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INTRODUCTION 

The Brauer characters of elements of a finite group on modules do not 
separate them very well. Two modules have the same Brauer character if and 
only if they have the same composition factors. We investigate what happens 
when we try to enlarge the set of columns of the character table to achieve 
better separation. The most general candidate for a column is a linear 
character of the Green Ring, which we call a species, to distinguish it from a 
character of the group. 

First we examine the general structure of the Green Ring A(G). We 
impose two inner products, 

and 

(M, N) = dim, Hom,,(M. N) 

(M, N) = rank of \‘ g on Hom,(M. N). 
p E ri 

on the Green Ring, and show that there are elements u and u in A(G) with 
the properties that u . L’ = 1, (M, N) = (c M, N), and (M, N) = (U . M, N) 
(Corollary 2.3). In Section 3, we show that these inner products are 
nonsingular on A(G), by finding elements Gi for each indecomposable 
module Vi such that (Vi, Gi) = 6, (Theorem 3.5). These elements G, are 
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called atoms, and they are the simple modules and the “irreducible glues,” 
the latter being related to the Auslander-Reiten sequences for the group 
algebra. Any module may then be regarded as a formal sum of atoms, 
namely its composition factors and the glues holding it together. 

In Section 4, as an application of this, we find the radical of the bilinear 
forms dim, Ext,“,(M, N) on A(G) (Theorem 4.4). 

Section 5 consists of some integrality theorems which are used in Section 6 
and 7. In Section 6, we introduce the concept of a species. To each species, 
we associate two conjugacy classes of subgroups, called the origins and the 
vertices. In order to define the origins, we need a theorem of independent 
interest; namely, that if H is any subgroup of G, then A(G) is the direct sum 
of the kernel of the restriction map and the image of the induction map, 
while A(H) is the direct sum of the image of the restriction map and the 
kernel of the induction map (Theorem 6.7). Corollary 6.8 is also of 
independent interest. 

In Section 7, we show that if H is an origin of a species s, then O,(H) is a 
vertex, and H/O,(H) is cyclic of order coprime to p (Proposition 7.4 and 
Theorem 7.8). Section 8 is devoted to the proof of the induction 
formula (8.3), which is a generalization of the usual formula for the 
character of an induced module. This formula rests on Theorem 8.2, which 
should be compared to Proposition 5.3. 

In Section 9, we bring together the results of the previous sections to 
provide an extension of Brauer character theory. We project all the infor- 
mation we have onto a finite dimensional direct summand of A(G) satisfying 
conditions (it(iv) at the beginning of Section 9. Under these conditions, 
there are only finitely many species. We define tables Tii and Uij called the 
Atom table and the Representation table, which satisfy the orthogonality 
relations (9.10) and (9.13). The usual Brauer tables correspond to the 
summand of A(G) spanned by the projective modules. In this case, Tii is the 
table of Brauer characters of irreducible modules, and Uij is the table of 
Brauer characters of projective indecomposable modules. It turns out that the 
Brauer case is the unique minimal case (Remark 9.l(ii)). The analogues of 
the centralizer orders in the Brauer case do not always turn out to be 
positive or rational! 

In Section 10, we examine another particular case of the theory developed 
in Section 9, namely the summand spanned by the cyclic vertex modules. In 
Appendix 2 we give examples of the tables resulting from this summand. The 
main tool for calculating these tables is the so-called “atom-copying 
theorem” (Theorem 11.2) which describes how the atoms of degree zero, 
namely the irreducible glues, are controlled by the local subgroups. This 
theorem corresponds to an important property of Auslander--Reiten 
sequences, namely their behaviour under induction. Finally, in Section 12, we 
provide a method for constructing species in characteristic two. 
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1. NOTATION 

Let G be a finite group and k a field of characteristic p. Let a(G) = a,(G) 
be the Green Ring, or representation ring, formed from the finite dimensional 
right kG-modules. We refer the reader to ] 191 for the definition and standard 
results used here. Let A(G) = A,(G) = a,(G) @ C. For each subgroup H of G 
we have a homomorphism rG,” : A(G) + A(H) given by restriction of 
representations, and a linear map, which is not a ring homomorphism, 
iH,L-.:A(H)-+A(G) g iven by induction of representations. We shall also use 
the symbols 1, and t” to denote these maps. Let A(G, H) be the linear span 
in A(G) of the direct summands of modules induced from H. Then A(G, H) 
is an ideal in A(G). If X is a collection of subgroups of G, let A(G, X) be the 
ideal of A(G) spanned by the set of ideals A(G, H) for HE X. Let 
A’(G, H) = A(G, X(H)), w h ere X(H) in the set of proper subgroups of H. Set 
W(G, H) = A(G, H)/A’(G, H). Denote by Cyc the collection of cyclic 
subgroup of G. Thus A(G, Cyc) is the ideal spanned by indecomposable 
modules whose vertex is cyclic. Moreover, A(G, 1) is the ideal spanned by 
projective modules. Let A,(G, 1) be the ideal of A(G) spanned by elements of 
the form X-X’ - X”, where O+ X’ +X+X”- 0 is a short exact 
sequence. Then A(G) =A(G, I)@ A,(G, 1). Finally, let A(G,Triv) be the 
subring of A(G) spanned by indecomposable modules whose source is the 
trivial module. 

2. THE INNER PRODUCTS ON A(G) 

Let R denote the Heller operation, namely RX is the kernel of the 
projective cover of X (see [ 20 1). Let 0 ’ denote the dual operation, namely 
R ‘X is the quotient of the injective hull of X by X. These operations are 
inverse modulo projective direct summands. 

We define two different inner products on A(G) as follows. If M and N are 
kG-modules, we let 

(M, N) = dim, Hom,,,(M, N). 

Let P, = (P,)kG be the projective cover of the trivial one-dimensional kG- 
module 1. and let 

u,,=u=P,-n-~‘(l), 

1 k(;=Ll=P,-n(l). 

as elements of A(G). Then we define 

(M, N) = (U . M, N) = (u, Hom,(M. N)). 
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This is the same as the multiplicity of P, in a direct sum decomposition of 
the kG-module Horn&M, N), and is also equal to the rank of CREG g in the 
matrix representation on Hom,(M, N). In particular, (M, N) = (N, M). 

We extend ( , ) and ( , ) bilinearly to give inner products on the whole of 
A ((2. 

2.1. PROPOSITION. Let M be an indecomposable kG-module Icith 
projectice cocer P,, and injectioe hull I,, , Then ,t’e have 

(i) R ’ (1) @ Q(M) z M @ projectit’es. 

li [> “i:. 
u . (P,,, ~ R(M)) = M = L’ . (I,, - J2 ‘(M)) aHd in particular 

(iii) u. M=/,,-W’(M), c. M= P,,-R(M). 

Proof We have short exact sequences 

o- l+P,+W’(l)+O and O+R(M)+P,,+M+O. 

Tensor the first of these with M, and the second with R ‘(1). Then applying 
Schanuel’s lemma (see, e.g.. Swan 125 1) we get 

(2.2) 

which proves (i). 
Thus as elements of the Green Ring, we get 

u . (P,, -Q(M)) 

=P, .P,-(P,. P,,~P,.M)-R~‘(l).P,,+R~‘(l).n(M) 

=M by the isomorphism (2.2). 

This statement and its dual prove (ii). and then (iii) follows 
immediately. 1 

2.3. COROLLARY. 

(hf. N) = (L’. Hom,(M, N)) = (~1 M. N) 

= (Hom,(N. M), u) = (M. u . N). 

(hf. N) = (u, Hom,(M, N)) = (U M, N) 

= (Hom,(N, M), V) = (M. 1% . N). 
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Proof 

(c, Hom,(M, N)) = (U . L’. Hom,(M, N)) 

= (1, Hom,(M. N)) by Proposition 2.1 (ii) 

= (M. N). 

The rest are proved similarly. 1 

2.4. COROLLARY (Green). If M is indecomposable and N is irreducible 
then 

(M, N) = d, if M=P,. 

=o otherwise. 

where d,, = dim, End,,(N). 

ProoJ 

(M, N) = (M, L’ . N) by Corollary 2.3 

= (M, I’, - W’)) by Proposition 2.1 (iii) 

= d, ifM=P,. 

=o otherwise. 1 

2.5. hMMA. If H < G, then 

6) ukG ill = Ukll, 

(ii) L’,,; i,I = ukll’ 

Proof: We have two short exact sequences, 

o+n(l)kGb (Pl)kc,&// + lk,, + 0. 

o-n(1)k,,-(P,)k,,3 ‘k,,-” 

Lemma 2.5(ii) thus follows from Schanuel’s lemma, and (i) is proved 
dually. I 

2.6. COROLLARY (KnGrr). 

(V, Wl,,) = (VT”. W) 

(This is the analogue of the usual Frobenius reciprocity statement.) 



THE GREEN RING OF A FINITE GROUP 295 

Proof 

W Wl,> = Oh3 Hom,tK Wl,,)) 

= tukG lH9 HomktV3 Wl,)) 

= (ukc;, Hom,tV. Wl,,) T”) 

by the usual Frobenius reciprocity 

= (ukG, Hom,(vf G, W)) 

= (VT? w). I 

by Lemma 2.5 

3. ALMOST SPLIT SEQUENCES 

In this section we shall find elements of the Green Ring dual to the 
indecomposables with respect to the inner products ( . ) and ( . ). We assume 
for this section that k is algebraically closed, although we could avoid this 
by dividing our dual elements by dim,1 End,,,( V,)/Rad End,,,( Vi) I. 

3. I. DEFINITION. An Almost split sequence. or Auslander--Reiten 
sequence, is a short exact sequence, 

satisfying the conditions, 

(a) u does not split; 

(b) A and C are indecomposable; 

(c) ifj’: .Y+ C is not a split epimorphism then f factors through u. 

In our situation, namely that of finite dimensional modules over the group 
algebra of a finite group, the results of Auslander and Reiten can be stated 
as follows. 

