that
 S_{8}, and the outer automorphism acts as the graph automorphism on $I_{4}(2)$ (namely transpose inverse on matrices).

Thus the two classes of subgroups $2^{3}: L_{3}(2)$ are conjugate under the action of this outer automorphism.
1.2. Results on A_{7}

In Appendix 2 we give the ordinary and 2 -modular character tables. of A_{7}, the decomposition matrix and Cartan matrix (see James [2]). The 6-dimensional irreducible FA $_{7}$-module is a direct summand of the permutation module on cosets of A_{6}, and the 14dimensional irreducible is a direct summand of the permutation module on the 21 coset of an S_{5} preserving a $5+2$ splitting of the 7 points; this module splits $1 \oplus 6 \oplus 14$. The permutation module on 35 cosets of an ($A_{4} \times 3$). 2 preserving a $4+3$ splitting of the 7 points has structure:

6
$I \oplus 14 \oplus 4_{1} \quad 4_{2}$.
6

The structures of the projective indecomposable modules in the principal block are:

I				14		20
14		20		I	I	
I	\oplus	I	14	\oplus	20	14
20		14			I	I
	I		14		20	
		P_{I}			P_{14}	P_{20}

and in the non-principal block:

4_{1}	42	6		
6		4_{1}		42
4_{2}	4_{1}	6	${ }^{+}$	6
6	6	4_{2}		4_{1}
4_{1}	4_{2}		6	
$\mathrm{P}_{4}{ }_{1}$				

(Erdmann[1]).

If we take the 64 -dimensional defect 0 representation of A_{8} (which is the Steinberg representation of $L_{4}(2)$), the restriction to A_{7} is exactly P_{14}, as can be checked by Brauer characters. Apart from this, every irreducible representation of A_{8} remains irreducible upon restriction to A_{7}.

1.3 Results on A_{6}

In Appendix 3 we give the ordinary and 2-modular character tables of A_{6}, the decomposition matrix and the cartan matrix (see James [2]). There are three blocks, namely the principal block and two blocks of defect 0 . The structures of the projective indecomposables are as follows:

4_{1}	4_{2}		I	
I	I	4_{1}		4_{2}
${ }^{4} 2$	${ }^{4} 1$	I		I
I	I	${ }^{4} 2$		${ }^{4} 1$
4_{1}	${ }_{4}$	I	${ }^{\oplus}$	1
I	I	${ }^{4} 1$		${ }^{4} 2$
${ }^{4} 2$	${ }_{1} 1$	I		I
I	I	4_{2}		${ }^{4} 1$
4_{1}	42		I	
				${ }^{p}$ I

1.4 Induction and restriction between A_{6} and A_{7}

Brauer characters show that
1.4.1 $\left(4_{1}\right)_{\mathrm{A}_{7}}{ }^{\psi} \mathrm{A}_{6}=\left(4_{2}\right)_{\mathrm{A}_{7}}{ }^{\downarrow} \mathrm{A}_{6}=\left(4_{2}\right)_{\mathrm{A}_{6}}$.
(beware!)

The composition factors of ${ }^{6} \mathrm{~A}_{7}{ }^{*} \mathrm{~A}_{6}$ are $\mathrm{I}+\mathrm{I}+\mathrm{A}_{1}$. But $\left(I, 6_{A_{7}}{ }^{\downarrow} A_{6}\right)_{A_{6}}=\left(I_{A_{6}}{ }^{\uparrow}{ }^{A_{7}}, 6\right){ }_{A_{7}}=1$. Since $\operatorname{Ext}_{A_{7}}^{1}(I, I)=0$, this means that 1.4 .2

$$
6_{A_{7}} \psi_{A_{6}}=\frac{I}{i_{1}} .
$$

The composition factors of $14_{A_{7}}{ }^{\psi} A_{6}$ are $I+I+4_{1}+4_{1}+4_{2}$. But $\left(I, 14_{A_{7}}{ }^{\prime}{ }_{A_{6}}\right)_{A_{6}}=\left(I_{A_{6}}{ }^{\uparrow}{ }^{A_{7}}, 14\right)_{A_{7}}=0$, and so the only possibility is
1.4 .3

$$
14_{A_{7}+A_{6}}=\begin{aligned}
& 4_{1} \\
& 4_{2} \\
& I_{1} \\
& 4_{1}
\end{aligned} .
$$

The composition factors of $\quad 20_{\mathrm{A}_{7}} \downarrow \mathrm{~A}_{6}$ are $4_{2}+8_{1}+8_{2}$. Since the constituents are in different blocks, we have
1.4 .4

$$
20_{\mathrm{A}_{7} \downarrow \mathrm{~A}_{6}}=4_{2} \oplus 8_{1} \oplus 8_{2} .
$$

Since $\left(I,\binom{6}{4_{1}}_{A_{7}} \dagger_{A_{6}}\right)_{A_{6}}=\left(I_{A_{6}}{ }^{A_{7}},\binom{6}{4_{1}}\right)_{A_{7}}=0$, we have
1.4 .5

$$
\binom{6}{4}_{A_{7}} \downarrow_{A_{6}}=\begin{aligned}
& I_{1} \\
& I_{2}^{4}
\end{aligned} .
$$

The composition factors of $\left(4_{2}\right) A_{6}{ }^{\dagger}{ }^{A_{7}}$ are $4_{1}+4_{2}+20$.

Since this module is self-dual and extends to a module for S_{6} and S_{7}, the only possibility is
1.4 .6

$$
\left(4_{2}\right)_{A_{6}} \uparrow^{A_{7}}=4_{1} \oplus 4_{2} \oplus 20
$$

Since $\left.\quad\left(\begin{array}{ll} & 6 \\ 4_{1} & 4_{2}\end{array}\right)_{A_{7}}{ }^{\downarrow} A_{6}, 4_{2}\right)^{\prime} A_{6}=\left(\left(\begin{array}{ll} & 6 \\ 4_{1} & \\ 4\end{array}\right), \quad\left(4_{2}\right)^{\prime} A_{6}{ }^{A_{7}}\right) A_{7}=0$
the only possibility is

The composition factors of $\left(4_{1}\right) A_{6} \uparrow^{A_{7}}$ are $14+14$ and so, since $\left(14_{A_{7}},\left(4_{1}\right) A_{6}{ }^{A_{7}}\right)_{A_{7}}=\left(14 A_{7}{ }^{\phi_{A}}{ }_{6} \cdot\left(4_{1}\right)_{A_{6}}\right)_{A_{6}}=1$, we have
1.4 .8

$$
\left.(4)_{1}\right)_{6} \uparrow^{A_{7}}=\frac{14}{14}
$$

Finally, since $\left(I,\binom{I}{20}_{A_{7}}{ }^{\downarrow} A_{6}\right)^{\prime} A_{6}=\left(I_{A_{6}}{ }^{A} 7,\binom{I}{20}\right)_{A_{7}}=0$, we
have from 1.4.4
1.4 .9

$$
\binom{I}{20}_{A_{7}} \not A_{6}=4_{2}^{I} \oplus 8_{1} \oplus 8_{2}
$$

Section 2. Some permutation modules for A_{8}
2.1 Permutations on the 8 cosets of A_{7}

Ordinary character: $1+7$.
Hence the composition factors of this FA_{8}-module M_{8} are $I+I+6$. Frobenius reciprocity shows that $I_{1}\left(M_{8}\right) \cong S_{1}\left(M_{8}\right) \cong I$, and so the structure is

$$
M_{8}=\begin{gathered}
I \\
6 \\
I
\end{gathered}
$$

2.1 .1
2.2 Permutations on the 15 cosets of $2^{3}: L_{3}$ (2)

Ordinary characters: $1+14$ for each of the two classes.
Thus the composition factors of these $F A_{3}$-modules $M_{15 a}$ and $M_{15 b}$ are $I+4_{1}+4_{2}+6$. Since 15 is odd, these modules have I as a direct summand. Frobenius reciprocity shows that in one case the head is $I+4_{1}$ and the socle is $I+4_{2}$, whereas in the other case the head is $I+4_{2}$ and the socle is $I+4_{1}$. Thus the structures are

2.3 Permutations on the 28 cosets of S_{6}

Ordinary character: $1+7+20$.
Thus the composition factors of this FA 8 -module M_{28} are $I+I+6+6+14$. By Scott's Lemma, the endomorphism ring has dimension 3.

