Brauer Trees for $12 M_{22}$

D. J. Benson
Department of Mathematics, Yale University, New Haven, Connecticut 06520
Communicated by Walter Feit

Received December 1, 1983

The purpose of this note is to correct and extend some of the results in Humphreys [1]. Our main result is Theorem 1, which corrects three (or two and a half!) of Humphreys' trees, and determines the planar embeddings and Green correspondence. These results would not really be very interesting by themselves were it not for the fact that quite an interesting phenomenon is revealed in the behaviour in characteristic eleven. There are four algebraically conjugate 11 -blocks of faithful ordinary characters of $12 M_{22}$, which come in two complex conjugate pairs, and in fact the trees for the two pairs are totally different. This corresponds to the fact that there is more than one prime ideal lying above eleven in the field of twelfth roots of unity. Two of the blocks have a 24 -dimensional irreducible, while the other two do not. This then gives us strong enough information to investigate the planar embeddings of the trees.

Lemma 1. There are exactly two isomorphism classes of groups of shape $12 M_{22} 2$, with the full covering group $12 M_{22}$ as a normal subgroup of index two, and $\operatorname{Aut}\left(M_{22}\right)$ as a quotient.

Proof. The group $\operatorname{Aut}\left(12 M_{22}\right)$ has shape $M_{22} 2$ and has involutions in the outer half. Thus we may form the split extension of $12 M_{22}$ by such an involution. The fact that there are two isomorphism classes follows from isoclinism theory.

Notation. We let G denote the full covering group $12 M_{22}$, and we choose a group \hat{G} of shape $12 M_{22} 2$ as in Lemma 1. It does not matter which we choose since the two groups have isomorphic Brauer trees. We
shall also make use of the subgroup H of index 22, of shape $12 M_{21} \cong 12 L_{3}(4)$, whose order is coprime to eleven.

Let (F, R, S) be an 11-modular splitting system for \hat{G} and all its subgroups. Namely, R is a \mathscr{P}-adic completion of an algebraic number field, \mathscr{P} is a prime ideal lying above $11, S$ is the field of fractions of R, and $F=R / \mathscr{P}$ is a finite field of characteristic eleven.

We shall be making use of Green correspondence in characteristic eleven. The Sylow 11-normalizer N in G has shape $12 \times N_{0}$, with N_{0} a Frobenius group of order 55. If V is an indecomposable module for $F G$, we let $f(V)$ denote the restriction of the Green correspondent of V to N_{0}. Similarly if W is an indecomposable module for $F \hat{G}$, we obtain a module $f(W)$ for the corresponding Frobenius group \hat{N}_{0} of order 110.

Let $X_{1}(\theta)$ be the simple $F N_{0}$-module with $\operatorname{dim} \operatorname{Ext}_{N_{0}}^{1}\left(I, X_{1}(\theta)\right)=1$. Then the simple $F N_{0}$-modules are denoted $X_{1}\left(\theta^{r}\right)$, and the indecomposable $F N_{0^{-}}$ module of dimension n with socle $X_{1}\left(\theta^{r}\right)$ is denoted $X_{n}\left(\theta^{r}\right)$. It is uniserial with Loewy layers $L_{i}\left(X_{n}\left(\theta^{r}\right)\right) \cong X_{1}\left(\theta^{r-n+i}\right)$.

Ordinary and modular irreducible characters are named by their degree, with a subscript if there is more than one of the same degree. A bar denotes complex conjugation.

Denote by α a faithful ordinary irreducible representation of $Z(G)$, so that $\left\{1, \alpha, \ldots, \alpha^{11}\right\}$ is the set of all ordinary irreducibles for $Z(G)$.

We shall make free use of the description in [2] of the indecomposable modules in a block of cyclic defect.

THEOREM 1. (i) There are four algebraically conjugate blocks of defect one consisting of faithful characters of G over a splitting field of characteristic five. All four trees have the following shape.

(ii) The following are the Brauer trees for G over our splitting system (F, R, S) of characteristic eleven, with the planar embedding given correctly (i.e., consistently-what we show is that we may choose our prime ideal \mathscr{P} lying above 11 so that the trees are embedded as shown), and with $f(V)$ marked in for each modular irreducible V. The exceptional ordinary characters are underlined.
Representation of $Z(G) \quad$ Size of centre represented

	ion of $Z(G)$	Size of centre represented	Brauer trees	Characters of defect zero
(a)	1	1		$\begin{gathered} 55,99_{1}, 154_{1}, 231_{1} \\ 385 \end{gathered}$
(b)	α	12		-
(c)	α^{2}	6		$66_{1}, 66_{2}, 330_{3}$
(d)	α^{3}	4		176

The blocks corresponding to α^{2-n} are dual to those for α^{n}, and the trees_are obtained by reflection.