3.2. THEOREM (Auslander and Reiten 121). Given an indecomposable 
kc-module C which is not projective, there exists an almost split sequence. 

and any two such sequences are isomorphic. Moreocer, A z Q’(C), where 0’ 
denotes the square of the Heller operation. As a module for End,,(C)“P, the 
group Exti,(C, A) has a simple socle of dimension 1 with the above extension 
as generator. 
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3.3. LEMMA. If C and D are indecomposable modules, and 

O-A-B-tC+O 

is the almost split sequence terminating in C, then the following hold: 

(i) If C&D then 0 + Hom,,(D, A ) + Horn&D, B) + Horn,,, 
(D, C) --) 0 is exact. 

(ii) The sequence 0 + Horn&C, A) + Horn&C, B) + Hom,,(C, C) + 
Soc(Extk,(C, A)) + 0 is exact, where this is the truncation of the long exact 
Ext sequence. 

Proof. This follows immediately from Theorem 3.2. 1 

3.4. THEOREM. Let { Vi: i E I} be the set of indecomposable modules for 
kG. Let 

Hi = Vi - Rad(Vi) if Vi is projectice, 

= Vi+12*(Vi)-X otherwise, 

where 

04’(Vi)4-t vi-,0 

is the almost split sequence terminating in Vi. Then (Vi, Hi) = 6,. 

Proof If Vj is not projective, then Lemma 3.3 shows that (Vi, Hi) = ajj 
since Soc(Ext:,(F’i, Q’(V,))) is one dimensional. If Vj is projective, then 

(Vi, Hj) = (Vi, SOC(Vj)) by Proposition 2.1 (ii) and Corollary 2.3 

= dii by Corollary 2.4. 1 

3.5. THEOREM. Let ( Vi: i E I) be the set of indecomposable modules for 
kG. Let 

Gj = Soc( Vi) if Vi is projective, 

=X-R-‘(vi)-12(vi) otherwise, 

where 

is the almost split sequence terminating in R ‘(Vi). Then (Vi. G,) = dii. 
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Proof: If Vj is not projective, then 

(Vi, G,j) = (U . Vi, Gj) 

= (I, i - ~2 ‘(Vi), G,J by Proposition 2.1 (iii) 

= (-6’ - ’ (Vi), Gj) since G,i E A,(G, 1) 

= dii by Theorem 3.4. 

If I/, is projective, then 

(V;, Gj) = aji by Corollary 2.4. 1 

3.6. DEFINITION. We define a semilinear map r: A(G) +A(G) via 
7(x ai Vi) = C ZiGi, where the overbar denotes complex conjugation. Then 

(x, z(x)) = \‘ /a;/2 > 0, 

with equality if and only if x = 0. 

3.7. PROPOSITION. The inner products ( , ) and ( , ) are nonsingular on 
A(G) in the sense that given x(#O) E ,4(G), there is y E A(G) such that 
(x, y) # 0 and z E A(G) such that (x, z) # 0. 

ProoJ: Take y= r(x) and z = z: . 4’. and use Definition 3.6 and 
Corollary 2.3. 1 

3.8. DEFINITIONS. The atom corresponding to V, is Gi. The glue for a 
short exact sequence 0 --f X’ + X-+ X” + 0 is the element X - X’ - X” of the 
Green Ring. Thus if Vi is not projective, then Gi is a glue. 

A glue is irreducible if its is nonzero and not the sum of two nonzero glues 
as an element of the Green Ring. 

3.9. LEMMA. If X - X’ - X” is the glue for 0 --t X’ + X + X” + 0. then 
for any module V, (X - X’ - X”, V) > 0. 

Proof The number of copies of P, in a direct sum decomposition of 
X @ V is at least the sum of the number of copies in X’ @ V and the number 
of copies in X” @ V, since P, is both injective and projective. 1 

3.10. THEOREM. (i) Every nonzero glue can be written as the sum of an 
atom and a glue. Thus every irreducible glue is an atom. 

(ii) Every atom is either a simple module or an irreducible glue. 

48 l/87 2 2 
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ProoJ First we note that the sum of two glues is a glue, since we can 
add the exact sequences term by term as a direct sum. 

(i) Suppose 0 + Y’ + Y -1 Y” + 0 is an exact sequence with 
Y - Y’ - Y” # 0 its glue. If Y” is decomposable, Y” = W” @Z”. then 
Y - Y’ - Y” is the sum of the glues for 

O--t71-‘(W”)+ Y-Z”-+0 

and 

0-t Y’+C’(W”)+ W”-+O. 

At least one of these is nonzero, and so we may assume by induction that Y” 
is indecomposable. Thus rt is not a split epimorphism. Letting 
0 --$ Q’( Y”) + X-t Y” + 0 be the almost split sequence terminating in Y”, we 
have the commutative diagram, 

O-1 Y’ --t y+ y”+ 0 
0 
1 ‘\ I 
1 \ ‘\I .i 

04’(Y”)+A--+ Y”+O. 

The left-hand square is a pushout diagram, and SO we get an exact sequence 

o+ Y’+ Y@aZ(Y”)4+o. 

The given glue is the sum of the glue for this sequence and the atom 
corresponding to the almost split sequence terminating in Y”. 

(ii) If Vi is projective, Gi is a simple module. If Vi is not projective, then 
Gi is a glue. Suppose it is not irreducible. Then by (i) it is the sum of another 
atom, say Gjt and a glue. But (Gi - Gi, Vj) = -1 by Theorem 3.5, 
contradicting Lemma 3.9. m 

Informally, we think of every representation as consisting of (possibly 
infinitely many) atoms, namely, the simple composition factors and some 
irreducible glues. 

x = \’ (x, Vi) . G;. (3.11) 

This formal expression has the right inner product with any indecomposable 
module Vj, since 
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= x ((x, Vi) . G, Vi) 
i 

by Theorem 3.5 

= (x. Vj). 

Then it has the right inner product with any element of A(G), so that by 
Proposition 3.7 it is a valid forma1 sum. 

We consider atoms to be in the same block as the corresponding indecom- 
posable modules. Then in the forma1 sum (3.11). an indecomposable module 
can only involve atoms from the same block. 

4. THE RADICAL OF dim, Ext&; 

We define inner products ( , ), for n > 1 as follows. If M and N are kG- 
modules, we let 

(M, N), = dim, Ext&(M, N). 

We extend this bilinearly to define inner products on the whole of A(G). 

4.1. LEMMA. 

(M, N), = (PM, N) - (f2”M, N) 

= (( 1 - u) QnM, N). 

Proof The short exact sequence 

O+i2M+P,t,+M+0 

gives rise to a long exact sequence, 

0 --t Horn&V, N) -+ Hom,,(P,w, N) + Hom,,(RM, N) -+ Exti,(M, N) 

3 Ext;,(P,M, N) + Ext#M, N) + Ext;,(M, N) + Ex&(P,,,, N) 

--t . . . 

Now Ext&(P,&,, N) = 0. Thus by Proposition 2.1 and Corollary 2.3, 

(M, N), = 0% N) + PM N) - (Pu 3 N) 

= (lM4, N) - (LW, N) 

= (( 1 - U) RM, N), 
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4.2. DEFINITION. 

Rad( , ),, = {x E A(G): (x,J~),, = 0 for all J E A(G)). 

4.3 LEMMA. Suppose M is a periodic kG-module with even period 2s. 
Then as elements of A(G), 

M = u2’ . M, 

Proof. By Proposition 2.l(iii), M - uZsM E A(G, 1). Since 1 and u have 
the same Brauer character, M - u2’M has Brauer character zero, and is 
hence the zero element of A(G, 1). B 

4.4. THEOREM. Rad( , ), is the linear span in A(G) of the projective 
modules and elements of the form 

? (-l)‘Q’(M), 
i-l 

for M a periodic module of even period 2s. 

ProoJ Suppose x = Cai Vi E Rad( , ),. Then for Vi nonprojective we 
have 

0 = (x, PG;),, 

= (Q’x, Q” GJ - (Wx, R” Gi) by Lemma 4.1 

= (x, Gi) - (x. Gi) 

= -(coefficient of R ‘(Vi)) - (coefficient of Vi). 

since for Vi non projective, Gi = -H, I(i). where V,, l,i) = R - ‘(Vi). Hence 

(coefficient of Vi) = -(coefficient of R Vi). 

Thus if a, # 0, Vi is projective or periodic of even period. Conversely, if M is 
periodic of even period 2s, then by Lemma 4.3 we have 

and so (1 + u + ... + uzcm’ )MERad(,),. But (1 +u+...+u2’~‘) M- 
C’S, (- l)iOi(M) modulo projectives by Proposition 2.1 (iii). 1 
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5. SOME INTEGRALITY THEOREMS 

Let kj be an extension of k. Then we have a homomorphism of Green 
Rings ek,k, : A,(G) + A,,(G) g iven by V H Vak k, for V a representation in 
A k(G). 

5.1. PROPOSITION. 

(ii) 

ek,k, preserves the inner products ( , ) and ( , >. 

Proof: (i) The identity 

Hom,,(K WOkk, =Hom,,,(VOk,, WOk,) 

is proved in 114, (18.4)]. It is also clear that (P,),,@ k, = (P,)k,G. The 
result now follows from the definitions of ( , ) and ( . ). 

(ii) This is the Noether-Deuring theorem (see 112. (29.7)]), but also 
follows from (i) and Proposition 3.7. I 

Because of Proposition 5.1, from now on we shall identify A,(G) with its 
image under ek.k, for any extension k, of k. 

5.2. PROPOSITION. Suppose k, is a separable algebraic extension of k. 
Then A,,(G) is integral as an extension of A,(G). 

Proof. Let k, be the normal closure of k, over k. Then k, is a. normal 
separable algebraic extension of k, and it suffices to prove that A,-(G) is 
integral over A,(G). Let a E A,,(G). Then a has only finitely many cmages 
a, . . . . . U, under the action of Gai(kJk). The equation (x - a,) . . . (X -~ u,) = 0 
is a manic polynomial satisfied by n, and its coefftcients are in the fixed field 
of Gal(k,/k), namely in Ak(G). # 

Finally, we wish to prove an integrality property over the image of the 
restriction map from a larger group. 