Since $M_{28}=\left(M_{8}\right)^{2-}$, it has a submodule $I \wedge \frac{I}{6}$ of structure
$\frac{I}{6}$. By Frobenius reciprocity, $\quad S_{1}\left(M_{28}\right) \cong L_{1}\left(M_{28}\right) \cong I \oplus 6$.
2.3.1. Lemma. $6^{2-} \cong I \oplus 14$.

Proof. The composition factors are $I+14$, and the module is self-dual. //

Thus M_{28} has $I \oplus 14$ as a subquotient. Since it is selfdual, this means the Loewy structure of M_{28} is

2.3 .2	I	6
I	14	

(i.e. the "diagram" for M_{28} is $\left.I_{\sigma^{\prime}} 14^{-6} I\right)$.
2.4 Permutations on the 35 cosets of $2^{4}:\left(S_{3} X S_{3}\right)$

Ordinary characters: $1+14+20$.
Thus the composition factors of this FA_{8}-module M_{35} are $I+4_{1}+4_{2}+6+6+14$. Since 35 is odd, I is a direct summand. Frobenius reciprocity shows that $S_{1}\left(M_{35}\right) \cong L_{1}\left(M_{35}\right) \cong I \oplus 6$. Since M_{35} extends to a module for S_{8}, there is a subquotient $4_{1} \oplus 4_{2}$. Since the module is self-dual, this forces the structure to be
$2.4 .1 \quad M_{35}=I \oplus 4_{1} \quad \begin{array}{ll}6 \\ 4_{2}\end{array} \quad 14$.
2.5. Permutations of the 56 cosets of $\left(A_{5} \times 3\right) .2$

Ordinary characters: $1+7+20+28$.
Thus the composition factors of this FA_{8}-module M_{56} are $I+I+4_{1}+4_{2}+6+6+6+14+14$.
2.5.1. Lemma. M_{56} has a direct summand isomorphic to the module M_{8} described in 2.1 .

Proof. We construct maps $\alpha: M_{8} \rightarrow M_{56}$ and $\beta: M_{56} \rightarrow M_{8}$ as follows:

```
\alpha: point }x->\mathrm{ sum of triples containing }
\beta: triple {a,b,c} > a + b +c.
```

Then

$$
\alpha \beta: \text { point } x \rightarrow 21 \cdot x+6 \cdot \sum_{y \neq x} y=x
$$

since we are in characteristic 2 .
Hence $\alpha \beta=1$, and so $\beta \alpha$ is a projection and M_{56} splits as

$$
M_{56}=\operatorname{Im}(B \alpha) \oplus \operatorname{Ker}(\beta \alpha)
$$

So
2.5.2
$M_{56}=M_{8} \oplus M_{56}^{\prime} \quad$ where $M_{56}^{1}=\operatorname{Ker}(B \alpha) . \quad / /$

Now M_{56}^{\prime} has composition factors $4_{1}+4_{2}+6+6+14+14$. By Frobenius reciprocity, $S_{1}\left(M_{56}\right) \cong L_{1}\left(M_{56}\right) \cong I \oplus 14$ and so $S_{1}\left(M_{56}^{\prime}\right) \cong L_{1}\left(M_{56}^{\prime}\right) \cong 14$.

Next we notice that $M_{56}=\left(M_{8}\right)^{3-}$, so that it reduces at least as far as

$$
6^{6^{2-}}{ }_{6^{2-}} 6^{3-}
$$

2.5.3. Lemma. $\quad 6^{3-}$ has structure $4_{1}{ }^{6} \quad 4_{2}$.

Proof. The composition factors of 6^{3-} are $4_{1}+4_{2}+6+6$. The module is self-dual and extends to a module for S_{8}. Hence either the lemma holds or $6^{3-} \cong 6 \oplus 6 \oplus 4_{1} \oplus 4_{2}$. If so, then this is still true as modules for A_{7}. But for $A_{7}, \quad(1 \oplus)^{3-} \cong 6^{2-} \oplus 6^{3-}$ is a permutation module, and 504_{1} and 4_{2} would be direct sum-
But now this means that M_{56}^{\prime} has a subquotient isomorphic to
6^{3-}, and so it has Socle and Loewy series

14
6
2.5.4

6
14

Hence
2.5 .5

$$
\begin{aligned}
& 14 \\
& 6 \\
& M_{56}=6 \oplus 4_{1} \quad{ }_{6} \quad{ }_{2} \text {. } \\
& 14
\end{aligned}
$$

Section 3. The induced modules from simple A_{7}-modules

As we have already noted, the restrictions of simple A_{8}^{-} modules to A_{7} are as follows:

$$
\begin{aligned}
& I_{A_{8}}{ }^{+} A_{7}=I_{A_{7}} \\
& (4)_{2} A_{A_{8}}{ }^{\downarrow} A_{7}=(4)^{2} A_{7} \quad{ }^{6} A_{8}{ }^{\dagger} A_{7}=6_{A_{7}} \\
& { }^{14} \mathrm{~A}_{8}{ }^{\downarrow}{ }^{\mathrm{A}_{7}}=1{ }^{14} \mathrm{~A}_{7} \quad(20)_{1} \mathrm{~A}_{8}{ }^{\downarrow} \mathrm{A}_{7}=\left(20_{2}\right)_{\mathrm{A}_{8}}{ }^{\downarrow} \mathrm{A}_{7}=20_{\mathrm{A}_{7}} \\
& { }^{64} \mathrm{~A}_{8}{ }^{+} \mathrm{A}_{7}=\mathrm{P}_{14} \mathrm{~A}_{7} .
\end{aligned}
$$

By Frobenius reciprocity, this tells us the socle and first Loewy layer of modules induced from A_{7}.

We dealt with $I_{A_{7}} \uparrow^{A_{8}}$ in Section 2.1 , and so we only consider non-trivial simple modules here.

3.1. $\left(4_{1}\right) A_{7} \uparrow^{A_{8}}$ and $\left(4_{2}\right)_{A_{7}}{ }^{A_{8}}$

The composition factors of $\left(4_{1}\right) A_{7}{ }^{A^{A}} 8$ are $4_{1}+4_{1}+4_{2}+20_{1}$, and $S_{1} \cong L_{1} \cong\left(4_{1}\right)_{A_{8}}$. Since $\left(4_{1}\right)_{A_{7}}$ is the dual of 4_{2}, and also the image of 4_{2} under the S_{7}-automorphism of A_{7}, this means the Socle and Loewy Series are:
3.1 .1

$$
\left(4_{1}\right)_{A_{7}} \uparrow^{A_{8}}=4_{2}{ }_{4}^{4}{ }_{1}{ }^{4} 0_{1} \quad\left(4_{2}\right)_{A_{7}}{ }^{A^{A} 8}=4_{1}^{4}{ }_{2}^{4}{ }_{2} 20_{2}
$$

3.2. The module ${ }^{6} \mathrm{~A}_{7}{ }^{\mathrm{A}_{8}}$

This has composition factors $I+I+6+6+6+14+14$ and $S_{1} \cong L_{1} \cong{ }^{6} A_{8}$.
3.2.1. Lemma. There is a homomorphism from M_{28} to $\sigma_{A_{7}}{ }^{A_{8}}$ with one-dimensional kernel.

