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Introduction and notation

The purpose of this paper is to establish the Loewy

series for the projective modules for AS ~ L4(2) over a

splitting field of characteristic 2,

Throughout, we shall let F denote a splitting field

in characteristic 2 for AS and all its subgroups, and let

(S,R,F) denote a splitting 2-modular system for AS' We de­

note each simple module for a group by its dimension, together

with a subscript if there is more than one simple module of

that dimension. AS denotes the alternating group on S let-

ters, a simple group of order 8~/2 = 20160 26.3 2.5.7. A7

denotes a subgr~up of index S stabilizing a point, and A6

denotes a subgroup of A7 of index 7 stabilizing ~further

point.

Thus the simple FAS-modules are denoted I, 4 1, 4 2, 6,

14,2° 1,2° 2 and 64. These fall into two blocks: 64 is

in a block of defect 0, while the rest are in the principal
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block. Since blocks of defect ° are easy to describe, we

shall only be interested in the principal block. We denote

BENSON

the central idempotent for the principal block of ~"'d by eO·

The main result of this paper is the following theorem:

Theorem 1. The Loewy structures of the projective inde-

composable modules for FAS·e O
are as follows, where {L, j \ ~ ! 1, 2}:

I

6 14 2°1 2°2 4.
l
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14 20.
l
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l

If A is a group algebra over F and M is a finitely

generated A-module, we write JA for the Jacobson radical of

A, and

M. (JA) 1-1 1M. (JA) i

smallest number 1 such that

. h .th f
lS t e _l_ Loewy Layer 0 M. The Loewy Length of M is the

M. (JA)l = 0, and the Loewy Struc-

ture for M is a diagram whose i t h layer downwards gives the

simple summands of Li(M) with multiplicities (see for example

Theorem 1). The Head of a module is the first Loewy layer.

Let So~(M) denote the socle of M, namely the sum of all

the simple A-submodules of M. Let S1 (M) = Soc(M) and

Soc (M/S i_ 1
(M) ) .

Then

is called the Socle Series of M.
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M* forwe shall write (M,Nl A for dimFHomA(M,n),

HOffiF(M,F) regarded as an A-module, and p~ for the projective

cover of M. Homomorphisms will usually be written on the right.

The exterior nth power of M will be written
n­

M .

Our main tools are the following lemmas, together with the

easy but powerful lemmas discussed in Section 4.1.

Lemma 1 (Scott [4 J). Any endomorphism of an FG - permuta-

tion module can be lifted to an endomorphism of the correspond-

ing RG - permutation module. Thus direct summands of FG - per-

mutation modules lift, and so their endomorphisms.

Lemma 2 (Frobenius Reciprocity). Let H ~ G, M and FH-

module and N an FG-module. Then
C'G

(Mt ,N) FG and

Lemma 3 (Thompson [5]). If M is an irreducible SG-module,
1\

then an R-form M may be found such that the modular reduction
1\

M = M~ F has any given composition factor as its unique top factor.

Lemma 4 (Landrock [3]). Let M and N be simple FG-modules.

Then the multiplicity of M is the same as the multi-

Lemma 5 (Mackey Decomposition). Let H,K < G and M an

FH-module. Then

ill
HxK
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where x runs over a set of H-K double coset representatives

in G.

In Section 1 and Appendices 1 - 3 we collect some known re-

suIts about A6, A7 and AS' In Section 2 we examine the struc­

ture of the permutation modules for FAg on the cosets of maxi­

mal sUbgroups, and in Section 3 we examine the FAa-modules induced

up from simple FA7-modules.

Section 4 is the main body of the paper, and this uses the

results of the previous sections to deduce Theorem 1.

Section 1. preliminary results on A6, A7 and AS

1.1. Characters and subgroups of AS

In this section we collect together some known facts about

the group AS and some of its subgroups. In Appendix 1 we give

the ordinary and 2-modular character tables of AS' the decompo­

sition matrix and the Cartan matrix. These can be extracted from

James [2]. We also not.e the isomorphism AS';;; L4(2), the group

of 4 X 4 matrices over GF (2) .

We shall have cause to look at the following maximal subgroups:

, Structure' Index AS-name L4(2)-name

A7 S point

3 15 point2 :L 3 (2)

3 15 hyperplane2 :L 3 (2)

56 2S pair symplectic form

4
35 4+4 splitting 2-dimensional subspace2 :(S3XS3)

(A5X3).2 56 triple GF(4)-structure
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The Schur multiplier of AS has order 2, so that

dim Exti (1,1) = 1. The automorphism group of AS is exactly
8

SS' and the outer automorphism acts as the graph automorphism

(namely transpose inverse on matrices) .