5.3. PROPOSITION. Let H< G. Then A(H) is integral oz’er Im(r,;,,,). 

Proof (Puig. private communication). Let A(!QECN) be the set of fixed 
points of A(H) under the action of N,(H) by conjugation. If a E A(H), then 
c1 has only finitely many images CI, ,..., CL, under the action of N,(N). The 
equation (.x - u,) . . . (X - a,) = 0 is a manic polynomial satisfied by a, and 
its coefficients are in A(H),‘““. Thus A(H) is integral over A(H)“““, and so 
we must show that A(H) ‘V(M) is integral over Im(r,,,,). 

Let a E A (HjY”“. For any K $ H we set 

X, = {r,Cy.l((a-‘): K < H-r}. 
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We denote by (Im(rG.K), X,) the subring of A(K) generated by Im(r,.,) and 
X,. We may assume inductively that (Im(r,,,), X,) is finitely generated as a 
module for Im(r,.,). We claim that 

WrG.J + \’ hd(Wkd. X,2) 
I( c II 

is a subring of A(H), finitely generated as a module for Im(r,,,,) and 
containing the element a. 

(i) We first prove that it is a ring. It is clear that 

WrG,,,) . k.H((WrG,K)y X,>) s k,H((Wr,.,)3 X,)1. 

since 

and 

rG.Ax) . k,IIPC.K(Lo) = k,,,(r,,,& Y)) 

rG,&) . iK,H(rHv,K(uy)) = iK.,,(r(,,,(-y) . r,,,,,(d). 

If K < H and L < H, then 

iK,II(W(rG,K), X,)) . 4 ..,, ((Wr,,, 1. X, )) 

by the Mackey decomposition theorem. But 

(ii) It is finitely generated as a module for Im(r,,,). By induction, for any 
K < H, we have 

with Y, a finite set. So 

i,,,((Im(r,,,), X,)) = \‘ Im(r,,,,) iK,db). 
hzh 

(iii) It contains a. Since a is invariant under N,(H), we have 

rG,,,(i,,,&)) = IN,(H): Hla + \‘ 
l&G 

~II~IIw.II(rHx.IIrurr(~R))~ 1 
S.t.NnH~<II 
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6. SPECIES, VERTICES, AND ORIGINS 

Let R be a subalgebra or ideal of A(G). 

6.1. DEFINITION. A species of R is a nonzero linear algebra 
homomorphism s: R --f C. If s is a species of R and x E R. we write (.s, X) for 
the value of s on x. 

Since R is commutative we have 

6.2. LEMMA. (i) Rad(R) = 0, Ker(s) = (x E R: xn = Ofor some r?}. 

(ii) If S < R then Rad(S) = S n Rad(R). 

6.3. Comment. It is shown in [ 18, 19, 211 that when G has a cyclic 
Sylow p-subgroup, A(G) is semisimple. In 1271 it is shown that if G has 
noncyclic Sylow p-subgroups, where p is odd, then A(G) has nonzero 
nilpotent elements, while for p = 2, [ 7. 26 1 s h ow that if the Sylow 2subgroup 
of G is isomorphic to the Klein four-group then A(G) is semisimple. In 128 ] 
it is shown that in certain cases for p = 2, A(G) has nilpotent elements. 
However. there are still some unresolved cases for p = 2. 

6.4. LEMMA. Let I be an ideal of R. and s a species of I. Then s extends 
unique!v to a species of R. 

Proof. Choose x E 1 with (s, x) = 1. Then if y E R. for any extension t of 
s we must have 

(I, J’) = (t, y)(s, x) = (t. x . I‘) = (s. x . .YL 

and so t is uniquely determined by s. Moreover, the t so defined is indeed a 
species of R, since 

(t. y)(t, 2) = (s, x . y)(s, x . z) 

= (s. x)(s, x . J’ . z) 

= (t,y . z). I 

If s is a species of R, and R’ is a subalgebra of R, then the restriction of s 
to R ’ is a species of R ‘. Thus species of R ’ correspond to equivalence classes 
of species for R, two such being equivalent if and only if their restriction to 
R’ are the same. 

6.5. LEMMA. Any set of distinct species of R is linearly independent. 
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Proof Suppose CL=, ai.si = 0 is a linear relation of smallest size among 
the species for R. Choose y E R such that (s, ,JI) # (s2,y). Then 

0 = \‘ Ui(Si, x. 4’) = y ai(si,y)(s;, x). 
iY1 i-l 

and so CfE2 a,((~,, y) - (s, ,r)) si = 0. This is a smaller nonzero linear 
relation, contradicting the minimality of r. 1 

Thus if R’ is a finite-dimensional semisimple subalgebra of R, with species 
Sl,..., I? s we can find idempotents e,,..., e, with (si, ei) = aii. This gives a 
direct sum decomposition, 

R = 6 Rei. 
i 1 

(6.6) 

Thus every species of R is a species of some R ei and is zero on the R e;. 
j# i. 

6.7. THEOREM.' Let H be a subgroup of G. Then 

(i) ,4(G) = Im(i,,,) 0 Ker(r,,,) as a direct sum of ideals, 

(ii) A(H) = Im(r,,,) @ Ker(i,,,) as a direct sum of uector spaces. 

Proof. (i) We proceed by induction on / HI. If /H 1 = 1, then 
codim(Ker(r,,,)) = dim(Im(i,,,)) = 1. Since il,(;(l) 6? Ker(r,,,,) the result 
follows. So suppose IHI > 1, and that for any K < H, A(G) = 
Im(i,.,) + Ker(r,,,). Then A(G) = Ch ,I, Im(i,,,) + fl,< ,, Ker(r,;,,). and 
so Im(r,,,) = rG.H(CKiH WK.,)) + fLI Ker,,,,,,,,(r,,.,). Let 1 = a + b 
in this decomposition. Then since b = 1 -a is invariant under N,;(H), we 
have, by the Mackey decomposition theorem, b T” i,, = IN,(H): HI . 6, and 
so b E r,,,Um(i,,,)). Hence Wr,.,) = rG,/{ (Im(i,,.,)). Now if x E A(G). 
choose J’ E INi,.,) with -y 11, =?‘l,v Then .Y = y + (x - J, ) E 
Im(i,,,,;) +Ker(r,,,,). Now write 1 = a’ + b’ in this decomposition. If 
x E Im(i,,,,) n Ker(r, ;,,, ), then x = x.a’ + x.b’ = 0. 

(ii) Write A, = Im(r,,,,), A, = Ker(i,,,,;). We show by induction on 
subgroups K < H, that if M is a module for K, then M TH E A, + A:. By the 
Mackey theorem, 

‘We are grateful to L. Puig and P. Landrock for pointing out improvements on the original 
proof of theorem 6.7. 
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If KY< H, then MR lKwnH T” c M T” mod A,. If Kfi & H, then 
Mfi 1KvnH T” E A i + A, by the inductive hypothesis. Since M T” I,, E A,, 
some positive multiple of M T” is in A, + A,, and hence so is M T”. 

Now suppose x E A, n A,, with .Y = u 1,. By (i), we may assume 
u E Im(i,,,,;). Let e T” be the idempotent generator for Im(i,,,,;). Write 
e = L’ l,, + pi, with I! E A(G) and n’ E A,. Then 

u=u.eT”=(ul,,. e) T” = (xe) T” = (x.0 I,,) T” + (xw) T” 

=xT”. v+u. wT”=o. I 

6.8. COROLLARY. Let H < G and let V, and VI be kH-modules, and W, 
and W2 be kG-modules. 

(i) IfV,T”l,r~~T”1~then V,TGzV2T”. 

(ii) If W, 1, T” z W, 1, T” then W, lnz WI l,,. 

Proof: (i) V, T” - V, T” E Im(i ,,.G) n Ker(r, ;,,,) = 0 by Theorem 6.7 (i). 

(ii) W, i,, - W, l,, E Im(r,,,,) f? Ker(i,,,,) = 0 by Theorem 6.7 (ii). 1 

6.9. PROPOSITION. Let s be a species for A(G). The following conditions 
on a subgroup H are equivalent: 

(i) Ker(s) > Ker(r,,,). 

(ii) Ker(s) 2 Im(i,,,,). 

(iii) There is a species t for A(H) such that for all x 15 A(G), 
(s, x) = (6 x l,,,. 

Proof: The equivalence of (i) and (ii) follows from Theorem 6.7. The 
equivalence of (i) and (iii) follows from Proposition 5.3 and the going-up 
theorem (see, e.g., [ 1, p. 621). 1 

Note that in Proposition 6.9(iii) the species t need not be unique. We write 
t - s and say f fuses to s if (iii) is satisfied. This is a generalization of the 
concept of fusion of p’konjugacy classes of a subgroup, see Definition 6.12. 

6.10. DEFINITIONS. A species s of A(G) factors through H if and only if 
the equivalent conditions of Proposition 6.9 are satisfied. An origin of s is a 
subgroup minimal among those through which s factors. Ifs is a species for 
A(H), H < G, then the stabilizer of s is defined by 

Stab,(s) = {y E N,(H): (s, x) = (s, x’) for all x E A(H)}. 

Suppose R is spanned as a vector space by indecomposable modules. A 
t’ertex of a species s of R is a vertex of minima1 size over indecomposable 
modules V for which (s, V) # 0. 
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6.11. PROPOSITION. (i) If W is an indecomposable module with 
(s, W) # 0 then every vertex of s is contained in a vertex of W. 

(ii) The vertices of s form a single conjugacy class of p-subgroups oj 
G. 

Proof: (i) Suppose D is a vertex of s, and of V with (s, V) # 0. If 
(s, W) # 0 then (s, V@ W) # 0 and so (s, X) # 0 for some indecomposable 
direct summand X of I’@ W. But every vertex of X is contained in both a 
vertex of V and a vertex of W. By minimality, D is a vertex of X and is 
contained in a vertex of W. 