Proof. (i) From the ordinary character table we see that the real stems for the corresponding (induced) blocks of \hat{G} consist of $336 \uparrow^{\dagger}, 336 \uparrow^{G}$ and $384 \uparrow^{\hat{c}}$. Thus the trees for \hat{G} are both of the form

(ii)(a) The real stem consists of $1,21_{1}, 210_{1}$ and $280_{1,2}$. The permutation module on 22 cosets of H is projective, so the real stem is as shown. Thus applying the Galois automorphism $i \sqrt{7} \leftrightarrow-i \sqrt{7}$ to \mathscr{P} if necessary, the tree and planar embedding are as shown.
(g) The real stem consists of $56_{1}, 120_{1}, 210_{2}$ and $126_{1,2}$. Now $126_{1,2} \downarrow_{H}=90 \oplus 36$ and $56_{1} \downarrow_{H}=28 \oplus \overline{28}$. Hence 56_{1} is modular irreducible and is not a modular constituent of $126_{1,2}$. Thus the real stem is as shown. $10_{H} \uparrow^{G}=210_{2}+10$ and $\overline{10}_{H} \uparrow^{G}=210_{2}+\overline{10}$, and so 10 and $\overline{10}$ are joined to 210_{2}. Finally, $10 \otimes 45_{1}=440 \oplus \overline{10}$, while $X_{10}(\theta) \otimes X_{1}\left(\theta^{3}\right) \neq X_{10}\left(\theta_{3}\right) \oplus$ projective, and so $f(10) \neq X_{10}(\theta)$. Thus the planar embedding is as shown.
(c) All characters in this block become real when induced to \hat{G}, so the tree is a straight linc. For the moment ignoring the subscripts on the characters of degree 210 , we have exactly two possibilities, namely, the given one and

$$
\underline{126_{3,4}-210-120_{2}-210-384_{2}-210 .}
$$

Suppose the latter were true. We have ${126_{3,4}}^{\downarrow_{H}}=90+36,210_{4} \downarrow_{H}=$ $90+42+42^{\prime}+36$ and $210_{5} \downarrow_{H}=210_{6} \downarrow_{H}=90+60+60^{\prime}$, and so $126_{3,4}$ is joined to 210_{4}, leaving a modular irreducible of degree 84 . However, $120_{2} \downarrow_{H}=60+60^{\prime}$, giving a contradiction. Thus the first possibility is true, and 120_{2} is joined to 210_{5} or 210_{6}. By applying the Galois automorphism $i \leftrightarrow-i$ (but fixing $i \sqrt{7}$) to \mathscr{P} if necessary, without loss of generality 120_{2} is joined to 210_{5}, leaving a modular irreducible of dimension 90 . Subtracting this from $126_{3,4}$ we obtain a 36 -dimensional modular irreducible, and hence 210_{4} is joined on the other side of $12 \underline{6}_{3,4}$ rather than 210_{6}.
(e) The real stem for the induced block for \hat{G} consists of $21_{2} \uparrow^{\hat{G}}$, $105_{1,2} \uparrow^{\hat{G}}, 384_{1} \uparrow^{\hat{G}}$ and $210_{3} \uparrow^{\hat{G}}$. Now 21_{2} is modular irreducible, and $210_{3} \downarrow_{H}=84+63+63^{\prime}$, so that 210_{3} does not contain 21_{2} as a modular constituent. Thus the real stem is as shown, and the two 45 's are joined to 384_{1}. Now $45_{3} \otimes \overline{10}=\overline{120}_{2} \oplus \overline{330}_{3}$, while $X_{1}\left(\theta^{4}\right) \otimes X_{10}(\theta) \neq X_{10}\left(\theta^{2}\right) \oplus$ projective, so the planar embedding is as shown.
(b) and (f) For each of (b) and (f), the real stem for \hat{G} consists of 336 and 384. Thus each block has either
(A) two 144's joined to 384 and two 120 's joined to 336 , or
(B) two 144's joined to 384 and a 120 joined to each 144 .