Proof. From Section 2.3 we see that since ${ }^{6}{ }^{A_{7}}$ is in a different block from $\quad I_{A_{7}}$ and ${ }^{14} A_{7}, \quad M_{28}{ }^{{ }^{\prime} A_{7}}$ is semisimple. Thus

$$
\left(M_{28}, 6_{A_{7}} \stackrel{\uparrow}{A}^{8}\right)_{A_{8}}=\left(M_{28} \downarrow_{A_{7}}, 6\right)_{A_{7}}=2
$$

Thus from what we know of the structure of M_{28}, since $S_{1}\left(\sigma_{A_{7}}{ }^{A_{8}}\right)=\sigma_{A_{8}}$, there must be a homorphism with kernel the frivial submodule of $M_{28} \cdot / /$

Thus by self-duality, there is a submodule 6 quotient module $\begin{array}{r}6 \\ \\ \\ \\ \\ \\ \\ \\ \hline\end{array}$.
3.2.2. Lemma. ${ }^{6}{ }_{A_{7}} \uparrow^{A_{8}}$ has exactly one copy of I in its second Loewy layer.

Proof. We certainly know that there is at least one, by 3.2.1. Suppose that there is more than one. Since ${ }^{6}{ }_{A_{7}}$ is not in the principal block, this means that $L_{1}\left(\sigma_{A_{7}} \uparrow^{A_{8}}{ }_{\psi_{A_{7}}}\right)^{A_{7}}$ has more than one copy of I in it. However,

$$
\left(\sigma_{A_{7}} \uparrow^{A^{\prime}}{ }^{\psi_{A_{7}}}, I\right)_{A_{7}}=\left(\sigma_{A_{7}} \uparrow^{A^{8}}, I_{A_{7}} \uparrow^{A^{A}} 8\right) \leqq 1
$$

a contradiction. //

This forces the Loewy length to be at least 4 , and since it is self-dual, we are left with only one possibility, namely the that the Loewy Series is

3.3. The module ${ }^{14} \mathrm{~A}_{7}{ }^{\uparrow}{ }^{\mathrm{A}_{8}}$

This has composition factors $4_{1}+4_{2}+6+6+14+14+64$ and $S_{1} \cong L_{1} \cong 14 \oplus 64$. Since 64 is projective, this module is a direct sum of 64 and a module with $S_{1} \cong L_{1} \cong 14$.
3.3.1. Lemma. $\quad\left(M_{56}, 14_{A_{7}}{ }^{A_{8}}\right)_{A_{8}}=2$.

Proof. $\quad\left(M_{56}, 14_{A_{7}}{ }^{A_{8}}\right)^{A_{8}}=\left(M_{56}{ }^{\psi} A_{7}, 14\right)_{A_{7}}$. But $M_{56}{ }^{\psi} A_{7}$ is the direct sum of the permutation module on 21 cosets of an S_{5} fixing a $5+2$ splitting of the 7 points, and the permutation module on the 35 cosets of an ($A_{4} \times 3$). 2 fixing a $4+3$ splitting of the 7 points. The lemma now follows from section 1.2. //

Now from the structure of M_{56} given in 2.5 .5 it follows that every such homomorphism must kill $\operatorname{Im}(\beta \alpha)$, and some such homomorphism is an injection from M_{56}^{\prime} into $14_{A}{ }_{7}{ }^{4}{ }^{A}$. Thus
3.3 .2

$$
{ }^{14_{A_{7}}}{ }^{A_{8}} \cong M_{56}^{\prime} \oplus 64 \quad\left(=4_{1} \quad{ }_{6}^{4}{ }_{2}^{\oplus 64)} .\right.
$$

3.4. The module $20{ }_{A_{7}} \uparrow^{A_{8}}$

This has composition factors $I+I+I+I+4_{1}+14+14+20_{1}$ $+20_{1}+20_{1}+20_{2}+20_{2}+20_{2}$ and $S_{1} \cong L_{1} \cong 20_{1} \oplus 20_{2}$.
3.4.1. Lemma. $\quad\left(20_{A_{7}} \uparrow^{A_{8}}, 20_{A_{7}} \uparrow^{A_{8}}\right)_{A_{8}}=4$.

Proof. $\quad\left(20 A_{7} \uparrow^{A_{8}}, 20 A_{7} \uparrow^{A_{8}}\right)_{A_{8}}=(20,20) A_{7}+\left(20 A_{7}{ }^{\psi} A_{6},{ }^{20} A_{7}{ }^{\downarrow} A_{6}{ }^{\prime} A_{6}\right.$ by the Mackey decomnosition theorem

$$
=1+3 \quad \text { by } 1.4 \cdot 4
$$

The lemma now follows easily. //

We shall complete the determination of the structure of this module in Section 4.4.

Section 4. More induced modules from A_{7}; the final assault
4.1. Induction of projective modules

$$
\begin{aligned}
& \text { By Brauer characters, we see that } \\
& \left.\left.\mathrm{P}_{\mathrm{I}_{\mathrm{A}_{7}}} \uparrow^{\mathrm{A}_{8}}=\mathrm{P}_{\mathrm{I}_{\mathrm{A}_{8}}} \oplus 64 \oplus 64 \quad \quad \mathrm{P}_{(4,}\right)_{\mathrm{A}_{7}} \uparrow^{\mathrm{A}} 8=\mathrm{P}_{(41}\right)_{A_{8}} \\
& P_{\left(4_{2}\right)_{A}} \uparrow^{A_{8}}=P_{\left(42_{2}\right)_{8}} \quad \quad P_{6_{A_{7}}}{ }^{A_{8}}=P_{6} A_{8} \\
& \mathrm{P}_{14 A_{7}} \uparrow^{\mathrm{A}_{8}}=\mathrm{P}_{14_{A_{8}}} \oplus 64 . \oplus 64 \oplus 64 \quad \text { and } \\
& \mathrm{P}_{20} \mathrm{~A}_{7}{ }^{\mathrm{A}_{8}}=\mathrm{P}\left(20_{1}\right)_{\mathrm{A}_{8}} \oplus \mathrm{P}\left(20_{2}\right)_{\mathrm{A}_{8}} \oplus 64 .
\end{aligned}
$$

```
    Thus the results of Section 3, together with the structure of \(20_{A_{7}}{ }^{A} 8\) which is yet to be determined, give us strong infor-
``` mation about the structures of the projective modules for \(A_{8}\). Namely, we are given certain filtrations for each of \(P_{I}, P_{4}\), \(\mathrm{P}_{4}, \mathrm{P}_{6}, \mathrm{P}_{14}\) and \(\mathrm{P}_{20} \mathrm{O}_{1}{ }^{\oplus} \mathrm{P}_{20_{2}}\), in which we know the structures of the quotient modules. We now use this to complete the determination of Ext \({ }^{1}\) for simple modules, and then to get the comolete Loewy structures of the projective indecomposables. All we need to know is how far certain composition factors can "slip past" each other. Our main tool will be the following observations, all of which are trivial but powerful consequences of 4.1.1:

We can identify \(\mathrm{JFA}_{7} \uparrow^{\mathrm{A}_{8}}\) as a subring of \(\mathrm{FA}_{8}\) via \(\mathrm{JFA}_{7}{ }^{\mathrm{A}_{8}}=\) \(\mathrm{JFA}_{7} \underset{\mathrm{FA}_{7}}{\otimes} \mathrm{FA}_{8} \leqq \mathrm{FA}_{7} \underset{\mathrm{FA}_{7}}{\otimes} \mathrm{FA}_{8} \cong \mathrm{FA}_{8}\).
\(\underline{\underline{4.1 .1 .}}\) Lemma. \(\mathrm{JFA}_{7}{ }^{\mathrm{A}_{8}} \cdot \mathrm{e}_{0} \leqq \mathrm{JFA}_{8}\).