(ii) Follows immediately from (i). 1 

6.12. DEFINITION. A Brauer species is a species whose vertex is the 
trivial subgroup. Thus choosing an isomorphism between the 1 Glth roots of 
unity in k and in C:, the Brauer species are put in one-one correspondence 
with conjugacy classes of elements of order coprime to p. The value of a 
species on a module is the value of the Brauer character of the module on the 
corresponding element. Clearly the origin of a Brauer species is the cyclic 
group generated by the corresponding element. 

6.13. PROPOSITION. Let s be a species of A(G). Then the origins of s 
form a single conjugacy class of subgroups. 

Proof: Let H, and H, be two origins of s. Then since Ker(s) is a prime 
ideal, 

I t G 

So for some x E G. Ker(s) $ Im(i,,,,,; ). Hence by minimality H, = H;‘. 1 

We now investigate what happens when we extend the field k. 

6.14. PROPOSITION. Let k, be a separable algebraic extension of k, and 
let s be a species of A,(G). Then s extends to a species of A,,(G). For any 
such extension t of s we have 

(i) A vertex of s is a vertex oft, 

(ii) an origin of s is an origin oft. 

Proof: The fact that s extends to a species of A,,(G) follows from 
Proposition 5.2 and the going-up theorem [ 1, p. 621. 

(i) In [ 13, Lemma 4.61, it is shown that if M is an indecomposable kG- 
module and N is an indecomposable component of M ok k, , then a vertex of 
M is also a vertex of N. Thus a vertex of s contains a vertex of t. 
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To prove the converse, we let k, be the normal closure of k, . It suffices to 
prove the proposition with k, in place of k,. Let N be an indecomposable 
k, G-module with vertex D and (t, N) # 0. Let N, ,..., N, be the images of N 
under Gal(k,/k). Then the minimal equation of N over A,(G) is 

(X-N,) . .... (X-N,)=X’-A, ,X’-’ + ... *A,, 

with Ai E A,(G). Hence we have 

(t, N)‘- (s, A,+,)@, N)‘- ’ + ... i (s, A,,) = 0. 

Since (t, N) # 0, at least one of the (s. A;) is nonzero, and hence for some 
indecomposable direct summand A,! of Ai, (s, A() # 0. But D contains a 
vertex of every such A,!, and hence contains a vertex of s. 

(ii) This follows from the fact that the decomposition of Theorem 6.7 is 
preserved under field extensions, in the sense that i,!.(.(AJH)) < i,,,&lk,(H)) 
and Ker I,,Gkk,,) G KerAA,,G,h.,,). 1 

7. THE TRIVIAL SOURCE SUBRING 

7.1. DEFINITION. A group H is said to be p-hypoelementary if and only 
if H/O,(H) is cyclic. Note that this is not the same as the p-hyperelementary 
subgroups used in, for example, the theory of Schur indices, see [ 12, p. 3021. 
Let Hyp,(G) be the collection of p-hypoelementary subgroups of G. 

The following is a construction for species of A(G, Triv). Let 
HE Hyp,(G), and let V be an indecomposable module for kG with trivial 
source. Let V 1, = IV, @ W,, where W, is a direct sum of modules with 
vertex O,(H) and W, E A’(G, H). Then O,(H) acts trivially on W,, and so 
W, is a module for H/O,(H). Let b be a Brauer species of H/O,,(H). and 
define (s~,~, I’) = (6, W,). Then it is easy to check that s,,,~ is a species for 
A(G. Triv), and in [9. 101 Conlon proves 

7.2. THEOREM. A(G, Tric) is semisimple. and the species for A(G. Triv) 
are precisely the s11,6 deJned above. 

Following (6.6) we have a direct sum decomposition, 

A(G) = 0 A(G) . e,,,h. 
M.h 

(7.3) 

In this decomposition, H runs through a subset of Hyp,(G) containing one 
representative from each conjugacy class. For a given H, b runs through a 
set containing one representative of each conjugacy class under the action of 
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N,(H) of Brauer species of H/O,(H) whose origin is the whole of H/O,(H); 
ee,h is the corresponding idempotent in A(G, Triv). In [lo] Conlon also 
shows that rF,.Yc(H) : A(G) . eH,h + A(N,(H)) + eH.h is an isomorphism, and 
that r vc,(,,).H : A @dH)) ’ eH,h --t A(H) . el,,h is an injection. If K < H, then 
e,,,h 1, = 0. Thus if s is a species of A(G), then it is a species of a unique 

A(G) . e/1.b’ and H is an origin of s. This, together with Proposition 6.13. 
proves 

7.4. PROPOSITION. Let s be a species of A(G). Then the origins of s form 
a single conjugacy class of hypoelementary subgroups of G. 

In order to analyse the relationship between vertices and origins, we need 
another result of Conlon, and some preliminary lemmas. 

7.5. LEMMA (Conlon 181). For any H < G, A(G, II) is a direct 
summand of A(G). Contained in A(G, H) there is a canonical direct 
summand A”(G, H) of A(G), with the properties that 

A”(G, H) z W(G, H) ” W(N,(H), H), 

and A(G, H) = A’(G, H) @ A”(G, H). This gives a direct sum decomposition. 

A(G, H) = @ A”(G, 0). 
,I 

In this decomposition, D runs through a set containing exactly one represen- 
tative from each conjugacy class in G of p-subgroups of H. The map 

rc.,,,;(,,) : A “(G, W + A “(NG(W, HI 

is an isomorphism. 

7.6. LEMMA. If D is a vertex for s then s factors through N,,(D). 

Proof Here s is nonzero on A(G, D) and zero on A’(G, D). Hence it is a 
species of A “(G, D) and factors through rc,,‘Lc (,1) by Lemma 7.5. 1 

7.7. LEMMA. Suppose k is a separably closed field and V is an indecom- 
posable kc-module. Then V is absolutely indecomposable. 

Proof Let E = End,,(V) and k, be the algebraic closure of k. By 
[ 14, (18.4)] we have E ok k, = Endkl,(V ok k,). Since J(E) ok k, c 
J(E ok k,), we need only show that (E/J(E)) ok k, is a local ring. Now by 
Noether’s theorem [29, 3.2.1, p. 781, E/J(E) is a field, since k is separably 
closed. Let e = Cai @ Ai be an idempotent in (E/J(E)) Bk k,. Since k, is 
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purely inseparable over k, there is an integer n such that for all i, ;lf” E k. 
Then 

Hence e = 1, and so (E/J(E)) ok k, is a local ring. m 

7.8. THEOREM. Let s be a species of A(G). If H is an origin of s then 
O,(H) is a t’ertex of s. 

ProoJ: By Proposition 6.14 we may replace the field k by its separable 
closure. Then by Lemma 7.7, any indecomposable kG-module is absolutely 
indecomposable. 

By Proposition 6.9, s is nonzero on some module induced from H. Thus H 
contains a vertex of s, and hence so does O,(H). Suppose D < O,,(H) is a 
vertex of s. Let W be a kc-module with vertex D and (s, W) # 0. Let t be a 
species of A(H) which fuses to s, and let V be an indecomposable summand 
of W l,, with (t, V) # 0. Then a vertex of V is contained in some G- 
conjugate D” of D, and hence so is a vertex D, of t. Since H is an origin for 
t, Lemma 7.6 shows that D, u H. 

Let V, be a module for kH with vertex D,, such that (t, V,) # 0. Let U be 
a source of V,, and let I be the inertial group for U in H. Let E be the 
inverse image in H of a Hall p’-subgroup of H/D, containing a Hall p’- 
subgroup of I/D,. Let E, = En I. Then by Clifford theory we have 
0’ T” = X, @ ... OX,, where r = IE, : D, 1, dim(Xi) = q . dim(U), q = 
I!?: E, 1, (qr, p) = 1, and the Xi are indecomposable. Since V, is a direct 
summand of I/ T”, this means that q . dim(U) divides dim(V,), by the 
Mackey decomposition theorem and the fact that E, contains the inertial 
groups in E for all H-conjugates of U. Now U is absolutely indecomposable, 
and so Green’s theorem [ 17, Theorem 81 implies that U T’p(“’ is indecom- 
posable. Thus U 7” lo,,Hj is a sum of indecomposable modules each having 
dimension IO,(H): D,l .dim(U). Thus IO,(H): D,l .dim(U) divides 
dim(V,). But so does q . dim(U), and so dim(V,) is divisible by 
q / O,(H) : D, 1 . dim(U). Thus V, is induced from one of the Xi, and so by 
Proposition 6.9, (t, VI) = 0. This contradiction shows that D = O,(H), and 
proves the theorem. 1 

8. THE INDUCTION FORMULA 

Let s be a species of A(G) with origin H < G, and let V be a module for 
K < G. We want a formula for (s, V 7”) in terms of species of K. Let t be a 
species of H fusing to s. Then 
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(s, v T (;) = (t, v T (; 1,) 

by the Mackey decomposition theorem. Now if H < K”, (t, Vx lllnnw T”) is 
zero by Proposition 6.9, since H is an origin of t. Thus we have the formula 

(8.1) 

The sum runs over K-conjugacy classes of G-conjugates of H contained in K. 
In order to convert this into a formula involving species of K, we must 
examine the number of species of K fusing to s. 

8.2. THEOREM. Let s be a species of A(G) with origin H. Regard s as a 
species of Im(r,,,). Then s extends uniquely to a species t of A(H)“G(“‘, and 
N,(H) is transitive on the extensions t, ,..., t, of t to A(H). The number of 
extensions is r = (N,(H): Stab,(t,)l. 

Proof: By Proposition 6.9(iii), s certainly extends to species of A(H),““’ 
and A(H). Let t be an extension of s to A(H)“““. Then for x E A(H),““, the 
Mackey decomposition and the fact that H is an origin for s imply that 
(t, x T” 1,) = IN,(H): HI(t, x). Thus (t, x) = (l/IN,(H): Hl)(s, x T”) is 
uniquely determined by s. 