Thus we have three possible situations, namely:
(1) four blocks of type A,
(2) four blocks of type B,
(3) two blocks of each type.

We shall derive a contradiction from each of the first two possibilities.

1. We have a 96 -dimensional modular irreducible in each of the four blocks, denoted $96_{1}, \overline{96}_{1}, 96_{2}$ and $\overline{96}_{2}$. The character of 96_{1} is $384_{3}-\left(144_{3}+144_{4}\right)$. Now $f\left(96_{1} \uparrow^{\epsilon}\right)=f\left(96_{1}\right) \uparrow^{\lambda_{0}}$ is self-dual, and hence so is $f\left(96_{1}\right)$, which is hence $X_{8}(\theta)$. Now choose $U \in\left\{144_{3}, 144_{4}\right\}$ with $\operatorname{dim}_{F} \operatorname{Ext}_{F G}^{1}\left(96_{1}, U\right)=1$. Then $f(U)=X_{1}\left(0^{2}\right)$, and continuing in this way, we obtain the Green correspondence for this block. Thus

$$
\begin{aligned}
f\left(96_{1} \otimes 10\right) \oplus \text { projective } & =X_{8}(\theta) \otimes X_{10}\left(\theta^{3}\right) \\
& =X_{3}\left(\theta^{2}\right) \oplus \text { projective }
\end{aligned}
$$

and so $f\left(96_{1} \otimes 10\right)=X_{3}\left(\theta^{2}\right)$. Hence

with possibly the subscripts 5 and 6 interchanged (the diagram indicates how the composition factors are glued together), and so $\overline{120}_{6}+\overline{144}_{5}$ is a projective character, providing us with a contradiction.
2. In this case, there is an irreducible representation of dimension 24 in each block. Choosing one and tensoring with an appropriate representation of dimension 10 (see (g)), we obtain a 240 -dimensional representation with irrational character values on the elements of order 7. However, the character of this module will not decompose as a positive sum of the modular characters given by tree type B.

Thus the third possibility holds, and by choosing which is which of α and α^{5}, we may assume that the shapes of the trees are as shown.
By applying a Galois automorphism which sends $\sqrt{2} \leftrightarrow-\sqrt{2}$ while fixing $\mathbb{Q}(i, \sqrt{7})$ if necessary, we may assume 120_{3} and 120_{4} are as shown.

If 144_{3} and 144_{4} are not as shown, then

$$
\begin{aligned}
f\left(144_{3} \otimes \overline{10}\right) \oplus \text { projective } & =X_{1}\left(\theta^{2}\right) \otimes X_{10}(\theta) \\
& =X_{10}\left(\theta^{3}\right) \oplus \text { projective }
\end{aligned}
$$

and so $f\left(144_{3} \otimes \overline{10}\right)=f\left(\overline{120}_{5}\right)$ or $f\left(\overline{120}_{6}\right)$. But $144_{3} \otimes \overline{10}=\overline{384}_{4}+\overline{384}_{4}+$ $\overline{336}_{3}+\overline{336}_{4}$ giving a contradiction. Thus they are as shown.

Next we deal with the tree for α^{5}. We have

$$
f\left(144_{5 / 6}-120_{5 / 6}\right)=X_{2}\left(\theta^{4}\right)
$$

for some choice of indices; let the corresponding modular irreducible be V, so that $f(V)=X_{2}\left(\theta^{4}\right)$. Then

$$
\begin{aligned}
f(V \otimes 10) \oplus \text { projective } & =X_{2}\left(\theta^{4}\right) \otimes X_{10}\left(\theta^{3}\right) \\
& =X_{9}(\theta) \oplus \text { projective }
\end{aligned}
$$

and so

$$
V \otimes 10=\frac{\overline{144}_{4}}{\overline{96}_{1}}
$$

Comparing characters, we find $V=144_{6}-120_{5 / 6}$. Similarly,

$$
\begin{aligned}
f\left(V \otimes \overline{21}_{2}\right) \oplus \text { projective } & =X_{2}\left(\theta^{4}\right) \otimes X_{10}\left(\theta^{2}\right) \\
& =X_{9}(1) \oplus \text { projective }
\end{aligned}
$$

and so

$$
\left.V \otimes \overline{21_{2}}={ }_{120_{3}}\right\rangle_{96_{1}}^{144_{3}}
$$