Proof. This follows trivially from the observation that for each simple \(A_{7}\)-module \(M\),
\[
L_{1}\left(M^{A}{ }^{A}\right) \cdot e_{0} \cong L_{1}\left(P_{M}^{\uparrow}{ }^{A} 8\right) \cdot e_{0}
\]

By the Frobenius reciprocity theorem it is equivalent to the statement that for each simple \(A_{8}\)-module \(N\) in the principal block, \(N{ }^{+}{ }_{A_{7}}\) is semisimple. //
4.1.2. Lemma. \(\left(\mathrm{JFA}_{7}\right)^{n_{\uparrow} A_{8}} \cdot e_{0} \leqq\left(\mathrm{JFA}_{8}\right)^{n}\) for all \(n \geqq 0\).

Proof. This follows from 4.1.1. //
4.1.3. Theorem, If \(M\) is any module for \(A_{7}\), then
\[
\left(\frac{M^{A_{8}}}{M \uparrow^{A_{8}} \cdot\left(J F A_{8}\right)^{n}}\right) \cdot e_{0}=\left(\frac{\left(\frac{M}{M \cdot\left(J F A_{7}\right)^{n}}\right)^{A^{A}} 8}{\left(\frac{M}{M \cdot\left(J F A_{7}\right)^{n}}\right) \uparrow^{A_{8}} \cdot\left(J F A_{8}\right)^{n}}\right) \cdot e_{0}
\]

Proof. By 4.1.2 we have
\[
\left(M\left(J F A_{7}\right)^{n}\right)+^{A} 8 \cdot e_{0} \leqq M\left(J F A_{8}\right)^{n} \cdot e_{0}
\]

Hence
\[
\left(\frac{M}{M \cdot\left(J F A_{7}\right)^{n}}\right)^{A_{8}} \cdot\left(J F A_{8}\right)^{n} \cdot e_{0}=\frac{M^{A_{8}} \cdot\left(J F A_{8}\right)^{n}}{\left(M \cdot\left(J F A_{7}\right)^{n}\right) \uparrow_{8}^{A_{8}}} \cdot e_{0}
\]
and the result follows from the third isomorphism theorem. //
4.1.4. Corollary. If \(M\) is a module for \(A_{7}\), then
\[
L_{1}\left(M \uparrow^{A} 8\right) \cdot e_{0} \cong L_{1}\left(\left(L_{1}(M)\right) \uparrow^{A_{8}}\right) \cdot e_{0}
\]

Proof. This is just the case \(n=1\) of the theorem. //
```

4.1.5. Corollary. If }M\mathrm{ is a module for }\mp@subsup{A}{7}{}\mathrm{ and

```
\[
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
\]
is a non-split short exact sequence with \(M^{\prime}\) and \(M^{\prime \prime}\) simple, then
\[
L_{1}\left(M \uparrow^{A} 8\right) \cdot e_{0}=L_{1}\left(M^{\prime \prime} \uparrow^{A} 8\right) \cdot e_{0} \cdot / /
\]
4.2. The Loewy structure of \(\binom{4}{1}_{A_{7}}{ }^{A_{8}}\) Our filtration of \(\binom{4_{1}}{6}_{A_{7}} \uparrow^{A_{8}}\) looks like:

By 4.1.5, \(\quad L_{1}=4_{1}\). We know from 2.5.4 that \(\left.L_{2}\left(P_{(4,}\right)_{A_{8}}\right)\) has a copy of 6 in it, and so applying 4.1.3 for \(n=2\) to 8 \(\left.P_{(41}\right)_{A_{7}}\) we see that the \(L_{2}\) of both \(\binom{4}{6}_{A_{7}^{\uparrow}}^{A_{8}}\) and \(\left.P_{(41}\right)_{A_{8}}\)
are \(4_{2} \oplus 6 \oplus 20_{1}\). This completes the determination of dim Ext \({ }_{A_{8}}^{1}\left(4_{\gamma}, M\right)\) and hence also of \(\operatorname{dim}^{\operatorname{Ext}}{ }_{A_{8}}^{1}\left(4_{2}, M\right)\) for \(M\) simple.

Also from 2.5.4 we wee that \(\left.L_{3}\left(P_{\left(4_{1}\right)}\right)_{A_{8}}\right)\) has a copy of 14 in it, so that again applying 4.1 .3 for \(n=3\) we see that \(L_{3}\left(\binom{4}{6}_{A_{7}}^{\uparrow}{ }^{A_{8}}\right)\) has a copy of 14 in it. Now since \(\operatorname{dim}_{A_{8}} A_{A_{8}}^{1}(4, I)=0\), it follows that the Low series for \(\binom{4}{6}_{A_{7}^{4}}^{A_{8}}\) is as follows:
\(\left.\begin{array}{llll} & & 4_{1} & \\ 4_{2} & 6 & & 20_{1} \\ \text { I } & & 4_{1} & \\ & \text { I } & & 6\end{array}\right]\)
4.3. The Loewy structure of \(\left(\begin{array}{cc}6 & \\ 4 & 4_{1}\end{array}\right)_{2} \AA_{A_{7}}^{A_{8}}\)

Our filtration of this module looks like:

From 2.5.5 we see that \(\mathrm{L}_{2}\left(\mathrm{P}_{6} \mathrm{~A}_{8}\right)\) has a copy of \(4_{1}\) and of \({ }^{4}{ }_{2}\) in it. Thus applying 4.1 .3 for \(n=2\) to \({ }^{P_{6}}{ }_{A_{7}}\) we see that \(L_{2}\) of both \(\left(4_{1}{ }^{6}{ }^{4}{ }_{2}\right)_{A_{7}} \uparrow_{8} A_{8}\) and \(P_{6} A_{8}\) are \(I \oplus 4_{1}{ }^{\oplus} 4_{2} \oplus 14\). This completes the determination of dim Ext \(_{A_{8}}^{1}(6, M)\) for \(M\) simple.
\(\xlongequal[\text { or } 4_{2} \text {. Lemma }]{\text { 4. } \mathrm{I}_{3}\left(\left(\begin{array}{c}6 \\ 4 \\ 4\end{array}\right)_{A_{7}}{ }^{A_{8}}\right) \text { does not contain copies of }}\) \(20_{1}\) or \(4_{2}\).

Proof. \(\left.\binom{6}{4}_{A_{7}} \uparrow^{A_{8}}{ }_{\psi_{A_{7}}},{ }^{I} 0^{I}\right)_{A_{7}}=\left({ }_{4}^{6},{ }_{1}^{I} 0^{I}\right)_{A_{7}}\)
\[
+\left(\binom{6}{4}_{A_{7}}{ }^{\downarrow} A_{6} \cdot\binom{I}{20}_{A_{7}}{ }^{\downarrow}{ }_{A_{6}}\right)_{A_{6}}
\]
by the Mackey decomposition theorem
\[
=0+\left(\begin{array}{l}
\frac{I}{4}{ }_{I_{1}}^{I_{2}},{ }_{4}^{4} \\
4_{2}
\end{array} 8_{1} \oplus 8_{2}\right)_{A_{6}}
\]
\[
=0
\]

Also,
by 1.4 .4 and 1.4 .5
\[
=0
\]

However, if \(L_{3}\left(\binom{6}{4}_{A_{7}}{ }^{A_{8}}\right)\) has a copy of \(20_{1}\) in it. then our knowledge of Ext \(_{\mathrm{A}_{7}}^{?}\) shows that there would be a map in one of the above sets.