Now suppose t, and t, are two extensions oft to A(H), and that t, # t; for 
all g E N,(H). Then by Lemma 6.5 there is an element x E A(H) such that 
(t,,x)=Oand (tz,x7)=(t!m’ , x) = 1 for all g E N,(H). Let J = n,E,,C;C,,, x”. 
Then 0 = (t, 3 Y) = (6 4’) = &&<;(H)@ZY xR) = 1. This contradiction proves the 
theorem. The formula for the number of extensions is clear. 1 

By Theorem 8.2, the contribution in (8.1) from a particular conjugate H” 
is 

x /Stab,(F): N,(H”)I (t”, V l,,J. 
IX- \ 

In this expression, t” runs over the species of HK fusing to s. Ifs, is a species 
for K fusing to s, and with origin H 7, then by Theorem 8.2, the number of t’ 
fusing to s0 is 

I N,(HX): Stab,(f”)l = 1 N,(H’) n Stab,(s,,): Stab,(t’)l. 
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Thus 

\‘ /Stab,(P): N,(H”)I (t”, V l,,J 
/R-So 

= lN,(ff’) n Stab&,) : N, WK) 1 (so, VI. 

Thus we can rewrite (8.1) as 

(s, V T “) = \‘ 1 N,(Orig(s,)) n Stab,(s,) : N,(Orig(s,)) / (so, V). (8.3) 
sg-s 

In this expression, s,, runs over the species of K fusing to s, and Orig(s,) is 
any origin of s,. 

The expression (8.3) is called the induction formula, since it is a 
generalization of the usual formula for the value of an induced character (see 
also (9.17)). 

9. FINITE DIMENSIONAL SUMMANDS OF A(G) 

We now investigate what happens when we project everything onto a finite 
dimensional summand. Suppose A(G) = A @ B is an ideal direct sum decom- 
position, with projections TI , : A(G) + A and rc2 : A(G) + B. Suppose the 
following conditions are satisfied: 

(i) A is finite dimensional. 

(ii) A is semisimple as a ring. 

(iii) A is freely spanned as a vector space by indecomposable 
modules. 

(iv) A is closed under taking dual modules. 

Under these conditions we will define tables T, and Uij resembling the tables 
of modular irreducible characters and projective indecomposable characters. 

9.1. Remarks. (i) Any finite dimensional semisimple ideal I is a direct 
summand since 

A(G) = I @ n ker(s). 

(ii) Any direct summand satisfying the above conditions automatically 
contains A(G, 1). This follows from Lemma 9.8, since by tensoring P, by 
itself and taking direct summands, we obtain all projective modules for 
G/O,,(G), and hence we obtain the idempotent generator for A(G, 1). 
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9.2. EXAMPLES. (i) Since the Brauer species separate elements of 
A(G, l), and A(G) = A(G, 1) @ A,(G, l), this means that A(G, 1) satisfies the 
above conditions. 

(ii) In 1211, ‘t h 1 1s s own that for H cyclic. A(G. H) is a finite dimen 
sional semisimple ideal. Thus A(G, Cyc) satisfies the above conditions. We 
write A(G) = A(G, Cyc) @ A,,(G, Cyc). This case will be studied in more 
detail in Section 10. 

(iii) It can be seen from the tables in Appendix 1 that the Green Ring 
of the Klein four-group has infinitely many such summands. 

9.3. LEMMA. The inner products ( , ) and ( , ) are nonsingular on A. 

Proof. Given x E A, choose y and z in A(G) as in Proposition 3.7. Then 
(-u, %(Y)) = (132 * 7&J)) = (1,0> = 0 using property (iv) and the fact that 
A . B = 0. Hence 0 # (x, y) = (x, ?I,( y)). Similarly (x, z,(z)) # 0. I 

9.4. DEFINITIONS. Let s,,..., s, be the species of A, and V, ,...) V,, the 
indecomposable modules freely spanning A. Let G, ,..., G, be the 
corresponding atoms. The atom table of A is the matrix 

The representation table of A is the matrix 

uii = (s;, V;). 

Let r = xI(a(G)). 

9.5. LEMMA. r is a lattice in A. 

Proof Let x E a(G). Then for each i. (n,(x). Vi) E L. u 

9.6. LEMMA. Let V be a kG-module in a(G), and let s be a species of A. 
Then (s, V) is an algebraic integer. 

ProoJ: The F-span in A of the tensor powers of x,(V) form a sublattice 
of r. Since this lattice satisfies the ascending chain condition. this implies 
that for some n, 

This gives a manic equation with integer coeffkients satisfied by the value 
of every species of A on V. 1 
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9.7. Question. (i) Under th e on nions of Lemma 9.6, is it true that c d’ 
(s, V) is always a cyclotomic integer? 

(ii) T/(a(G)nA) IS a finite abelian group of order det((V,, V,)). Is it a 
p-torsion group? 

9.8. LEMMA. P, EA. 

ProoJ Since n,( 1) is the identity element of A, it is nonzero, and hence 
for some Vj, (Vj, 1) = (Vj, ~~(1)) # 0 by Lemma 9.3. Thus by Corollary 2.4 
some Vi is equal to P,. I 

We choose our notation so that P, = V,. By Lemma 6.5, the matrix Uii is 
invertible. We define 

m;=(Uq, =y (V’),(l, Vj). 
I 

Then (I, Vi) = cj Uiiml, and so for any x E A(G) and y E A we have the 
equations, 

Now by Lemma 9.3 this means the mi are nonzero, and so we can define 

ci = c(si) = cG(si) = l/m,;. (9.9) 

Thus we have, for x E A(G) and y E A, 

(x.y)=\ 
7 (sj? x)(sjqY) 

7 '5 

(9. IO) 

9.11. EXAMPLE. If A = A(G, I), then the ci are the orders of the 
centralizers of the origins of the sj, as is well known from the orthogonality 
relations of Brauer character theory. For a more general A, the c,~ need not, 
however, be positive or rational. Indeed, they are not, in general, even for 
A = A(G, Cyc). 

Now let pi = (si, u) = (si, n,(u)). By Corollary 2.3, for x E A(G) and 
.1’E A, 

(x, Y) = (-x3 u . Y>. 
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and so by (9. IO) we have 

(9.12) 

Now let vff be the matrix obtained by transposing I/ and replacing each 
representation by its dual. Let C be the diagonal matrix of c/s. The 
orthogonality relations (9.10) can be expressed as 

TC-‘c”f= 1. (9.13) 

9.14. Question. Is it true in general that p= U’, the Hermitian adjoint 
of U? In other words, is it true that (s, ,?) = (s, x) ? 

9.15. Remark. If A, and A, are two direct summands of A(G) satisfying 
(ik(iv) and s is a species which is not identically zero on A, or A>, then the 
two definitions of c(s) obtained by viewing s as a species of A, and A2 
coincide. This follows from the ensuing more general discussion. 

Now suppose si is a species of A which factors through a subgroup 
H < G. Let rC,,(A) ,< A’ with A’ also satisfying (it(iv) (e.g., in Examples 
9.2(i), (ii) let A’ = A(H, 1) and A(H. Cyc), resp.). Choose a species ti of A’ 
fusing to si. We wish to compare cc,(si) with c,,(ti). 

Choose xi E A with (sk, xi) = hi, and yi E A’ with (t,, pj) = 6i,n. Then 
( ,v~ T ‘, xi> = ( .Y~, xi I,{) by Corollary 2.6. Hence 

\T tsk,Jj Tcr)(~k,~i) =\- (tm,Yjli)(tm,x,i!,) 
T C&k) 7;; Crr(fm> ' 

by (9.10). Thus by the choice of -yi and yi, 

(s,,J~ T”) = (cj, xi 11,) (si, xi) I =-= 
cG(si) C,&j) C&i) C&i) . 

Hence cJsi) = (si, yj T “) c,,(fj). Now using the induction formula (8.3), we 
obtain the desired equation, 

cG(si) = 1 N,(Orig(ti)) n Stab,(tj): N,,(Orig(tJ) / . cH(ti). (9.16) 

Conversely, we may rewrite the induction formula in the form 

(9.17) 

In this formula, s,, runs over the species of A’ fusing to s. 
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10. THE CYCLIC VERTEX IDEAL A(G, Cyc) 

In this section we shall assume that k is algebraically closed. As in 
Section 9, we let rc, :A(G)+A(G, Cyc) and q: A(G) +A,(G, Cyc) be the 
projections. By Example 9.2(ii), we may apply all the results of Section 9 to 
the ideal A(G, Cyc). 

By definition of vertex, the species of A(G, Cyc) are precisely the species 
with cyclic vertex. Hence by Proposition 7.4 and Theorem 7.8 these are the 
species whose origins are the semidirect product of a normal cyclic p-group 
by a cyclic group of order coprime to p. We shall call such a group p . p’- 
metacyclic. By Proposition 6.9, our first task is to examine the species for 
p . p’-metacyclic groups. 

Let H be a p . p’-metacyclic group of order p” . m with (p, m) = 1. Let 

H = (x3 y : ,y”’ = ~3”’ = 1, ,yy = .l.“). 

where a is a primitive dth root of 1 modulo p’, d divides p - 1 and tl divides 
m. Let B be a primitive mth root of 1 in k with a = 8”‘” as elements of the 
prime field of k. There are m irreducible modules X,(@‘), 1 < q < m, for H, 
which are one dimensional and are given by x t-1 (1). J F+ (eq) as matrices. 
If 1 < n <p’, there are m indecomposable modules of dimension n. These are 
denoted X,(#‘), 1 < q < m. These account for all the irreducible modules. 
X,,(Y) is uniserial, with Loewy layers Li(X,,(Sq)) g X,(a”-‘0”). We .write X,, 
for X,( 1). 

10.1. The Case r = 1 

In this case H has order p . m, (p, m) = 1. The following relations are 
sufficient to determine the structure of the Green Ring: 

x, (eq 63 x, z x,(ey. 

X20X,-X,-,(a)OX,,+, if 1 <<n <p, (10.2) 

2 X,(a) @ X, if n =p. 

Thus the species are as follows. Let 

d-x 
n 

x-x-’ 
when xf *I. 

