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The purpose of this note is to correct and extend some of the results in 
Humphreys [ 11. Our main result is Theorem 1, which corrects three (or 
two and a half!) of Humphrey? trees, and determines the planar embed- 
dings and Green correspondence. These results would not really be very 
interesting by themselves were it not for the fact that quite an interesting 
phenomenon is revealed in the behaviour in characteristic eleven. There are 
four algebraically conjugate ll-blocks of faithful ordinary characters of 
12M,,, which come in two complex conjugate pairs, and in fact the trees 
for the two pairs are totally different. This corresponds to the fact that 
there is more than one prime ideal lying above eleven in the field of twelfth 
roots of unity. Two of the blocks have a 24-dimensional irreducible, while 
the other two do not. This then gives us strong enough information to 
investigate the planar embeddings of the trees. 

LEMMA 1. There are exactly two isomorphism classes of groups of shape 
12M,,2, with the full covering group 12Mz2 as a normal subgroup of index 
two, and Aut(M,,) as a quotient. 

Proof. The group Aut(l2M,,) has shape M2*2 and has involutions in 
the outer half. Thus we may form the split extension of 12Mz2 by such an 
involution. The fact that there are two isomorphism classes follows from 
isoclinism theory. m 

Notation. We let G‘ denote the full covering group 12M,,, and we 
choose a group G of shape 12M,,2 as in Lemma 1. It does not matter 
which we choose since the two groups have isomorphic Brauer trees. We 
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BRAUER TREES FOR 12M,, 399 

shall also make use of the subgroup H of index 22, of shape 
12M2, g 12L,(4), whose order is coprime to eleven. 

Let (F, R, S) be an 1 l-modular splitting system for C? and all its sub- 
groups. Namely, R is a P-adic completion of an algebraic number field, 9 
is a prime ideal lying above 11, S is the field of fractions of R, and F = R/P 
is a finite field of characteristic eleven. 

We shall be making use of Green correspondence in characteristic eleven. 
The Sylow 11-normalizer N in G has shape 12 x No, with No a Frobenius 
group of order 55. If V is an indecomposable module for FG, we let f( V) 
denote the restriction of the Green correspondent of V to N,,. Similarly if 
W is an indecomposable module for FG, we obtain a modulef( W) for the 
corresponding Frobenius group fi,, of order 110. 

Let X1( 8) be the simple FN,-module with dim Ext&,(Z, X,(0)) = 1. Then 
the simple FN,-modules are denoted X,(P), and the indecomposable FN,- 
module of dimension n with socle X,(P) is denoted X,(P). It is uniserial 
with Loewy layers Li(X,(er))~~,(er-“‘). 

Ordinary and modular irreducible characters are named by their degree, 
with a subscript if there is more than one of the same degree. A bar denotes 
complex conjugation. 

Denote by c( a faithful ordinary irreducible representation of Z(G), so 
that { 1, a,..., cl’] > is the set of all ordinary irreducibles for Z(G). 

We shall make free use of the description in [2] of the indecomposable 
modules in a block of cyclic defect. 

THEOREM 1. (i) There are four algebraically conjugate blocks of defect 
one consisting of faithful characters of G over a splitting field of charac- 
teristic five. All four trees have the following shape. 

144 
\ 

336 - 384 ~ 336 

/ 
144 

(ii) The following are the Brauer trees for G over our splitting system 
(F, R, S) of characteristic eleven, with the planar embedding given correctly 
(i.e., consistently-what we show is that we may choose our prime ideal B 
lying above I1 so that the trees are embedded as shown), and with f(V) 
marked in for each modular irreducible V. The exceptional ordinary charac- 
ters are underlined. 
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Proof: (i) From the ordinary character table we see that the real 
stems for the corresponding (induced) blocks of e consist of 336t”, 3361” 
and 384f”. Thus the trees for G are both of the form 

144f” 
\ 

3367” __ 384f” __ 3361”. 

1441” 
/ 

(ii)(a) The real stem consists of 1, 21,, 210, and 280,,,. The per- 
mutation module on 22 cosets of H is projective, so the real stem is as 
shown. Thus applying the Galois automorphism i J?+-+-iJi to 9 if 
necessary, the tree and planar embedding are as shown. 

(g) The real stem consists of 56r, 120,, 2102 and 1261,2. Now 
126, 2 JH = 90 0 36 and 56, JH = 28 0%. Hence 56, is modular irreducible 
and is not a modular constituent of 126,,. Thus the real stem is as shown, 
lO,f’ = 210, + 10 and niTi,?” = 210, + 10, and so 10 and TTi are joined to 
210,. Finally, 10@45r =440@%?, while Xlo(8)@X,(83) #X1,(8,) @ pro- 
jective, and so f( 10) # X,,(0). Thus the planar embedding is as shown. 

(c) All characters in this block become real when induced to G, so 
the tree is a straight line. For the moment ignoring the subscripts on the 
characters of degree 210, we have exactly two possibilities, namely, the 
given one and 

1263,4 __ 210 __ 120, __ 210 __ 384, __ 210. 