Similarly, if \(L_{3}\left(\binom{6}{4}_{A_{7}} \uparrow^{A^{A}}\right.\)) has a copy of \(4_{2}\) in it, there would be a map
\[
\left(\right)_{A_{7}}^{A_{8}}{ }_{\downarrow} \rightarrow\left(A_{2}\right)_{\Lambda_{7}}
\]
\[
\begin{aligned}
& \left.\left(\begin{array}{l}
6 \\
4 \\
1
\end{array}\right)_{\lambda_{7}} t^{A_{8}}{ }_{A_{7}}, 20\right)_{A_{7}}=\left(\begin{array}{l}
6 \\
4
\end{array}, 20\right) A_{7} \\
& \left.+\left(\begin{array}{l}
{[} \\
4 \\
1
\end{array}\right)_{A_{7}} \psi_{A_{6}},\binom{I}{20}_{A_{7}}{ }^{\downarrow}{ }_{A_{6}}\right)_{A_{6}}
\end{aligned}
\]
for on restriction to \(A_{7}\), we have
\[
\operatorname{dim} \operatorname{Ext}_{A_{7}}^{1}\left(14,4_{2}\right)={\operatorname{dim} \operatorname{Ext}_{A_{7}}^{1}\left(I, 4_{2}\right)=\operatorname{dim}_{\operatorname{Ext}}^{A_{7}}}_{1}\left(4_{1}, 4_{2}\right)=0
\]
and hence \(L_{2}\left(\binom{6}{4_{1}}_{A 7} \uparrow^{A} 8_{\psi_{A 7}}\right)\) would have \(4_{2}\) in it, and hence so would \(L_{1}\left(\left(\begin{array}{lll}4_{1} & & 4_{2}\end{array}\right)_{A_{7}} \uparrow_{A_{7}}^{A_{8}}{ }_{A_{7}}\right)\) since \(\quad \operatorname{dim} \operatorname{Ext}_{A_{7}}^{1}\left(6,4_{2}\right)=1\). However,
\[
\begin{aligned}
\left(\left(\begin{array}{ll}
{ }_{4}{ }^{6} & \\
4 & 4_{2}
\end{array}\right)_{A_{7}} \uparrow^{A_{8}}{ }_{4}, A_{7},{ }_{2}\right)_{A_{7}} & =\left(4_{1}{ }^{6} 4_{2}, 4_{2}\right)_{A_{7}} \\
& +\left(\left(\begin{array}{ll}
4_{1} & 4_{2}
\end{array}\right)_{A_{7}}{ }^{A_{6}},\left(4_{2}\right)_{A_{7}}{ }^{+} A_{6}\right) A_{6}
\end{aligned}
\]
by Mackey decomposition
\[
=0+\left({\stackrel{4}{I_{1}}}_{I_{2}^{4}}^{4_{2}}, 4_{2}\right)^{\prime} A_{6}
\]
by 1.4 .7
\[
=0, \quad \text { a contradiction. }
\]

Thus with the results of section 4.2 and the fact that \(\binom{6}{4}_{A_{7}} \uparrow^{A_{8}}\) has a submodule \(\left(\begin{array}{c}14 \\ 6 \\ 4\end{array}\right)\) (see 2.5.4), we see that the
Loewy series of \(\left(\begin{array}{cc}{ }^{6} \\ 4 & 4_{1}\end{array}\right)_{A_{7}} \uparrow_{8}\) is as follows:
\[
\begin{aligned}
& 6 \\
& \begin{array}{llll}
\text { I } & 4_{1} & 4_{2} & 14
\end{array} \\
& \begin{array}{llrrr}
4_{1} & 4_{2} & 14 & 20_{1} & 20_{2} \\
& & 6 & &
\end{array} \\
& 4_{1} \quad 4_{2}
\end{aligned}
\]

\[
\text { 4.4.1. Lemma. There is no uniserial module } \begin{gathered}
I \\
6
\end{gathered}
\]

Proof. Applying 4.1.3. with \(n=3\) to \({ }^{P} I_{A_{7}}\) we see that any copy of \(4_{1}\) in \(\mathrm{L}_{3}\left(\mathrm{P}_{\mathrm{I}_{\mathrm{A}_{8}}}\right)\) is stuck underneath a 14 , a \(20{ }_{1}\) or a \(\quad 20_{2}\).
4.4.2. Corollary. There is a non-split group extension \(2^{4} \mathrm{~A}_{8}\).

Proof. By 4.4.1. the image of the cup-product map
\[
\operatorname{Ext}_{A_{8}}^{1}(I, 6) \otimes \operatorname{Ext}_{A_{8}}^{1}(6,4,) \rightarrow \operatorname{Ext}_{A_{8}}^{2}(I, 4,) \cong H^{2}\left(A_{8}, 4_{1}\right)
\]
is non-zero.
We first examine the structure of \(\left(\begin{array}{c}6 \\ 4 \\ 1 \\ 6\end{array}\right)_{A_{7}}^{A_{8}}\). From 2.5 .3 we see that \({ }^{P_{6_{A}}}\). has a quotient module \({ }^{7}\)

we also know that it has a quotient 14 .
Hence \(\left(\begin{array}{l}6 \\ 4 \\ 6\end{array}\right) \stackrel{{ }^{A_{7}}}{ }{ }^{A_{8}}\left(\left(\begin{array}{l}6 \\ 4 \\ 1 \\ 6\end{array}\right){ }^{{ }^{A}{ }_{7}}{ }^{A_{8}} \quad . \quad\left(\text { JFA }_{8}\right)^{3}\right.\) has Loewy series
\begin{tabular}{ccc}
& 6 & \\
I & \(4_{1}\) & 14 \\
I & 6 & 6
\end{tabular}
and socle series
\begin{tabular}{ccccc}
& \multicolumn{3}{c}{6} & \\
& \(4_{1}\) & & 14 & \\
I & \(I\) & 6 & 6
\end{tabular}

If there were a copy of \(I\) in \(L_{4}\left(\left(\begin{array}{c}6 \\ 4_{1} \\ 6\end{array}\right){ }_{4}{ }^{A_{8}} 8\right)\) then there would be a uniserial module 6 contradicting lemma 4.4.1. Hence there are two copies of \(I\) in \(L_{5}\left(\left(\begin{array}{l}6 \\ 4 \\ 1 \\ 6\end{array}\right){ }^{I} A_{7}{ }^{A_{8}}\right)\) and hence the
complete Loewy series is:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{6} \\
\hline I & & \({ }^{4} 1\) & 14 \\
\hline I & & 6 & 6 \\
\hline \({ }_{4}\) & 14 & 14 & 201 \\
\hline I & I & 6 & 6 \\
\hline & \({ }^{4} 1\) & 14 & \\
\hline \multicolumn{4}{|c|}{6} \\
\hline
\end{tabular}

Now we attack \(\left(\begin{array}{l}4 \\ 6 \\ 4_{2}\end{array}\right)_{A_{7}}{ }^{A^{A} 8}\). We know from section 2.2 that
\({ }^{\mathrm{P}}\left(4_{1}\right)_{A_{8}}\) has quotient module \({ }^{6}\), and hence by 4.1 .3 with \(n=3 \quad \begin{aligned} & \text { we see that } \\ & L_{3}\end{aligned}\left(\left(\begin{array}{l}4_{1} \\ 6 \\ 4_{2}\end{array}\right){ }_{A_{7}}{ }^{A_{8}}\right)^{4}{ }^{4}\) has \(4_{2}\) in it. Now our knowledge of \(\operatorname{dim} \operatorname{Ext}_{A_{8}}^{1}\left(4_{1},-\right) \quad\) together with the results of sections 4.2 and 4.3 tell us that the Loewy series of \(\left(\begin{array}{l}4_{1} \\ 6 \\ 4 \\ 4\end{array}\right){ }_{2} A_{7}{ }^{A_{8}}\) is as follows:

Thus the Loowy series for \(\mathrm{P}_{4_{1}}\) and \(\mathrm{P}_{4_{2}}\) are as in wheorem 1. We can demonstrate our filtrations diagramatically as follows:

\section*{Figure 1}

Now, since \(\mathrm{L}_{4}\left(\mathrm{P}_{4}\right)\) has 2 copies of 6 in it, \(\mathrm{L}_{4}\left(\mathrm{P}_{6}\right)\) has two copies of each \(4_{i}\) in it by Landrock's lemma. Thus the Loewy series of \(P_{6}\) is as in Theorem 1, and our filtrations can be shown diagramatically as in Figure 2.
\[
\text { Figure } 2
\]
4.5. The Loewy structure of \(\binom{1}{14}_{A}{ }_{7} \uparrow^{A_{8}}\)

Our filtration of this module looks like:
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{I} \\
\hline & \multicolumn{3}{|c|}{6} \\
\hline & \multicolumn{3}{|c|}{I} \\
\hline \multicolumn{4}{|c|}{14} \\
\hline \multicolumn{4}{|c|}{6} \\
\hline \(4_{1}\) & \({ }^{4} 2\) & \(\oplus\) & 64 \\
\hline \multicolumn{4}{|c|}{6} \\
\hline \multicolumn{4}{|c|}{14} \\
\hline
\end{tabular}

Now from 3.2 we know that \(P_{I}\) has a quotient module 14 . since \(\mathrm{L}_{1}\left(20_{A_{7}} \uparrow^{\mathrm{A}_{8}}\right)=20_{1} \oplus 20_{2}\), an application of 4.1 .3 to \({ }_{\mathrm{I}} \mathrm{P}_{\mathrm{P}_{\mathrm{A}_{7}}}\) shows that \(\binom{I}{14}_{A_{7}} \uparrow^{A_{8}}\) must have a quotient module \(\quad \begin{gathered}I 4 \\ A_{8}\end{gathered}{ }^{2} \quad\) Thus \(\binom{I}{14}_{A_{7}}{ }^{\uparrow}{ }^{A_{8}} \cdot e_{0}\) has Loewy series
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{I} \\
\hline 6 & 14 \\
\hline I & 6 \\
\hline \(4_{1}\) & \(4_{2}\) \\
\hline \multicolumn{2}{|c|}{6} \\
\hline & \\
\hline
\end{tabular}
and \(\binom{I}{14}_{A_{7}} \uparrow^{A_{3}}=\binom{I}{14}_{A_{7}} \uparrow^{A_{8}} \cdot e_{0} \oplus 64\).
By Thompson's Lemma on the ordinary characters of dimension 21, we see that
\[
\operatorname{dim} \operatorname{Ext}_{A_{8}}^{1}\left(I, 20_{i}\right) \geqq 1, \quad i=1,2
\]

Thus our argument also shows that the \(L_{2}\) of \(P_{I_{A_{7}}}{ }^{4}{ }^{A_{8}} \cdot e_{0}={ }^{P^{\prime}} I_{A_{8}}\) is exactly \(6 \oplus 14 \oplus 20_{1} \oplus 20_{2}\). This completes the determination of dim \(\operatorname{Ext}_{A_{8}}^{1}(I, M)\) for \(M\) simple.
4.6. The Loewy structure of \(\quad 20_{A_{7}} \uparrow^{A_{8}}\)

We are now ready to complete the work of section 3.4.

Proof. Since \(\mathrm{P}_{20}{ }_{\mathrm{i}}{ }^{{ }^{\star} \mathrm{A}_{7}}=\mathrm{P}_{20} \oplus \mathrm{P}_{20} \oplus \mathrm{P}_{20} \oplus \mathrm{P}_{4_{i}}\) we see that \({ }_{20}{ }_{i}\) remains indecomposable on restriction to \(A_{7}\). Thus
\[
\left(\frac{I}{20_{i}}, 20_{A_{7}} \uparrow^{A_{3}}\right)_{A_{3}}=\left(\frac{I}{I}, 20\right)_{A_{7}}=0
\]
\(\xrightarrow{\text { 4.6.2. Lemma }} . \quad\left({ }_{20}{ }^{I} 20_{2},{ }^{20} A_{A_{7}}{ }^{A_{8}}\right)_{A_{8}}=1\).

Proof. Since \(\operatorname{dim~Ext}_{A_{7}}^{1}(I, 20)=1\), we have
\[
\left(\begin{array}{cc}
20_{1} & 20_{2}
\end{array}\right)_{A_{8}} \psi_{A_{7}}=\frac{I}{20} \oplus 20
\]

Hence
\[
\left({ }_{20}{ }^{\mathrm{I}} 20_{2},{ }^{20} \mathrm{~A}_{7} \uparrow^{\mathrm{A}_{8}}\right)_{\mathrm{A}_{8}}=\left(\frac{\mathrm{I}}{20} \oplus 20,20 .\right)_{A_{7}}=1
\]

Proof. Since \(20_{A_{7}} \uparrow^{A_{8}}\) extends to a module for \(S_{8}\), there is a subquotient \(4_{1} \oplus 4_{2}\). By self-duality and since dimext \({ }_{A_{8}}^{1}\left(4_{i}, I\right)=\)
\(=\operatorname{dim} \operatorname{Ext}_{A_{3}}^{1}\left(4_{i}, 14\right)=0 \quad(\) Section 4.1\()\), this means that \(4_{1} \oplus 4_{2}\) is a direct summand of \(\operatorname{Rad}\left(20_{A_{7}} \uparrow^{A_{B}}\right) / \operatorname{Soc}\left(20_{A_{7}} \uparrow^{A^{B}} 3\right)\). //
\[
\text { 4.6.4. Lemma. } \quad \operatorname{dim} \operatorname{Ext}_{A_{8}}^{1}\left(14,20_{i}\right)=0
\]

Proof. Apply 4.1 .3 to \(\mathrm{P}_{\mathrm{TA}_{A_{7}}}\) with \(\mathrm{n}=2\).//
```

4.6.5. Lemma. Soc(X)=I.

```

Proof. Lemmas 4.6.1 and 4.6.2 show that there is exactly one copy of \(I\) in \(\operatorname{Soc}(X)\). There can be no copies of 20 in Soc (X) since dim End \(A_{8}\left(20{ }_{A_{7}}{ }^{A^{A} 8}\right.\)) \(=4\) (Lemma 3.4.1). There can be no copies of 14 in \(\operatorname{Soc}(X)\) by Lemma 4.6.4. //

Thus \(X\) has the form \(Y\) where \(Y\) has composition factors \(I+I+14+14+20_{1}+20_{2}\).
4.6.6. Lemma. \(\operatorname{Soc}(Y)=14\)

Proof. Since \(\quad \operatorname{dim} \operatorname{Ext}_{A_{8}}^{1}(I, I)=0, \quad \operatorname{Soc}(Y)\) can contain no copies of \(I\). Since \(Y\) is self-dual and extends to a module for \(S_{8}\), if \(\operatorname{Soc}(Y)\) contains a copy of \(20_{i}\), then \(20{ }_{i}\) is a summand of \(Y\) for \(i=1,2\). But then the other direct summand would have to have Loewy series \(I_{14}^{14} I\) whereas \(\operatorname{dim}_{14} \operatorname{Ext}_{A_{8}}^{1}(I, 14)=1\) from Section 4.5. //

Thus by 4.6.4 the structure of \(Y\) is:

14
Hence the Loewy series for \(\quad 20 A_{7} \uparrow^{A_{8}}\) is
\begin{tabular}{|c|c|c|}
\hline \(20_{1}\) & & \(20_{2}\) \\
\hline \multirow[t]{3}{*}{I} & 41 & \({ }^{4} 2\) \\
\hline & 14 & \\
\hline & I & \\
\hline 2.01 & & \(2 \mathrm{O}_{2}\) \\
\hline & I & \\
\hline & 14 & \\
\hline & I & \\
\hline 201 & & \(\mathrm{CO}_{2}\) \\
\hline
\end{tabular}
(i.e. the "diagram" is

4.7. The remaining projective indecomposable modules

From Section 4.6 we have a quotient of \(P_{20}\), with Loewy series
\begin{tabular}{ccc}
I & & \(4_{1}\) \\
& 14 & \\
& I & \\
\(20_{1}\) & & \(20_{2}\) \\
& I & \\
& 14 & \\
& I & \\
\(20_{1}\) & & \(20_{2}\).
\end{tabular}

Since this accounts for all the copies \(20_{1}\) and \(20_{2}\) in \(P_{20}\), this means that the Loew length is at least 13. By Landrock's Lemma we see that \(P_{20}\), has a copy of 6 in its \(\mathrm{L}_{4}\) and \(\mathrm{L}_{6}\), and a copy of \(4_{2}\) in its \(\mathrm{L}_{5}\), and \(4_{1}\) in its \(L_{7}\). Thus all the composition factors are accounted for and the Loewy structure of \(\mathrm{P}_{20_{i}}\) is as given in Theorem 1 . Hence the appropriate diagram for our filtration of \(\mathrm{P}_{20} \oplus \mathrm{P}_{20_{2}}\) is as follows:

Now we have enough information to see that \({ }^{P_{I}}\) has the Loewy series given in Theorem 1, and the appropriate diagram for our filtration is as given in figure 4.

Figure 4
\(\xlongequal{\text { 4.7.1. Lemma. }}\binom{14}{14}_{A_{7}} \uparrow^{A_{8}} \cdot e_{0}\) has Loewy series
\begin{tabular}{ccccc}
& & & 14 & \\
& & 6 & & \\
\(4_{1}\) & & \(4_{2}\) & & 14 \\
& 6 & & 6 & \\
\(4_{1}\) & & \(4_{2}\) & & 14 \\
& & & 6 & \\
& & & &
\end{tabular}

14

Proof. From Section 3.2 we know there is a module \(\quad 14\). Thus applying 4.1.3 with \(n=3\) to \(\mathrm{P}_{14} 4_{A_{7}}\) we see that 14 \(\binom{14}{14}_{A_{7}}{ }{ }^{A_{8}} 8 . e_{0}\) has \(\begin{gathered}14 \\ 6 \\ 14\end{gathered}\) as quotient. Thus it also has \(\begin{gathered}14 \\ 6\end{gathered}\) as a submodule, and so since \(\operatorname{dimExt}_{\mathrm{A}_{8}}^{1}(6,6)=0\) from Section 4.3 the result follows. //

This now gives us enough information to see that the Loewy series for \(P_{14}\) given in Theorem 1 is correct, and the appropriate diagram for our filtration is as in Figure 5.

\section*{Figure 5}

This completes the proof of Theorem 1, and the determination of \(\operatorname{dim} \operatorname{Ext}_{A_{8}}^{1}(M, N)\) for \(M\) and \(N\) simple. This information is displayed in Appendix 4.

\section*{Notation for character tables}

The only irrationalities we come across in our character tables are:
\[
b n=\left\{\begin{array}{llll}
\frac{1}{2}(-1+\sqrt{ } n) & \text { if } & n \equiv 1 & (\bmod 4) \\
\frac{1}{2}(-1+i \sqrt{ } n) & \text { if } & n \equiv 3 & (\bmod 4)
\end{array}\right.
\]
i.e. the "Gauss sum" of half the primitive \(n^{\text {th }}\) roots of unity.

Under the column headed "ind" is given the Frobenius-Schur indicator of the representation, namely
```

+ if the representation is orthogonal
- if the representation is symplectic
but not orthogonal

```
```

0 if the representation is neither
symplectic nor orthogonal.
(In characteristic 0 this is }\frac{1}{|G|}\mp@subsup{\sum}{g\inG}{}x(\mp@subsup{g}{}{2}).
The top row carries the centralizer orders.

```

\section*{Acknowledgement}

I would like to thank Dr. P. Landrock and the Matematisk Institut of Aarhus Universitet for their generous help, and the Royal Society, Great Britain, through whom I have been financially supported whilst undertaking this work.
```

R E F E R E N C E S

```
1. K. Erdmann, Principal blocks of groups with dihedral Sylow 2-subgroups. Comm. Algebra 5 (7) (1977), 665-694
2. G. D. James, The representation theory of the symmetric groups. Springer Verlag SLN 682, 1978
3. P. Landrock, The Cartan matrix of a group algebra modulo any power of its radical
4. L. L. Scott, Modular permutation representations. Trans. Amer. Math. Soc. 175 (1973), 101-121
5. J. G. Thompson, Vertices and sources. J. Algebra 6 (1967), 1-6

\section*{Appendix 1. Characters of \(A_{3}\)}

\section*{(i) Ordinary characters}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 20160 & 192 & 96 & 180 & 18 & 16 & 8 & 15 & 12 & 6 & 7 & 7 & 15 & 15 & \\
\hline p p & power & A & A & A & A & A & B & A & AB & BA & A & A & AA & AA & \\
\hline p' p & part & A & A & A & A & A & A & A & \(A B\) & BA & A & A & AA & AA & S8 \\
\hline ind & 1A & 2A & 2B & 3A & 3B & 4A & 4B & 5A & 6A & 6B & 7A & B** & 15A & \(\mathrm{B}^{* *}\) & fusion \\
\hline & \(+1\) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & : \\
\hline & + 7 & -1 & 3 & 4 & 1 & -1 & 1 & 2 & 0 & -1 & 0 & 0 & -1 & -1 & : \\
\hline & + 14 & 6 & 2 & -1 & 2 & 2 & 0 & -1 & -1 & 0 & 0 & 0 & -1 & -1 & : \\
\hline & + 20 & 4 & 4 & 5 & -1 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 0 & 0 & : \\
\hline & + 21 & -3 & 1 & 6 & 0 & 1 & -1 & 1 & -2 & 0 & 0 & 0 & 1 & 1 & : \\
\hline & 021 & -3 & 1 & -3 & 0 & 1 & -1 & 1 & 1 & 0 & 0 & 0 & b15 & ** & - \\
\hline & 021 & -3 & 1 & -3 & 0 & 1 & -1 & 1 & 1 & 0 & 0 & 0 & ** & bl 5 & \(!\) \\
\hline & + 28 & -4 & 4 & 1 & 1 & 0 & 0 & -2 & 1 & -1 & 0 & 0 & 1 & 1 & : \\
\hline & + 35 & 3 & -5 & 5 & 2 & -1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & : \\
\hline & 045 & -3 & -3 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & b7 & ** & 0 & 0 & - \\
\hline & 045 & -3 & -3 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & ** & b7 & 0 & 0 & ! \\
\hline & + 56 & 8 & 0 & -4 & -1 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 1 & 1 & : \\
\hline & + 64 & 0 & 0 & 4 & -2 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 & \(-1\) & : \\
\hline & + 70 & -2 & 2 & -5 & 1 & -2 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & : \\
\hline
\end{tabular}
(ii) 2 - modular characters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 20160 & 180 & 18 & 15 & 7 & 7 & 15 & 15 & \\
\hline p & power & A & A & A & A & A & AA & AA & \\
\hline \(\mathrm{p}^{\prime}\) & part & A & A & A & A & A & AA & AA & S8 \\
\hline ind & 1A & 3A & 3B & 5A & 7A & B** & 15A & B** & fusion \\
\hline + & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & : \\
\hline 0 & \(4_{1}\) & -2 & 1 & -1 & -b7 & ** & -b15 & ** & i \\
\hline 0 & & -2 & 1 & -1 & ** & -b7 & ** & -b 15 & . \\
\hline + & 6 & 3 & 0 & 1 & -1 & -1 & -2 & -2 & : \\
\hline + & 14 & 2 & -1 & -1 & 0 & 0 & 2 & 2 & : \\
\hline & 201 & -4 & -1 & 0 & -1 & -1 & b15-1 & ** & ; \\
\hline & \({ }^{20} 2\) & -4 & -1 & 0 & -1 & -1 & ** & b15-1 & ! \\
\hline + & 64 & 4 & -2 & -1 & 1 & 1 & -1 & -1 & : \\
\hline
\end{tabular}
(iii) Decomposition Matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & \(4_{1}\) & \(4_{2}\) & 6 & & 14 & \(20_{1}\) & \(2 \mathrm{O}_{2}\) & 64 \\
\hline 1 & 1 & . & - & - & & - & - & . & \\
\hline 7 & 1 & . & - & 1 & & - & . & - & \\
\hline 14 & . & 1 & 1 & 1 & & - & - & - & \\
\hline 20 & . & - & - & 1 & & 1 & - & - & \\
\hline 21 & 1 & - & - & 1 & & 1 & - & - & \\
\hline 21 & 1 & - & - & - & & . & 1 & - & \\
\hline 21 & 1 & . & - & . & & . & - & 1 & \\
\hline 28 & . & 1 & 1 & 1 & & 1 & - & - & \\
\hline 35 & 1 & 1 & 1 & 2 & & 1 & - & - & \\
\hline 45 & 1 & - & 1 & 1 & & 1 & - & 1 & \\
\hline 45 & 1 & 1 & - & 1 & & 1 & 1 & - & \\
\hline 56 & 2 & - & - & - & & 1 & 1 & 1 & \\
\hline 70 & 2 & 1 & 1 & 1 & & 1 & 1 & 1 & \\
\hline 64 & & & & & & & & & 1 \\
\hline
\end{tabular}
(iv) Cartan Matrix