Let F: be a primitive 2pth root of unity and 2 a primitive 2mth root of unity 
in I. Define 
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(10.3) 

@(&‘I, A’), X,(P)) = A291+t(n -“m’dfn(&‘I), 

for t, f 0 modp. Then s(E’~, 1’) = S(E- ‘1, n’), and the functions defined by 
(10.3) satisfy the relations given by (10.2). Thus s(l), s(A”), and S(F’I, A’) 
are the p . m species of A(H). This means the representation depicted in 
Table I. 

10.4. EXAMPLE. Let p=2 and m= 1. Then H=(x:x’= 1). The two 
species are s( 1) and ~(-1, -1). Their values are (s(l). V) = dim(V) and 
(~(-1. -l), I’) = dim(Ker(x + l)/Im(x + 1)). See also Section 12. 

10.5. The Case m = 1 

In this case H is cyclic of order pr. It is shown in [ 18, Sect. 2.31, that the 
following relations define A(H) as an extension of the Green Ring of the 
quotient H/H, of order prm ’ . 

cx,r ‘+I -x,r-IL,). x, 
=Xpr qn-Xpr IL,, 1 <n<p’-‘, 

=Xpr ,tn +Xn-p’-Ir P r- ’ < n < (p ~ 1)p’-‘. 

=x n..pr- I + 2Xpr-X*p’L(n+p’ 1)’ (p - 1)p’-’ < n <p’. (10.6) 

The species are defined inductively as follows. Let s,. 1 < t <p be the species 
for C, given in Table I, and let s, ,.,,,,,, , , 1 < ti <p, be the species of H/H,. 
Define 

Pf ,(,,., f, , = 6, ,....., r ,J/P -xv 1-I). 

TABLE I 

Brauer Species Non-Brauer Species 

s(l) s@“) (t # 0) S(E . *I’ A’) (I, #O) 

.L- .-~~~ 
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(These are the pi defined in Sect. 9, and are all * 1. In fact pi is the sign of 
c(si) in this case). Let n = n&’ fn,, with 1 <n,,<p and 1 <n, <p’-‘. 
Then the species s,~,,,,,,, of H are defined by 

(St ,,... f,’ x,+ I - *n> = (Sf ,,..., I,~ ,’ Kl,+ I - Kl,>(Sfrl ‘q,+ I -*no> p::i .,,, 1,’ 
(10.7) 

Thus to obtain the representation table for C,, we take the successive 
differences of the rows of the table for C,, form the tensor rth power of the 
resulting table, multiply by the appropriate signs and sum back up again. 

10.8. EXAMPLE. Let p = 3. The representation table of C, and its 
successive differences are as follows, where the top row of the first table 
gives c(s;), (see (9.9)). 

3 6 -2 

I I I I I I 
2 -1 1 I -2 0 
3 0 0 1 I -I 

Tensor squaring and multiplying by the appropriate signs, we get the first of 
the following tables. Summing back up again gives the second, which is the 
representation table of C,. 

9 18 -6 18 36 -12 -6 -12 4 

I I I 1 I 1 1 I 1 
I -2 0 1 -2 0 I -2 0 
I l-l I l-l I I -1 
I I -1 --2 -2 2 0 0 0 
I -2 O-2 4 0 0 0 0 
I I I -2 -2 -2 0 0 0 
I I I 1 1 1 -1 -1 -1 
I -2 0 1 -2 O-I 2 0 
I l-l I I -I -I -I I 

I I I I I I1 I I 
2-l I 2 -I I 2 -I I 
3003003 00 
4 1 -1 1 -2 m-2 3 0 0 
5 -I -1 -1 2 2 3 0 0 
6 0 O-3 0 0 3 0 0 
7 I I-2 I I2 -I -I 
8 -1 1 -I -I 1 I I -I 
9000000 00 

10.9. The General p . p’-Metacyclic Group 

We conjecture that the following formula is the appropriate generalization 
of (10.3) and (10.7). Let 

s 1,,( = S(& r ft. 1’) if t, # 0. 

= s(P) if t, = 0, 
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be the species given in (10.3). The remaining definitions are as in case 10.5. 
Then the species of H are defined inductively by 

(St ,.....f r.,’ x,+ ,(W - X,(W) 

= (St I,.... I, ,.dk,+M) -Xn,(WN, ,.I’ x,,,I4 I(@) 

- xn”v)) .P:‘::....r, ,.I’ (10.10) 

10.11. Comments. If a representation is held on a computer as 
matrices, then calculation of values of cyclic vertex species is very easy. 
They can be calculated from the ranks of elements of the form (X - AZ)’ of 
the group algebra. 

We now wish to prove a copying theorem for species with cyclic origin on 
trivial source representations. Let R be a complete discrete valuation ring in 
characteristic 0 with maximal ideal p and R/p = k. 

10.12. LEMMA. Every indecomposable kG-module with trivial source lifts 
uniquely to an R-free RG-module with trivial source. 

Proof See [23, Proposition 1, p. 1021. 1 

10.13. LEMMA. Let V be an R-free indecomposable RG-module with 
trivial source, and let g E G. Write g = xy = yx, with x a p-element and y a 
p/-element. Then x,(g) = xw( y), with W = C,,(x), the space offixed points of 
x on V. 

Proof: V 1 (xj is a sum of R-free trivial source indecomposable R(g)- 
modules. These are the modules of the form X = X, @ X2, where X, is a 
permutation module for R(x) and X, is a one-dimensional module for R(J’). 
Then 

xx(g) = xx,(x) xA#) = X~,(.~)~Y). 

Hence xv(g) = xd~). 1 

10.14. THEOREM. Let V be a trivial source kc-module and s a species of 
A(G) with cyclic origin (g). Let V be the ltft of V to an R-free RG-module 
with trivial source (see Lemma 10.12). Then (s, V) = Xc(g”) for some 
generator g’ of (g). 

Proof Let g = xy = yx, with x a p-element and y a p/-element. By, 
Theorem 7.2, the species s is evaluated on V by finding the fixed space of x 
and evaluating a faithful Brauer character of (y). Now by Lemma 10.13, 
C,(x) @ k = C,(x). Hence there is a generator y’ of (y) such that 
(s, V) =xc+)(yr), by definition of Brauer characters. Hence by 
Lemma 10.13, (s, V) = xp(x . yr). I 
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10.15. Remark. If char(k) = 2, then every species with cyclic vertex has 
cyclic origin. 

10.16. PROBLEM. Let D = (x) be a cyclic p-subgroup of G. How many 
representations does G have with vertex D? 

Solution. Let IDl=p’ and let D’ = (2’). We must calculate 
dim: (A(G. D)) - dim, (A(G, D’)). S ince these rings are semisimple (see 
Example 9.2(ii)) this is equal to the number of species of G with vertex D. 

Let H be a hypoelementary subgroup with O,(H) = D, and let 1 HI = p” . s, 
(p. S) = I. Then H has pr ~ ’ (p - 1) s species with vertex D. By Theorem 
8.2, two such fuse to the same species of A(G) if and only if they are 
conjugate under NG(H) < N,(D). 

Thus if h is the number of N,(D)-conjugacy classes of p/-elements of 
N,(D), then the total number of distinct species of A(G) with vertex D is 
h . prmml(p - 1). Hence this is also the number of indecomposable represen- 
tations of G with vertex D. 

11. ATOM COPYING 

In this section, we prove a theorem about local control of the atoms. The 
tools for this section are the Green correspondence and an extension due to 
Burry and Carlson. 

11.1. PROPOSITION (Burry and Carlson [4, Theorem 51). Let D be a p- 
subgroup of G, and let H be a subgroup of G with N,(D) < H. Let V be an 
indecomposable kc-module such that V J,, has a direct summand U with 
vertex D. Then V has vertex D and V is the Green correspondent o,f U. 

11.2. THEOREM (Atom copying by induction). Let D be a p-subgroup of 
G, and let H be a subgroup of G with N,(D) < H. Let Vi be an indecom- 
posable kG-module with vertex D and atom Gi. Let the kH-module Vi be the 
Green correspondent of Vi, and let Gi be the corresponding atom. Then 
G,; ?” = Gi. 

ProoJ: By Proposition 11.1, if Vk is an indecomposdable kG--module, 
then V, I,, has Vj’ as a direct summand if and only if i = k, and then only 
once. Thus by Corollary 2.6 and Theorem 3.5 we have 

Hence (Vk, G,! TG - Gi) = 0, and so by Proposition 3.7, 
G; TG-Gi=O. I 
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11.3. Remark. For Vi a module whose vertex is a full Sylow subgroup, 
we also have Gi 1, = G/. The proof is trivial. 

11.4. EXAMPLE. Let G = L,(2) and p = 3. Since a Sylow p-subgroup is 
cyclic of order 3, we may determine the whole atom table and representation 
table. Since the Sylow 3-normalizer is S,, we must first determine the tables 
for S,. From Table I we see that these are as given in Appendix 2. Thus 
from the atom copying theorem 11.2 and the 3-modular Brauer character 
table of L,(2) we have the following portion of the atom table for L,(2) (see 
Appendix 2 for an explanation of the notation). 

168 8 4 7 1 12 -4 -4 -4 

IA 2A 4A IA 1 7A2 3A 1 3A2 S,A I S,A2 

0 0 0 0 0 3 -1 -I -1 
0 0 0 0 0 3 -1 I I 
0 0 0 0 0 -3 m-1 i -i 
0 0 0 0 0 -3 -1 -i i 
1 I 1 1 I 
3 -I I b7 ~, / 

3 -1 I bl 
6 2 0 -1 m-1 
7 -1 -1 0 0 

The value of species on the simple modules apart from the one of 
dimension 7 are easy enough to see, since they are all trivial or projective. 
How can we find the values on the one of dimension 7? 