Thus the two classes of subgroups are conjugate

under the action of this outer automorphism.

1.2. Results on A
7

In Appendix 2 we give the ordinary and 2-modular character

tables.of A
7,

the decomposition matrix and Cartan matrix (see

James [2]). The 6-dimensional irreducible FA7-module is a direct

summand of the permutation module on cosets of A6, and the 14­

dimensional irreducible is a direct summand of the permutation

module on the 21 coset of an 55 preserving a 5+2 splitting of

the 7 points; this module splits Ell6 Gl14. The permutation mo-

dule on 35 cosets of an (A4 X 3) .2 preserving a 4+3 splitting

of the 7 points has structure:

6

The structures of the projective indecomposable modules in

the principal block are:

I

14

I Ell

20

I

20

I

14

14

I

14 Ell 20

I

14

20

I

14

I

20

and in the non-principal block:
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4 1 4 2
6 6

4 2 4 1
6 6

4 1 4 2

P4 P4
1 2

(Er-dma nn l j ] ) •

If we take the 64-dimensional defect 0 representation of

AS (which is the Steinberg representation of L4(2)), the re­

striction to A7 is exactly P 14, as can be checked by Brauer

characters. Apart from this, every irreducible representation of

AS remains irreducible upon restriction to A7·

1.3 Results on A6

In Appendix 3 we give the ordinary and 2-modular character

tables of A6, the decomposition matrix and the Cartan matrix

(see James [2]). There are three blocks, namely the principal

block and two blocks of defect O. The structures of the projec-

tive indecomposables are as follows:

4 1 4 2 I

I I 4
1

4
2

4
2 4 1 I I

I I 4
2 4

1
4 1 4 2 I I

I I 4 1 4
2

4 2 4 1 I I

I I 4
2

4 1
4 1 4 2 I

P4 P4
PI

1 2

3 1 Ps 3
2 "L1 L (Erdmann [1 ])
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1.4 Induction and restriction between A
6

and A7

Brauer characters show that

BENSON

1. 4.1

(beware ~)

The composition factors of
A7

(I,6 A "'A)A =(I A t ,6)A =1.
7 6 6 6 7

6A "'A are I + I + 4 1. Bu t
7 6 1

Since Ext~ (1,1) = 0, this means that

are

1 .4.2

But

1 .4.3

14 A "'A
7 6

= 0, and so the only possibility is

The composition factors of 20 A ",A are 4 2 +8 1 +8
2.

Since
7 6

the constituents are in different blocks, we have

1 .4.4 20 A ",A 4 2ffi8 1ffi8 2·
7 6

6 ) A7 C\Since (I'(4 A{A)A (I A t '4)) A °r
we have

'1 7 6 6 6 1 7

I

C\ 4
1

1.4.5
4 )A -,

I

1 7 6 4
2

The composition factors of (4 2) A
A

7 4 1 +4 2+20.
t are

6
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Since this module is self-dual and extends to a module for

and 57' the only possibility is

1403

1. 4.6

the only possibility is

I

since

1 .4.7

1 .4. S

The composition factors of
A7

(14 A ,(4 1 ) A t )A
7 6 7

14

14

are 14 + 14 and

1, we have

so,

Finally, since 0, we

have from 1.4.4

1 .4.9

Section 2. Some permutation modules for AS

2.1 Permutations on the S cosets of A7

Ordinary character: 1 + 7.

Hence the composition factors of this FAS-module MS are

I + I + 6. Frobenius reciprocity shows that L1 (MS) ';;; Sl (MS) ';;; I,

and so the structure is
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2.1 .1

I

6

I

BENSON

2.2 Permutations on the 15 cosets of

ordinary characters: 1 +14 for each of the two classes.

'rhus the composition factors of these FAa-modules M1 5a and

M
1 5b

are 1+4 1+4 2+6.
Since 15 is odd, thesemoduleshave

I as a direct summand. Frobenius reciprocity shows that in one

case the head is I + 4 1 and the socle is I + 4
2

, whereas in the

other case the head is 1+4
2

and the socle is 1+ 4 1, Thus the

structures are

2.2.1

2.3 Permutations on the 2S cosets of S6

Ordinary character: 1 + 7 + 20.