Suppose the latter were true. We have 1263,41,,=90+36, 210,1,= 
90 + 42 + 42’ + 36 and 2105 JH = 2106 JH = 90 + 60 + 60’, and so @,., is 
joined to 210,, leaving a modular irreducible of degree 84. However, 
120,1, = 60 + 60’, giving a contradiction. Thus the first possibility is true, 
and 120, is joined to 210, or 210,. By applying the Galois automorphism 
i c-, - i (but fixing i J?) to 9 if necessary, without loss of generality 1202 is 
joined to 2105, leaving a modular irreducible of dimension 90. Subtracting 
this from 1263,4 we obtain a 36-dimensional modular irreducible, and hence 
210, is joined on the other side of 1263,4 rather than 210,. 

(e) The real stem for the induced block for G consists of 21J”, 
uEl,,f”~ 384,f” and 2103fe. Now 21 2 is modular irreducible, and 
210,1, = 84 + 63 + 63’, so that 210, does not contain 21, as a modular 
constituent. Thus the real stem is as shown, and the two 45’s are joined to - 
384,. Now 45,@i0=120,@mJ, while X,(B4)~X,,(B)#X,,(82)0 pro- 
jective, so the planar embedding is as shown. 
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(b) and (f) For each of (b) and (f), the real stem for G consists of 
336 and 384. Thus each block has either 

(A) two 144’s joined to 384 and two 120’s joined to 336, or 
(B) two 144’s joined to 384 and a 120 joined to each 144. 

Thus we have three possible situations, namely: 

(1) four blocks of type A, 
(2) four blocks of type B, 
(3) two blocks of each type. 

We shall derive a contradiction from each of the first two possibilities. 

1. We have a 96-dimensional modular irreducible in each of the four 
blocks, denoted 96,) !%I) 96, and %,. The character of 96, is 
384, - (144, + 144,). Now f(96,t”) =f(96,)fRo is self-dual, and hence so 
is f(96,), which is hence X,(0). Now choose UE {144,, 144,) with 
dim, Ext&(96,, U) = 1. Then f(U) = X,(e2), and continuing in this way, 
we obtain the Green correspondence for this block. Thus 

f(96,@ 10) 0 projective = X,(0) 0 X,,(e3) 

= X,(0’) 0 projective 

and so f(96,O 10) = X,(6’). Hence 

96,@10= xi2 @ projective 
/ \ 

1445 1205 
I 

with possibly the subscripts 5 and 6 interchanged (the diagram indicates - 
how the composition factors are glued together), and so 120, + 144, is a 
projective character, providing us with a contradiction. 

2. In this case, there is an irreducible representation of dimension 24 in 
each block. Choosing one and tensoring with an appropriate representation 
of dimension 10 (see (g)), we obtain a 240-dimensional representation with 
irrational character values on the elements of order 7. However, the charac- 
ter of this module will not decompose as a positive sum of the modular 
characters given by tree type B. 

481 95~2-7 
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Thus the third possibility holds, and by choosing which is which of a and 
a*, we may assume that the shapes of the trees are as shown. 

By applying a Galois automorphism which sends &- - &? while lix- 
ing Q(i, J?) if necessary, we may assume 120, and 120, are as shown. 

If 144, and 1444 are not as shown, then 

f( 144, @iO) @ projective = X,(0’) @ X,,(0) 

= X,,(t13) 0 projective 

and so f‘(144,Oi@=f(i%,) or f(i%&,). But 144,@fl=384,+384,+ 
336, + 336, giving a contradiction. Thus they are as shown. 

Next we deal with the tree for a5. We have 

.f(144,,6 - 120516) = X2(04) 

for some choice of indices; let the corresponding modular irreducible be V, 
so that f( V) = X2( 0”). Then 

.f’( V@ 10) 0 projective = X,(S4) @ X10(f13) 

= X,(B) @ projective 

and so 
144, 

v”*o= %, 

Comparing characters, we find V= 144, - 120,,,. Similarly, 

.f( VOzT,)O projective = X,(0”) 0 X,,(0*) 

= X9( 1) 0 projective 
and so 

144, 
- 

vo21,= 120, I 
144, 

‘96 ’ I 

Comparing characters, we find that V = 144, - 1 205. 
(d) Apart from the planar embedding, the tree is clearly as shown. 

We have 

f( VO 21,) 0 projective = X,(0”) 0 X,,(e2) 

= X9( 1) 0 projective. 
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Computing characters, we see that V@ 21, has Brauer character -- 
m,,, + 144, + 144* + %,. Since the corresponding tree for G has to have 
an automorphism corresponding to complex conjugation, we see that the 
given planar embedding is correct except that possibly the 144’s may be the 
other way around. 

Finally, let W we the 36-dimensional simple module in the block 
corresponding to cl”, so that f( W) = X,(d). We have 

f( V@ W) 0 projective = X,(B4) @ X,(O) 

=~,(~4)o~4(1) 

and so 

V@ w= 
144*,, 

144,,, 0 144,,, 

56, 56, 

gg,,, 

AL%, 

Comparing characters, we see that the 144’s are as shown. 
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