Dualizing the portion of the table we have so far, using (9.13) we get the 
following portion of the representation table 

168 8 4 7 7 12 -4 -4 -- 4 

1A 2A 4A 7A I 7A2 3A I 3A2 S,Al S,A2 

I I I I 
I I -1 -I 

-1 I i i 
-I I i -i 

9 I 1 2 2 0 0 0 0 
3 ~I I bl 0 0 0 0 
3 -I I / 1~7 0 0 0 0 
6 2 0 -I -1 0 0 0 0 

15 -I I I I 0 0 0 0 



THE GREEN RING OF A FINJTE GROUP 321 

Which of the first four rows corresponds to the 7-dimensional irreducible? 
The first must be the trivial module, and the third and fourth are not self- 
dual. Thus the only possibility is the second row. and so the completed atom 
table is 

168 8 4 7 7 12 -4 -4 -4 

1A 2A 4A 7A I 7A2 3A 1 3A2 S,Al S,A2 

0 0 0 0 0 3 -1 -1 --I 
0 0 0 0 0 3 -I I 1 
0 0 0 0 0 -3 -1 i -i 
0 0 0 0 0 -3 -1 I i 
I 1 I I 1 I I I 1 
3 -1 1 b7 y 0 0 0 0 
3 -1 I I. b7 0 0 0 0 
6 2 0 .- I -1 0 0 0 0 
7 -I m-1 0 0 I 1 -1 -1 

Dualizing this, the complete representation table is 

168 8 4 7 7 12 --4 -4 -4 

IA 2A 4A 7A 1 lA2 3A I 3A2 S,AI S,A2 

I 1 I I I I I I 1 

7 -1 -1 0 0 I 1 -I -I 

8 0 0 1 1 -I I -i i 
8 0 0 I 1 -1 I -i 
9 1 I 2 2 0 0 (I 0 
3 -1 I b7 : 0 0 0 0 
3 -1 1 : I 67 0 0 0 0 
6 2 0 -I -1 0 0 0 0 

15 -I -1 1 1 0 0 0 0 

From this table, we can work out, for example, the decomposition of 
tensor products, and dimensions of spaces of homomorphisms. 

1 1.5. Question. Let G be a finite group and k a field. Let M be an 
indecomposable kG-module with cyclic vertex, and S a simple kG-module. 
Can it ever happen that dim,Hom,,(S. M) > I? 

Answer. Yes. Let G = M,, and k an algebraically closed field of scharac- 
teristic 2. By the techniques of Sections 9-l 1, we can show that the cyclic 
vertex tables for kG are as given in Appendix 2. Using (9.12) and the fact 
that pi is just the sign of the corresponding ci, we can see that the 200. 
dimensional cyclic vertex indecomposable module has two copies of the 44- 
dimensional irreducible module in its socle. 
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12. THE MIDDLE OF A MODULE 

Let G be a finite group, and k a field of characteristic 2. Let t be an 
involution in G, and H = C,(t). Let d = 1 + t as an element of the group 
algebra of H. If V is a module for H, we also use the symbol d to denote the 
map given by right multiplication by d. 

12.1. Definition. /1,(V) = A,,“(V) = Kerr (d)/Im,.(d) is called the middle 
of V with respect to t. (Note that d2 = 0.) If W is a kG-module, the middle of 
W with respect to t is defined to be Al(rG,,,(W)). 

If f: V + W is a kH-module homomorphism, then f(Ker,(d)) 5 Ker,, (d) 
and f(Im,(d)) G Im,(d). Thus f induces a homomorphism n,(f): i,(V) + 
A,(W). We shall use the symbol 1, to denote both this functor and the 
corresponding map of Green Rings A., : ,4(H) + A (H/(t)). 

12.2. LEMMA. The map A, is a ring homomorphism. 

Proof We must show that for V and W kH-modules, 

KeW) Kerdd) - Kervow(4 
h44 @ Im,(d) = Im,&d) ’ 

The action of d on V @ W is 

(u@w)d=v@wd+cd@w+ud@wd. (12.3) 

Let i: Ker,(d) @ Ker,(d) 4 I’@ W be the inclusion map. Then by 
(I 2.3) we have 

(i) Im(i) s Ker,@,+(d). 

(ii) (Kerr,(d) @ Im,(d)) i E Im,.,z,(d), 

(iii) (Im,(d) @ Ker,(d)) i E ImVoR.(d), 

(iv) Im,j,9, (d) E (Ker,(d) 0 Im ,(d)) i + (Im,(d) @ Ker ,(d)) i. 

Thus i induces an injection, 

Ker,.(d) Ker d4 
j: Im,(d) 0 -= 

Ker,(d) @ Ker..(d) 

%.W Im,(d) @ Ker,(d) + Ker,.(d) 0 Im,.(d) 

4 Kervo ,.A4 
Im v.,(d) ’ 

Comparing dimensions (cf. Example 10.4) we see that j is an 
isomorphism. m 
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We can use A, to obtain new species for G. Ifs is a species for H/t, we define 
$!s as a species for G by 

(#,s, V) = 6, ~,(r,,,,(V)). (12.4) 

12.5. LEMMA. Let (t) < K < H, t E Z(H). If V is a module for K. then 

(At,,(V)) ;“I(‘) z A,,,,( v ?“). 

ProojY Consider V T” as VBkrc kH. Then since t E Z(H), we have 
(LT@ g) d = vd @ g. Hence Ker,.:,,(d) = (Ker, (d)) T” and Im,, +,,(d) = 
(h,;(d)) T”, as submodules of V 1”. Hence the isomorphism. 1 

12.6. PROPOSITION. Let s be a species for H/(t) with origin K/(t) and 
vertex D/(t). Then 4,s is a species for G with origin K and vertex D.. 

Proof It is clear that 4,s factors through K. Suppose it factors through 
K, < K. Then by Proposition 6.9 there is a module V for K, with 
0 f (#r~, V T”) = (s, A,( V T” I,,)). By the Mackey decomposition and 
Lemma 12.5, s is nonzero on some (A,,,,,,,,(W)) T”‘(‘), where W is a module 
for (K, , t) induced from K, . Since K/(t) is an origin for s, this means that 
K = (K,, t) = K, x (t). But then W is projective as a module for (t), and so 
A,,(l(,,,)( W) = 0. This contradiction shows that K is an origin for 4,s. Now by 
Theorem 7.8 it follows that D is a vertex for cd,s. 1 

12.7. PROPOSITION. Let V be an indecomposable kG-module, and 

wpose WdVN h as an indecomposable direct summand X with certex 
D/(t). Then D is contained in a aertex of V. 

ProoJ Since the vertices of every direct summand of r(;.,,( V) are 
contained in vertices of V, we may take G = H. Let D, be a vertex of V. Let 
W be a k(D,, t)-module, induced from a kD,-module, with W 7” = V @ V,,. 
Then by Lemma 12.5, we have 

k.(,,,,&+‘) T”“” = h.,f(w T”, = A 1.1, (~1 o h.,,(vo). 
Thus /z,,,,(V) is (Dl, t)-projective. If t @ D,, then W is projective as a (t)- 
module, and so A 
proved. 1 

r,(,l,,,)( W) = 0. Thus t E D, and the proposition is 

12.8. Remarks. (i) By Proposition 12.6, we now have a plentiful supply 
of species with a given vertex. For example, we may take a central series for 
the vertex 

1 < (t,) < (t,, tz) < ... < (tl . . . . . t,) = D, 

with each ti an involution modulo (t , ,..., tim ,). If b is a Brauer species of 
C,(D), then $,, ... #I, . b is a species of A(G) with vertex D. 
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(ii) Proposition 2.7 gives us a method for finding a lower bound for the 
vertex of an indecomposable kG-module I’. 

APPENDIX 1: REPRESENTATIONS OF THE KLEIN FOUR-GROUP 

In this Appendix, we give the complete representation table and atom table 
of the Klein four-group V,. over an algebraically closed field of charac- 
teristic 2. 

The set of species for A ( V4) falls naturally into three subsets: 

(i) The dimension. 

(ii) A set of species parametrized by the nonzero complex numbers 
z E 1: {O). 

(iii) A set of species parametrized by the set of ordered pairs (N, A) 
with NE k\{O) and 1 E [P’(k). 

The set of indecomposable representations also falls naturally into three 
subsets: 

(i) The projective indecomposable representation of dimension four. 

(ii) A set of representations parametrized by the integers m E Z, and 
of dimension 2 /m 1 + 1. These are the syzygies of the trivial module. 

(iii) A set of representations parametrized by the set of ordered pairs 
(n, 1) with n E N\(O) and L E V’(k), and having dimension 2n. 

Define infinite matrices A, B, C and D as 

A‘\A 1 2 3 4 5 

*1 I 2 0 0 0 0 
2 2 2 0 0 0 
3 2 2 2 0 0 
4 2 2 2 2 0 
5 2 2 2 2 2 

B\,L I 2 3 4 5 

*l 1 v 2 42 0 0 0 
2 2 2 0 0 0 
3 2 2 2 0 0 
4 2 2 2 2 0 
5 2 2 2 2 2 
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C\A 1 2 3 4 5 ,., 

nl 1 -2 2 0 0 0 
2 0 -2 2 0 0 
3 0 0 -2 2 0 
4 0 0 0 -2 2 
5 0 0 0 0 -2 

D\L 1 2 3 4 5 ,.. 

n 1 1 2-2\/2 2+2\/2 0 0 0 
2 \;'2 - 2 -i//z -2 2 0 0 
3 0 0 -2 2 0 
4 0 0 0 -2 2 
5 0 0 0 0 -2 

Let 0 represent an infinite matrix of zeros. Then the representation table and 
atom table for V, are: 

Representation Table for V, 

Parameters dim z (lV.co) (N.0) (N, 1) (N.1,) (N.1,) (N./i.,) ‘.’ 