Thus the composition factors of this FAS-module M28 are

1+1+6 +6+14. By Scott's Lemma, the endomorphism ring has di-

mension 3.

I
6 •

2- I
Since M2S = (MS ) , it has a submodule 1/\6 of structure

I
By Frobenius reciprocity, Sl (M 2S ) ';; L 1 (M 2S ) ';;; I al6.

2 . 3 . 1. Lemma. 2­
6 I al 14.

Proof. The composition factors are I + 14, and the module

is self-dual. II
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Thus M28 has I $14 as a subquotient.

1405

Since it is self-

dual, this means the Loewy structure of M
2S

is

2.3.2

I 6

I 14

6

(i.e. the "diagram" for M
2S

is

2.4 Permutations on the 35 cosets of

Ordinary characters: 1 + 14 + 20.

Thus the composition factors of this FAS-module M3 5 are

1+4 1 +4 2+6+6+14. Since 35 is odd, I is a direct summand.

Frobenius reciprocity shows that Sl (M 3 5 ) ;; L1 (M
3 5

) ;; 1$ 6.

Since M3 5 extends to a module for SS' there is a subquotient

4 1 $4 2. Since the module is self-dual, this forces the structure

to be

2.4.1

2.5. Permutations of the 56 cosets of (A5 X 3) .2

Ordinary characters: 1 + 7 + 20 + 2S.

Thus the composition factors of this FAS-module M5 6 are

1+1+4 1 +4
2+6+6+6+14+14.

2.5.1. Lemma. M
5 6

has a direct summand isomorphic to the

module MS described in 2.1.

Proof. We construct maps a: MS ~ M56 and S: M5 6 ~ MS

as follows:
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a: point x + sum of triples containing x

13: triple {a,b,c} + a +b+c.

Then

as: point x + 21.x + 6. I y = x
yej-x

since we are in characteristic 2.

BENSON

Hence as = 1, and so Sa is a projection and M
S6

splits

as

M
S6

Im(Sa) 6lKer(Sa).

So

2.5.2 Ker (Sa). II

Now Mi,6 has composition factors 4 1+4 2+6+6+14+14.

By Frobenius reciprocity, 51 (M
S6)

~ L,(M
S6)

~ I 6l 14 and so

S1 (Mi,6) ~ L 1 (Mi,6) ~ 14.

Next we notice that M
S6

least as far as

3-(Ma) , so that it reduces at

2.5.3. Lemma.

2-
6

6 6l 6 3-

2-
6

6 3- has structure

The module is self-dual and extends to a module for

Proof. The composition factors of are 4 1 +4
2

+6 +6.

S8. Hence

either the lemma holds or 3- 6 6l 6 6l 4
1

6l 4
2.

If then this6 ~ so,

is still true as modules for Ar But for A
7,

(16l6)3- ~ 62- 6l6 3-

is a permutation module, and so 4
1

and 4
2

would be direct sum-
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mands of a permutation module. But they do not lift to RA74OCDul es ,

contradicting Scott I s lemma. II

But now this means that M~6 has a subquotient isomorphic to

6 3-, and so it has Socle and Loewy Series

14

6

2.5.4

6

14

Hence

2.5.5

14

I 6

6 ffi 4
1

I 6

14

Section 3. The induced modules from simple A
7-modules

As we have already noted, the restrictions of simple AS­

modules to A7 are as follows:

I + I A (4 1) A +A (4 1) A
AS A7 7 S 7 7

(4 2)A +A (4 2) A 6 +
6AS 7 7 AS A7

7

14 +A 14 A (20 1)A +A ( 202)A +A = 20
AS 7 7 S 7 S 7 A7

By Frobenius reciprocity, this tells us the socle and first

Loewy layer of modules induced from A7.
A

We dealt with ItS in Section 2.1, and so we only consider
A7

non-trivial simple modules here.
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3.1 .
A

(4) t 8
1 A

7
and

A
(4) t 8

2 A
7

BENSON

The composition factors of (4 1) A t A8
are 4 1 +4 1+4 2+2°1'7

and 51 ;;;L 1 ;;; (4 1) A . Since (4 1) A is the dual of 4
2

, and also
8 7

the image of 4
2

under the 5
7-automorphism

of A
7, this means

the Socle and Loewy Series are:

3.1.1

3.2.