Comparing characters, we find that $V=144_{6}-120_{5}$.
(d) Apart from the planar embedding, the tree is clearly as shown. We have

$$
\begin{aligned}
f\left(V \otimes 21_{2}\right) \oplus \text { projective } & =X_{2}\left(\theta^{4}\right) \otimes X_{10}\left(\theta^{2}\right) \\
& =X_{9}(1) \oplus \text { projective. }
\end{aligned}
$$

appendix: Ordinary Characters of $12 M_{22}$ in "Atlas" Format'

443520		384	36	32	16	5	12	7	7	8	11	11			1344	320	48	32	6	8	5	6	7	7
p power		A	A	A	A	A	AA	A	A	A	A	A			A	A	A	A	$A B$	A	$A C$	$A C$	$A B$	$B B$
p^{\prime} part		A	A	A	A	A	$A A$	A	A	A	A	A			A	A	A	A	$A B$	A	$A C$	$A C$	$A B$	$B B$
ind	$1 A$	2 A	3 A	4A	$4 B$	5 A	6 A	7A	$B^{* *}$	8 A	$11 / A$	$B^{* *}$	fus	ind	2 B	$2 C$	4 C	4 D	$6 B$	$8 B$	10 A	12A	14 A	$B^{* *}$
+	1	1	1	1	1	1	1	1	1	1	1	1	:	+ +	1	1	1	1	1	1	1	1	1	1
$+$		5	3	1	1	1	-1	0	0	-1	1	1	:	+ +	7	1	-1	3	1	1	-1	1	0	0
-	45	-3	0	1	1	0	0	b7	**	1	1	1	:	oo	3	5	3	1	0	1	0	0	$b 7$	**
\bigcirc	$\overline{45}$	-3	0	1	1	0	0	**	$b 7$	1	1	1	:	-0	3	5	3	1	0	1	0	0	**	$b 7$
+	55	7	1	3	1	0	1	1	-1	1	0	0	:	+ +	13	5	1	1	1	-1	0	1	-1	1
+	99,	3	0	3	1	-1	0	1	1	1	0	0	:	++	15	1	3	1	0	-1	1	0	1	1
+	154,	10	1	2	2	-1	1	0	0	0	0	0	:	++	14	6	2	2	-1	0	1	1	0	0
$+$	210	2	3	- 2	2	0	1	0	0	0	1	1	:	+ +	14	-10	2	2	-1	0	0	1	0	0
$+$	231,	7	3	-1	1	1	1	0	0	1	0	0	:	+ +	7	-9	9	9	1	${ }_{-1}$	1	-1	0	0
-	280,	8	1	0	0	0	1	0	0	0	b11	**	,	+	0	0	0	0	0	0	0	0	0	0
o		8	1	0	0	0	1	0	0	0	**	b11	.											
	385	1	2	1	1	0	2	0	0	1	0	0	:	+ +	21	5	3	3	0	1	0	0	0	0
ord	1	2	3	4	4	5	6	7	7	8	11	11			2	2	4	4	6	8	10	12	14	14
	2	2	6	4		10	6	14	14	8	22	22			2		4		6		10	12	14	14
0	10	2	1	2	0	0	-1	b7	**	0	1	-1	:	00	4	0	2	0	1	0	0	1	$b 7$	**
-	10	2	1	2	0	0	-1	**	b7	0	1	-1	:	00	4	0	2	0	1	0	0	1	**	-b7
$+$	561	8	2	0	0	1	2	0	0	0	1	1	:	+ +	0	0	0	0	0	0	rs	0	0	0
$+$		-8	3	0	0	0	1	1	1	0	1	-1	:	+ +	8	0	4	0	1	0	0	1	1	1
		6	0	2	0	1	0	0	0	0	b11	**	-	$+$	0	0	0	0	0	0	0	0	0	0
		6	0	-2	0	1	0	0	0	0	**	$b 11$	1											
	154_{2}	2	1	-2	0	1	1	0	0	$2 i$	0	0	-	$+$	0	0	0	0	0	0	0	0	0	0
		2	1	2	0	1	-1	0	0	$2 i$	0	0	,											
		10	3	2	0	0	1	0	0	0	1	1	:	+ +	28	0	2	0	1	0	0	1	0	0
		2	3	2	0	0	1	1	1	0	0	0	:	+ +	20	0	-2	0	1	0	0	1	-1	1
	440	8	1	0	0	0	1	1	1	0	0	0	:	+ +	8	0	-4	0	1	0	0	-1	1	1

appendix: Ordinary Characters of $12 M_{22}$ in "Atlas" Format' (continued)