\section*{Appendix 2. Characters of \(\mathrm{A}_{7}\)}
(i) Ordinary characters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2520 & 24 & 36 & 9 & 4 & 5 & 12 & 7 & 7 & \\
\hline p p & power & A & A & A & A & A & AA & A & A & \\
\hline \(\mathrm{p}^{\prime}\) p & part & A & A & A & A & A & AA & A & A & S7 \\
\hline ind & 1A & 2A & 3A & 3B & 4A & 5A & 6A & 7A & \(\mathrm{B}^{* *}\) & fusion \\
\hline \(+\) & - 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & : \\
\hline + & + 6 & 2 & 3 & 0 & 0 & 1 & -1 & -1 & -1 & : \\
\hline 0 & 10 & -2 & 1 & 1 & 0 & 0 & 1 & b 7 & ** & \\
\hline 0 & 10 & -2 & 1 & 1 & 0 & 0 & 1 & ** & b7 & ! \\
\hline + & + 14 & 2 & 2 & -1 & 0 & -1 & 2 & 0 & 0 & : \\
\hline \(+\) & - 14 & 2 & -1 & 2 & 0 & -1 & -1 & 0 & 0 & : \\
\hline \(+\) & - 15 & -1 & 3 & 0 & -1 & 0 & -1 & 1 & 1 & : \\
\hline \(+\) & - 21 & 1 & -3 & 0 & -1 & 1 & 1 & 0 & 0 & : \\
\hline + & - 35 & -1 & -1 & -1 & 1 & 0 & -1 & 0 & 0 & : \\
\hline
\end{tabular}
(ii) 2-Modular sharacters
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 2520 & 36 & 9 & 5 & 7 & 7 & \\
\hline p & power & A. & A & A & A & A & \\
\hline & part & A & A & A & A & A & S 7 \\
\hline ind & 1A & 3A & 3B & 5A & 7A & \(B^{* *}\) & fusion \\
\hline + & \(+1\) & 1 & 1 & 1 & 1 & 1 & : \\
\hline & \(0_{0} 4_{1}\) & -2 & 1 & -1 & -b7 & * & j \\
\hline & \(0 \quad 42\) & -2 & 1 & -1 & ** & -b7 & ! \\
\hline + & + 6 & 3 & 0 & 1 & -1 & -1 & : \\
\hline & + 14 & 2 & -1 & -1 & 0 & 0 & : \\
\hline & - 20 & -4 & -1 & 0 & -1 & -1 & : \\
\hline
\end{tabular}
(iii) Decomposition Matrix
(iv) Cartan Matrix

Appendix 3. Characters of \({ }^{A_{6}}\)
(i) Ordinary characters
\begin{tabular}{lrrrrrrrc}
& 360 & 8 & 9 & 9 & 4 & 5 & 5 & \\
P & power & A & A & A & A & A & A & \\
\(\mathrm{p}^{\prime}\) & part & A & A & A & A & A & A & S6 \\
ind & 1 A & 2 A & 3 A & 3 B & 4 A & 5 A & \(\mathrm{~B}^{*}\) & fusion \\
+ & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \(:\) \\
+ & 5 & 1 & 2 & -1 & -1 & 0 & 0 & \(:\) \\
+ & 5 & 1 & -1 & 2 & -1 & 0 & 0 & \(:\) \\
+ & 8 & 0 & -1 & -1 & 0 & -b 5 & \(*\) & \(:\) \\
+ & 8 & 0 & -1 & -1 & 0 & \(*\) & -b 5 & \(!\) \\
+ & 9 & 1 & 0 & 0 & 1 & -1 & -1 & \(:\) \\
+ & 10 & -2 & 1 & 1 & 0 & 0 & 0 & \(:\)
\end{tabular}
(ii) 2 - Modular characters
\[
\begin{array}{lrrrrr}
& 360 & 9 & 9 & 5 & 5 \\
\mathrm{p} & \text { power } & \mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{p}^{\prime} & \text { part } & \mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} \\
\text { ind } & 1 \mathrm{~A} & 3 \mathrm{~A} & 3 \mathrm{~B} & 5 \mathrm{~A} & \mathrm{~B}^{*} \\
+ & 1 & 1 & 1 & 1 & 1 \\
- & 41 & 1 & -2 & -1 & -1 \\
- & 4_{2} & -2 & 1 & -1 & -1 \\
+ & 8_{1} & -1 & -1 & -\mathrm{b} 5 & * \\
+ & 8_{2} & -1 & -1 & * & -\mathrm{b} 5
\end{array}
\]

(iv) Cartan Matrix

\section*{Appendix 4}
\(\operatorname{dim} \operatorname{Ext}_{A_{8}}^{1}(M, N)\) for \(M, N\) simple.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 1 & \({ }_{1}\) & \(4_{2}\) & 6 & 14 & 201 & \(2 \mathrm{O}_{2}\) & 64 \\
\hline 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & \\
\hline 41 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & \\
\hline \({ }^{4} 2\) & 0 & 1 & 0 & 1 & 0 & 0 & 1 & \\
\hline 6 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \\
\hline 14 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \\
\hline \(20_{1}\) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & \\
\hline \(2 \mathrm{O}_{2}\) & 1 & 0 & 1 & 0 & 0 & 0 & 0 & \\
\hline 64 & & & & & & & & 0 \\
\hline
\end{tabular}

Received: February 1982
Revised: June 1982```