A
(4) t 8

1 A
7

The module

A
(4) t 8

2 A
7

This has composition factors I + 1+ 6 + 6 + 6 + 14 + 14 and

3.2.1. Lemma. There is a homomorphism from M28 to

Proof. From Section 2.3 we see that since

with one-dimensional kernel.

different block from I
A

and 14
A,7 7

A
8

(M 28,6 A
t )A

7 8

6
A

is in a
7

is s em i s i.mp Le , Thus

2.

Thus from what we know of the structure of M28, since
A

851 (6
A

t ) = 6
A,

there must be a homorphism with kernel the tri-
7 8

vial submodule of M28. II

Thus by self-duality, there is a submodule

quotient module 6

I fll 14
6

6
I (Il

14

6
and a
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3.2.2. Lemma.

second Loewy layer.

A
6 t 8 has exactly one copy of I in its

A7

Proof. We certainly know that there is at least one, by 3.2.1.

Suppose that there is more than one. Since 6
A

is not in the
AS 7

principal block, this means that L1 (6 A t +A) has more than one
7 7

copy of I in it. However,

a contradiction. ~

This forces the Loewy length to be at least 4, and since it

is self-dual, we are left with only one possibility, namely the

that the Loewy Series is

6

3.2.3 I 14

I 6

14

6

(i.e. the "diagram" for is

The module3.3.
A

14 t S
A7

This has composition factors 4 1 +4 2+6+6+14+14+64 and

51 ~ L1 ~ 14 Ell64. Since 64 is projective, this module is a di­

rect sum of 64 and a module with S1 ~ L1 ~ 14.



1410 BENSON

3.3.1. Lemma. 2.

isBut M5 6 f A
7

21 cosets of an

Proof.
AS

{M56,14 A t )A = {M56 f A ,14)A .
7 S 7 7

direct sum of the permutation module onthe

fixing a 5+2 splitting of the 7 points, and the permutation mo-

dule on the 35 cosets of an (A
4

X 3 ) . 2 fixing a 4+3 splitting

of the 7 points. The lemma now follows from Section 1.2. §

Now from the structure of M
5 6

given in 2.5.5 it follows

that every such homomorphism must kill Im(Sa),

homomorphism is an injection from M56 into

and some such
A

14 t 8 Thus
A7

3.3.2
A

14 t S
A

7

14

6

6

14

The module3.4.
A

20 t S
A7

This has composition factors I + I + I + I + 4 1 + 14 + 14 + 20 1

3.4.1. Lemma. 4.

Proof.

by the Mackey

A A
(20 t S ,20 t S) = (20,201 +

A7 A7 AS A7
decomnosition theorem

1 + 3 by 1. 4 • 4 •

The lemma now follows easily. II

We shall complete the determination of the structure of this

module in Section 4.4.
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Section 4. More induced modules from A7; the final assault

4.1. Induction of projective modules

By Brauer characters, we see that

AS
P (4) t
2~

(!l64 .(!l64 (!l64 and

Thus the results of Section 3, together with the structure
A

of 20 t S which is yet to be determined, give us strong infor­A
7

mation about the structures of the projective modules for AS'

Namely, we are given certain filtrations for each of PI' p 4 •
1

in which we know the structuresP
4,

P 6, P
14

and P
2 0

(!lP
20,2 1 2

of the quotient modules. We now use this to complete the deter-

mination of Ext
1

for simple modules, and then to get the com-

olete Loewy structures of the projective indecomposables. All we

need to know is how far certain composition factors can ""lip past"

e~ch other. Our main tool will be the following observations, all

of which are trivial but powerful consequences of 4.1.1:

We can identify as a subring of via
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4 . 1 . 1. Lenuna .

BENSON

Proof. This follows trivially from the observation that

for each simple A7-module M,

By the Frobenius reciprocity theorem it is equivalent to

the statement that for each simple AS-module N in the princi­

pal block, N+A is semisimple. II
7

4 • 1 • 2 • Lenuna .

Proof. This follows from 4.1.1. ~

4.1.3. Theorem. If M is any module for A7 , then

Proof. By 4.1.2 we have

Hence

A
Mt S. (JFA a)n

(M. (JF~)n)tAs

anJ the result follows from the third isomorphism theorem. ~
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4.1.4. Corollary. If ~ is a module for A7, then

1413

Proof. This is just the case n = 1 of the theorem. II

4.1.5. Corollary. If M is a module for A7 and

o + M' + M + M" + 0

is a non-split short exact sequence with M' and /1" simple,

then
A

L
1

(M"t 8) .e
O

' II

4.2.