appendix: Ordinary Characters of 12M 22 in "Atlas" Format' (continued)																								
ord	1	2	3	4	8	5	6	7	7	8	11	11			2	4	8	4	6	8	20	24	14	14
	4	4	12	4		20	12	28	28	8	44	44			2		8		6		20	24	14	14
	2		6			10		14	14	8	22	22												
	4		12			20		28	28	8	44	44												
02	56_{2}	0	2	0	0	1	0	0	0	$2 z 8$	1	1		o2										
02	56_{3}	0	2	0	0	1	0	0	0	-278	1	1	*											
o2	144,	0	0	0	0	${ }^{1}$	0	$-b 7$	**	0	1	1	*	-										
-2	144_{2}	0	0	0	0	-1	0	**	$-b 7$	0	1	1	*	0										
o2	160,	0	-2	0	0	0	0	-1	-1	0	-b11	**	1	+2										
02	160_{2}	0	-2	0	0	0	0	-1	-1	0	**	-b11	*											
02	176	0	4	0	0	1	0	,	1	0	0	0	*	+										
02	560	0	2	0	0	0	0	0	0	0	-1	-1	*	+										
ord	1	2	3	4	4	5	6	7	7	8	11	11			2	2	4	4	6	8	10	12	14	14
	3	6		12	12	15	6	21	21	24	33	33												
	3	6		12	12	15	6	21	21	24	33	33												
02	21_{2}	5	0	1	1	1	2	0	0	-1	-1	-1	*	+										
02	45_{3}	-3	0	1	1	0	0	${ }^{6} 7$	**	-1	1	1	*	0										
02	45_{4}	3	0	1	1	0	0	**	$b 7$	-1	1	1	*	0										
02	99_{2}	3	0	3	-1	-1	0	1	1	-1	0	0	*	+										
02	105,	9	0	1	,	0	0	0	0	,	-b11	**	,	+2										
-2	$105{ }_{2}$	9	0	1	1	0	0	0	0	1	**	-b11	*											
02	2103	2	0	-2	2	0	2	0	0	0	1	1	*	+										
02	2312	7	0	-1	-1	1	-2	0	0	-1	0	0	*	$+$										
02	2313	9	0	3	-1	1	0	0	0	1	0	0	*	$+$										
	330_{2}	-6	0	-2	2	0	0	1	1	0	0	0	*	$+$										
o2	384,	0	0	0	0	-1	0	-1	-1	0	-1	-1	*	$+$										
ord	1	2	3	4	4	5	6	7	7	8	11	11			2	2	4	4	,	8	10	12	14	14
		6	6	12	12	30	6	42	42	24	66	66			2		4		6		10	12	14	14
	3	6		12	12	15	6	21	21	24	33	33												
	2	2		4		10	6	14	8	22	22													
	3	6		12		15	6	21	21	24	33	33												
	6	6		12		30	6	42	42	24	66	66												

Computing characters, we see that $V \otimes 21_{2}$ has Brauer character $\overline{160}_{1,2}+\overline{144}_{1}+\overline{144}_{2}+\overline{56}_{2}$. Since the corresponding tree for \hat{G} has to have an automorphism corresponding to complex conjugation, we see that the given planar embedding is correct except that possibly the 144's may be the other way around.

Finally, let W we the 36 -dimensional simple module in the block corresponding to α^{10}, so that $f(W)=X_{3}(\theta)$. We have

$$
\begin{aligned}
f(V \otimes W) \oplus \text { projective } & =X_{2}\left(\theta^{4}\right) \otimes X_{3}(\theta) \\
& =X_{2}\left(\theta^{4}\right) \oplus X_{4}(1)
\end{aligned}
$$

and so

$$
V \otimes W=\begin{array}{cc}
& 144_{2 / 1} \\
144_{1 / 2} \oplus & 144_{1 / 2} \\
56_{3} & 56_{3} \\
& \frac{160_{1,2}}{160_{1,2}}
\end{array}
$$

Comparing characters, we see that the 144 's are as shown.

References

1. J. F. Humphreys, The projective characters of the Mathieu group M_{22}, J. Algebra 76 (1982), 1-24.
2. G. J. Janusz, Indecomposable modules for finite groups, Ann. of Math. (2) 89 (1969), 209-241.
3. J. Conway, R. Curtis, S. Norton, R. Parker, and R. Wilson, "An Atlas of Finite Groups," to appear OUP 1985.