6

I 14

I 6

14

6

By 4.1.5,

has a copy of 6 in it,

we see that the

We know from 2.5.4 that

and so applying 4.1.3 for

(4 1) A8
L2 of both \ 6 A; and
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are 4
2$6ffi20 1.

dim Ext1 (4 1,M)S
simple.

This completes the determination of

and hence also of dim Ext1 (4 2 , M) for
S

M

in it. Now since dimExt~~ (41 ,I) =0,
(4 1 \ AS -{j

\6 }A; is as follows:for

14

series

Also from 2.5.4 we wee that L3(P(4) ) has a copy of
1 AS

applying 4.1.3 for n = 3 we see that

it follows that the Loewy

14 in it, so that again

((41\ AS)'
L3\\6 }A7t has a copy of

4
1

4
2

6 2°1

I 4 1 14

I 6

14

6

( 6 ' Ag
4.3. The Loewy structure of

\4 1 4)A
t

7

Our filtration of this module looks like:

6

I 14

I 6

14

6

4 1 4
2

4 2 2°1 ffi 4 1 2°2
4 1 4 2

and

we see

has a copy of

n = 2 to P6
A7

P6 are IED4 1ffi4 2ED14.AS
dim Ext1 (6,M) for M simple.

S

From 2.5.5 we see that L 2(P 6 )
AS

of 4 2 in it. Thus applying 4.1.3 for

that L2 of both ( 6 ') tAS and
4 1 4 2 A

7
This completes the determination of
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4.3.1. Lemma. L3((4~)A7 tAS) does not contain copies of

201 or 4 2.

by the Mackey decomposition theorem

1

4 1 1

°+ ( 1
,

4 2
Ell S1 EIl82) A

6
4 2

by 1.4.5 and 1.4.9
= 0.

Also,

+ «(4G)'+ (1) + )
1 A A ' 2°A7 A6 A67 6

1

0+(4 1,4 2E1lS1E9S 2)A1 6

4;,

by 1.4.4 and 1.4.5

0.

then

However, if L ((6 \ tAS) has a copy of
3\ 4 1)A 7

our knowledge of Extl shows that there
7

201 in it.

would be a map

in one of the above sets.

Similarly, if L3((~) tAS) has a copy of 4 2 in it,
1 A

7
there would be a map
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for on restriction to A7, we have

BENSON

and hence

so would

However,

4 2 in it, and hence

dim Ext~ (6,4 2) = 1.
7

by Mackey decomposition

by '.4.7

+ ((4
1

6 ) ~
4 2 A A '

7 6

0, a contradiction. II

Thus with the results of Section 4.2 and the fact that

(~) tAB has a submodule (1 64) (see 2.5.4), we see that the

, A7 ( 6 ) As4,Loewy ser ies of 4 4 t is as follows:
, , A

7

6

I 4, 4 2 14

I 6

4
1 4 2 14 2°1 2°2

6

4 1 4
2
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4.4. The Loewy structures of

P
(4 1) A

8

I

4.4.1. Lemma. There is no uniserial module 6

4
1

Proof. Applying 4.1. 3. with n=3 to PI we see that

of 4 1 in L3(P I
) is stuck

A7 14, 2°1any copy underneath a a

2°2' //
A8or a //

4.4.2. Corollary. There is a non-split group extension

Proof. By 4.4.1. the image of the cup-product map

is non-zero. h'

We first examine the structure of

2.5.3 we see that P6 has a quotient
A8

~.).;"
module

. From
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Loewy series

. Now from 3.2

6

quotient 14

3 6
. (JFA S) has

has a quotient moduleHence

6

I 4 1 14

I 6 6

and socle series

6

4
1

14

I I 6 6

((6\,')If there were a copy of I in
L4 . 461) A

7

then there would

4 1
be a uniserial module 6

contcad~c(:\g l~~a
4.4.1. Hence

I
there are two copies of I in

Lsl ,461) A:
and hence the

complete Loewy series is:

6

I 4 1
14

I 6 6

42 14 14 2°1
I I 6 6

4 1 14

6
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and hence by 4.'.3 with

follows:

(
4
6

, ) tA8
Now we attack We know from Section 2.2 that

4 2 A7 41
P has quotient module 6

(4, ) AS ) 4

n = 3 we see tha,t L3((t A
7

t
Aa) ~as 4 2 in it. Now our know-

ledge of dimExt
As

(4, ,-) together with the results of Sections

4.2 and 4.3 tell us that the Loewy series of (:1) t
AS

is as
4

2
A7

4,

4 2 6 20,

I 4 1 4 2 '4

I 6

4, .'4 2°2

6

4 2

Thus the Loewy series for P4 and P
4

are as in 7he-
1 2

orem 1. We can demonstrate our filtrations diagramatically as

follows:

4.
~

4. 20. 6
J ~

4. I 14 4.
~ J

I 6 6

14 4. 20. '4 4.
~ J ~

6 I I 6

4. '4 4. 20,
J J .i,

6

4.
~

Figure

Now, since L4(P 4.) has 2 copies of 6 in it, L
4(P 6)

has
~

two copies of each 4 i in it by Landrock's lemma. Thus the Loewy

series of P 6 is as in Theorem 1, and our filtrations can be s~

diagramatically as in Figure 2.



6

I 14 4 1
4 2

I 6 6 6

14 4 2 2°1 14 4 2 4 1 2°2 14 4
1

6 I I 6 I I 6 6

4 1 14 4 1 2°2 4 2 14 4 2 2°1 14

6 6 I I 6

4 2
4 1

14

6

Figure 2

>­.,.
N
o

~
en

~
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4.5. The Loewy structure of ( 1 \ tAS
\14}A 7

Our filtration of this module looks like:

I

6

I

14

6

4
1

4 2 aJ 64

6

14

4.1.3 to
I

14
6

Now from 3.2 we know that PI has a quotient module
A

Since L (20 t 8) = 201 aJ 202' an application of1 A7

(
I \ ASshows that 14)A t must have a quotient module

( I \ AS 7
\14}A

7
t .e O has Loewy series

I

6 14

I 6

4
1

4
2

6

14

I
14.
6

PI
A7

Thus

and ( I \ A8
\ 14 )A

7
t . eO aJ 64 .

By Thompson's Lemma on the ordinary characters of dimension

21, we see that

i = 1,2.

AS
Thus our argument also shows that the L2 of PI t .e O = PI

A7 AS
is exactly 6 aJ 14 Ell201 aJ 2° 2, This completes the determination of

dimExt~8(I,!1) for !1 simple.
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4.6. The Loewy structure of
A

20 t S
A7

BENSON

We are now ready to complete the work of Section 3.4.

4 . 6 . 1. Lemma.
I AS

(20,' 20 A t ) A
l 7 S

0, i = 1 ,2.

Proof. Since P
2 0 i

+A
7

= P20EDP20EDP20 EDP
4i

we see that

remains indecomposable on restriction to A7 . Thus

I
A

I
(20, , 20

A
t S) A (20 ' 20) A 0. II

l 7 S 7

4.6.2. Lemma. ( I AS
1.

2°1 2°2
, 20 A t )A

7 S

Proof. Since d i 1r.m Ext
A

7
(1,20 ) 1, we have

Hence

I AS
(20 202' 20 A t )A

1 7 S

I
( 2 ° al 2 ° , 20,) A

7
1. II

A A
4.6.3. Lemma. Rad(20

A
t S)/SOC(20

A
t S) = 4

1
al4

2alX,
where

7 7
X has composition factors I + I + I + 1+ 14 + 14 + 201 + 202'

Proof. Since

is a subquotient

extends to a module for

By self-duality and since

SS' there

dimExt~ (4 i,I) =
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= dim Ext 1 (4.,14) = ° (Section 4.1), this means that 4
1$4 2AS l A A

is a direct summand of Rad(20 A t S)/SOC(20 A t 8). II
7 7

4 . 6 . 4 . Lemma. dim Ext
A
1 (14,20.)

S l
0.

Proof. Apply 4.1. 3 to P14 with n = 2. II
A7

4.6.5. Lemma. Soc(X) 1.

Proof. Lemmas 4.6.1 and 4.6.2 show that there is exactly

one copy of I in Soc (X) . There can be no copies of 20. in
lA

Soc (X) since dim End
A

(20
A

t S) 4 (Lemma 3.4.1) . There can
S 7

be no copies of 14 in Soc (X) by Lemma 4.6.4. II

I
Thus X has the form Y where Y has composition factors

I
I + I + 14 + 14 + 201 + 2° 2,

4.6.6. Lemma. Soc(Y) 14

Proof. Since dimExt~ (1,1) = 0,
S

Soc(Y) can contain

no copies of I. Since Y is self-dual and extends to a module

for SS' if Soc(Y) contains a copy of 20 i, then 20 i is a

whereas dimExt~ (1,14) =1I
14

I

But then the other direct summand
14

series

i = 1,2.forY

would have to have Loewy

summand of

from Section 4.5. II
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Thus by 4.6.4 the structure of Y is:

14

BENSON

Hence the Loewy series for
A

20 t 8
A7

is

20 1 2°2
I 4 1 4 2

14

I

20
1 2°2

I

14

I

2°1 2°2

(i.e. the "diagram" is

4.7. The remaining projective indecomposable modules

From Section 4.6 we have a quotient of P20 with Loewy
1

series
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2°1

I 4
1

14

I

2°1 20
2

I

14

I

2°1 2°2

Since this accounts for all the copies 2°1 and 2°2 in P ZO '
1

this means that the Loewy length is at least 13.

By Landrock's Lemma we see that P20 has a copy of 6 in
1

its L4 and L6, and a copy of 4
2

in its LS' and 41 in its LT
Thus all the composition factors are accounted for and the

Loewy structure of PZO, is as given in Theorem 1.
1

Hence the appropriate diagram for our filtration of P20 ffi P
2 01 2

is as follows:

2°1 20
Z

I 4 1
4

Z I

14 14

I 6 6 I

2°1 2°2 4
1 4 2 2°1 2°2

I 6 6 I

14 41
14 42

I I
ZOl 20 z 2°1 20

Z
I I

14 14

I

Iz 0 1

I

Figure 3 Z02

Now we have enough information to see that PI has the

Loewy series given in Theorem 1, and the appropriate diagram

for our filtration is as given in figure 4.
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I

6 14 2°1 2°2
I 6 I I 41 42

I

4 1 4
2 2°1 20

L
14 14

6 6 I I 6 6 I

14 4 1 4
2

14 2°1 2°2 4
1 4

2
I I I 6 6

2°1 2°2 14

I I

14 2°1 2°2
I I

14

1 I
2°1 2°2

Figure 4

4.7.1- Lemma.
(14 \ AS

has Loewy series\14)A
7

t .e O

14

6

4 1 4
2

14

6 6

4
1

4 2 14

6

14

14
Proof. From Section 3.2 we know there is a module 6.

14

dim Ext;' (6, 6) = °
S

has

P14
A7

we see that

Thus it also has

Thus applying

(
14 ) tAS
14 A

7
.e O

a submodule,

4 .1 .3 with n = 3 to
14
6 as quotient.

14
and so since

14
6 as

14
from Section 4.3

the result follows. II

This now gives us enough information to see that the Loewy

series for P 14 given in Theorem 1 is correct, and the appropri­

ate diagram for our filtration is as in Figure 5.



This completes the proof of Theorem 1, and the determination

of dim Ext;' (M, N) for M and N simple. This information is
8

displayed in Appendix 4.

Notation for character tables

The only irrationalities we come across in our character

tables are:

bn J~ (-1+v'n)

1~ (-1+i yin)

if

if

n _

n _ 3

(mod 4)

(mod 4)

i.e. the "Gau~s sum" of half the primitive nth roots of unity.

Under the column headed "indO is given the Frobenius-Schur

indicator of the representation, namely

+ if the representation is orthogonal

if the representation is symplectic
but not orthogonal
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o if the representation is neither
symplectic nor orthogonal.

(In characteristic 0 this is ~ L X(g2).)
gEG

The top row carries the centralizer orders.
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Appendix 1. Characters of AS

(il Ordinary characters

1429

20160 192 96 180 18 16 8 15 12 6 7 7 15 15

P power A A A A A B A AB BA A A AA AA

p' part A A A A A A A AB BA A A AA AA S8

ind lA 2A 2B 3A 3B 4A 4B 5A 6A 6B 7A B** 15A B** fusion

+ 1 1

+ 7 -1 3 4 -1 2 0 -1 0 0 -1 -1

+ 14 6 2 -1 2 2 0 -1 -1 0 0 0 -1 -1

+ 20 4 4 5 -1 0 0 0 -1 -1 0 0

+ 21 -3 6 0 -1 -2 0 0 0 1

0 21 -3 -3 0 -1 0 0 0 b15 **

0 21 -3 1 -3 0 -1 0 0 0 ** b15

+ 28 -4 4 0 0 -2 -1 0 0

+ 35 3 -5 5 2 -1 -1 0 0 0 0 0 0

0 45 -3 -3 0 0 1 0 0 0 b7 ** 0 0

0 45 -3 -3 0 0 0 0 0 ** b7 0 0

+ S6 8 0 -4 -1 0 0 0 -1 0 0

+ 64 0 0 4 -2 0 0 -1 0 0 -1 -1

+ 70 -2 2 -5 -2 0 0 -1 0 0 0 0

(ii) 2 - modular characters

20160 ISO 18 15 7 7 15 15

P power A A A A A AA AA

p' part A A A A A AA AA 58

ind lA 3A 3B 5A 7A B** 15A B** fusion

+ 1

0 4 1 -2 -1 -b7 ** -b15 **

0 4 2 -2 -1 ** -b7 ** -b15

+ 6 3 0 -1 -1 -2 -2

+ 14 2 -1 -1 0 0 2 2

0 20 1 -4 -1 0 -1 -1 b15 -1 **

0 20 2
-4 -1 0 -1 -1 ** b15 -1

+ 64 4 -2 -1 1 -1 -1
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(iii) Decomposition Matrix (iv) Cartan Matrix

BENSON

1 4
1

42 6 14 20 1 20
2

64

1:1:
20 .

21
11

2111

211'1

28 .

35 11

4511
I

45 1

56 2

70 2

64'---- -=-.J

16 4 4 8 8 6 6

4 5 4 6 4 2 1

4 4 5 6 4 1 2

8 6 6 12 8 2 2

8 4 4 8 8 3 3

6 2 1 2 3 4 2,

6 1 2 2 3 2 4

1

Appendix 2. Characters of A7

(L) Ordinary characters

2520 24 36 9 4 5 12 7 7

P power A A A A A AA A A

p' part A A A A A AA A A 57

ind lA 2A 3A 3B 4A 5A 6A lA B** fusion

+ 1 1 1 1 1 1 1

+ 6 2 3 0 0 1 -1 -1 -1

0 10 -2 1 1 0 0 1 b7 **
0 10 -2 1 1 0 0 1 ** b7

+ 14 2 2 -1 0 -1 2 0 0

+ 14 2 -1 2 0 -1 -1 0 0

+ 15 -1 3 0 -1 0 -1 1 1

+ 21 1 -3 0 -1 1 1 0 0

+ 35 -1 -1 -1 1 0 -1 0 0
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(iil 2 - Modular characters

2520 36 9 5 7 7

P power A A A A A

p' part A A A A A 57

ind lA 3A 3B 5A 7A B** fusion

+ 1

0 4 1
-2 1 -1 -b7 **

0 4 2
-2 -1 ** -b7

+ 6 3 0 -1 -1

+ 14 2 -1 -1 0 0

20 -4 -1 0 -1 -1

(iii) Decomposition Matrix (iv) Cartan Matrix

1 14 20 4 1 42 6 14 20 4 1 4 2 6

4 2 2

15 1 1 14 2 3

21 1 20 2 1 2

35 1 1 4 1 2 1 2

14 1 4
2

2 2

:~ I

6 2 2 4

1 1

1

Appendix ~. Characters of A6

( i) Ordinary characters

360 8 9 9 4 5 5

P power A A A A A A

p' part A A A A A A 56

ind lA 2A 3A 3B 4A 5A B* fusion

+ 1 1 1 1

+ 5 1 2 -1 -1 0 0

+ 5 1 -1 2 -1 0 0

+ 8 0 -1 -1 0 -b5 *

+ 8 0 -1 -1 0 * -b5

+ 9 0 0 1 -1 -1

+ 10 -2 1 1 0 0 0
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( Lt ) 2 - Modular characters (iii) Decomposition Matrix

360 9 9 5 5 4 1
4 2 8 1 82

p power A A A A

pI part A A A A
5 1 1

ind 1A 3A 3B 5A B*
5 1 1

+ 1 1
9 1 11

4 1 1 -2 -1 -1
10 2 1

4 2 -2 -1 -1
8

+ 8 1
-1 -1 -b5 *

8
+ 8 2 -1 -1 * -b5

(iv) Cartan Matrix

1 4
1

42 8 1 8 2

8 4 4

4 1
4 3 2

4
2

4 2 3

8 1
1

8 2

Appendix 4

d i 1 (M,N) for simple.lID Ext
A 11,N

8

0 0 0 1 1 1 1

0 0 1 1 0 1 0

0 1 0 1 0 0 1

1 1 1 0 1 0 0

1 0 0 1 0 0 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

0
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