(Projective) 4 0 0 0 0 0 

171 2 ml+ I Zrn I 1 I I 

(12. co ) 2n 0 A 0 0 0 
(n. 0) 217 0 0 A 0 0 
(t1, 1) 2n 0 0 0 A 0 

(c/I,) 217 0 0 0 0 B 
(II. 1,) 2t1 0 0 0 0 0 
(n. A,) 217 0 0 0 0 0 

0 0 

I I 

0 0 
0 0 
0 0 

0 0 

B 0 
0 B 
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Atom Table for If, 

Parameters dim ; (/v. co) (‘V.0) (,A’. I) (,V.!,,) (V.1,) (N.J.,) “’ 

(Simple) I I I I I I I I 

WI 0 -i ‘?? ‘(I 1)’ 0 0 0 0 0 0 

(II. a: ) 0 0 c 0 0 0 0 0 
01. 0) 0 0 0 c 0 0 0 0 
01. I) 0 0 0 0 c 0 0 0 

(tf. i,) 0 0 0 0 0 D 0 0 
(If. i.2) 0 0 0 0 0 0 D 0 
(IL i,) 0 0 0 0 0 0 0 D 

APPENDIX 2: SOME CYCLIC VERTEX SPECIES TABLES 

In this Appendix, we give some examples of the tables defined in 
Section 9, for the summand A(G, Cyc). These were calculated using the 
results of Sections 9-l 1. 

The notation used is an adaption of the “Atlas” conventions (see 11 I I). 

and is as follows. 
The top row gives the value of c(s), defined in (9.9) and calculated using 

the formula (9.16). The second row gives the isomorphism type of an origin 
of s, followed by a letter distinguishing the conjugacy class of the origin, and 
a number distinguishing the species with that origin, if there is more than 
one. The last column gives the conjugacy class of the vertex of the represen- 
tation. in both the representation table and the atom table. If there is more 
than one possible source with a given vertex, the dimension of this source is 
given in brackets. For each group, the atom table is given first, followed by 
the representation table. 

Irrationalities 

The irrationalities we find in these tables are as follows 

bn=+(-1 +&I) if n- 1 (mod4), 

= 4(-l + iJr2) if n = 3 (mod4), 

i.e., the Gauss sum of half the primitive nth roots of unity. 
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zn = elxUn 

rn = Jn, 

in = i Jn ; 

is a primitive nth root of unity, 

j’m denotes the image of the adjacent irrationality under the Galois 
automorphism zn E+ (zH)~: * denotes *2: **denotes *(-1). 

G=C, p=2 

2 7 2 -2 
IA 2A i‘1.Y IA 2A ct.\ 
0 -2 2‘4 I 1 2A 
I I IA 2 0 1A 

G 7 c, p=2 

4 -4 -4 4 4 -4 -4 4 
IA 2A 4A 1 4A2 l’I.Y 1.4 2A 4A I 4A3 f‘1.Y 
0 0 2 2 4A(l) I I I I 4A(I) 
0 2 2 0 2A 2 2 0 0 2A 

0 0 -2 -2 4A(3) 3 1 I -I 4A(3) 
I I I I I il 4 0 0 0 IA 

G = L’, p=2 

3 -4 -4 -4 4 -4 -4 --4 
l/4 2A 2B 2C 1’I.Y IA 2A 2B 2C 1’t.Y 
0 -2 0 0 2A 2 2 0 0 2A 
0 0 -2 0 2B 2 0 2 0 2B 
0 0 0 -2 2c 2 0 0 2 2c 
1 I 1 I 1A 4 0 0 0 IA 

G =s, 

6 
I A 
I 
2 
0 

p-2 

3 -2 6 3 -2 
311 2A I‘[.\. 1.4 3A 2A 1’l.X 

I I IA 2 2 0 LA 
-I 0 IA 2 -1 0 IA 

0 -2 2A I I I 2A 
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G=A, p=2 

60 3 5 
IA 3A 5A I 

1 I 1 
2 -I b5 
2 -I * 
4 I -1 
0 0 0 

5 -4 60 3 5 5 -4 
5A2 2A L’ ix 1A 3A 5A 1 SA2 2A 1’1.Y 

I 1 IA I2 0 2 2 0 IA 

b: 0 0 IA 1A 8 8 -I -1 -b5 ‘$ pb5 1. 0 0 IA IA 
I 0 IA 4 I -I -1 0 IA 
0 -2 2A 6 0 I I 2 2A 

G=L,(2) p=2 

168 3 7 7 -8 -8 8 1683 7 7 -8-8 8 
1A 3A 7A I 7A2 2A 4Al 4A2 CIX IA 3A 7AI 7A2 2A 4AI 4A2 1’18 

I I I I I I I 1A 82 I IO00 1A 
3 0 h7 ** I I m-1 IA I6 I b7-1 ** 0 0 0 IA 
3 O”“h7 I I-I IA 16 I ** b771 0 0 0 1.4 
8-I I 1 0 0 0 1A 8-l 1 I 0 0 0 IA 
0 0 0 0 -2 2 0 2A 20 2 -1 -1 4 0 0 2A 
000 0 0 -2 2 4A(l) 26 2 -~2 -2 2 2 2 4A(I) 
000 0 0 -2 -2 4A(3) 142 0 0 2 2 -2 4A(3) 

G=M,, p=2 

7920 18 5 II II -48 -6 16 I6 I6 16 16 -16 
IA 3A 5A IlAl llA2 2A 6A 4AI 4A2 8AI 8A2 8A3 8A4 1‘1s 

I I I 1 I I I I I I 1 I 1 IA 
IO I 0 -1 -1 2 -I 2 2 0 0 0 0 IA 
16 -2 I bll ** 0 0 0 0 0 0 0 0 IA 
16 2 1 i’ bll 0 0 0 0 0 0 0 0 IA 
44 -I I 0 0 4 I 0 0 0 0 0 0 IA 

0 0 0 0 0 -2 --2 2 0 2 0 0 -~2 2A 
0 0 0 0 0 ~4 2 4 0 -2 -2 2 2 2A 
0 0 0 0 0 0 0 -2 2 2 0 -2 0 4A(I) 
0 0 0 0 0 0 0 --2 -2 2 0 2 0 4A(3) 
0 0 0 0 0 0 0 0 0 -2 2 2 -2 8A(1) 
0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 8A(3) 
0 0 0 0 0 0 0 0 0 m~2 2 -2 2 8A(5) 
0 0 0 0 0 0 0 0 0 -2 -2 -2 -2 8A(7) 
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G=M,, p = 2 (continued) 

7920 18 5 II II -48 -6 -16 16 -16 16 I6 - 16 
IA 3A 5A IIAI llA2 2A 6A 4A 1 4A2 8A1 8A2 8A3 8A4 1‘l.Y 
II2 4 2 2 2 0 0 0 0 0 0 0 0 IA 
96 6 1 -3 -3 0 0 0 0 0 0 0 0 IA 

16 -2 1 bl] *:r 0 0 0 0 0 0 0 0 IA 
I6 -2 I ** b** 0 0 0 0 0 0 0 0 IA 

144 0 I 1 I 0 0 0 0 0 0 0 0 IA 
200 2 0 2 2 8 2 0 0 0 0 0 0 2A 

120 3 0 -I -1 8 -1 0 0 0 0 0 0 2A 
220 4 0 0 0 I2 0 4 4 0 0 0 0 4A(l 
372 12 2 -2 -2 12 0 4 -4 0 0 0 0 4A(3 
110 2 0 0 0 6 0 2 2 2 2 2 2 8A( I 

90 0 0 2 2 2 2 2 2 2 -2 2 -2 8A(3) 
286 7 1 0 0 IO I 2 -2 2 2 -2 -2 8A(5) 
242 8 2 0 0 6 0 2 -2 2 -2 -2 2: EA(7) 

G=S, p=3 

6 2 12 -4 
IA 2A 3AI 3A2 

0 0 3 -1 
0 0 3 --I 
0 0 -3 --I 
0 0 -3 -1 
1 I I 1 
1 -1 1 1 

-4 -4 
S,AI S,A2 

.- I -1 
1 I 
i -i 

-i i 
1 1 

-1 -1 

6 2 12 -4 -4 -4 
IA 2A 3Al 3A2 S,Al S,A2 

I 1 1 1 1 I 
I -. 1 1 I -1 -1 
2 0 -1 1 -i i 
2 0 -1 I i -i 
3 1 0 0 0 0 
3 -1 0 0 0 0 

G=A, p=3 

60 4 5 5 12 -4 -4 -4 
IA 2A 5Al 5A2 3Al 3A2 S,Al S,A2 

I I 1 1 I 1 1 I 
3 -l-b5 * 0 0 0 0 
3 -1 * -b5 0 0 0 0 
4 0 -1 -I 1 1 -1 -1 
0 0 0 0 3 -1 -1 -1 
0 0 0 0 3-l 1 I 
0 0 0 0 -3 -1 i -i 
0 0 0 0-3-I -i i 

60 4 5 5 I2 -4 -4 -4 
IA 2A 5AI 5A2 3Al 3A2 S,Al S,A2 

621100 0 0 
3 -l-b5 * 0 0 0 0 
3 -1 * -b5 0 0 0 0 
9 I PI -1 0 0 0 0 
I 1 1 1 1 1 I I 
4 0 -1 -1 1 I -1 --I 
5 1 0 0 -1 1 m-i i 
5 I 0 0-I I i -i 

4X1.8”? 4 
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G=C, p=5 

5 
IA 

0 
0 
0 
0 

IA 

lO(1 ~ b5) 
5A I 

2-- b5 
-I f 365 

I ~ 3b5 
-2h t 5 

lO(1 ~- 65) 
5A I 

b5 
-b5 

0 

.i 
5A2 

* 
* 
* 
* 

I 

- 2(3 t b5) 
5A3 

-Z-b5 
I fb5 
I +b5 

-2 ~ b5 
I 

>. 

5A4 
.c 
Y 

., 

I 

* 2(3 4 b5) 
5A2 5A3 

1 I 
* -b5 
:s- -h5 

-1 I 
0 0 

i 

5A4 
I 

/: 

1 
0 

ACKNOWLEDGMENTS 

We are much indebted to J. H. Conway. P. Landrock, L. Puig. J. G. Thompson. and P. 
Webb for helpful conversations and for their interest in this work. 

REFERENCES 

I. M. F. ATIYAH AND I. G. MAC~ONAIXI, “Introduction to Commutative Algebra.” 
Addison-Wesley. Reading, Mass.. 1969. 

2. M. AUSL.~NDER AND 1. REITEN. Representation theory of Artin algebras. III: almost split 
sequences. Comm. Algebra 3(3) (1975). 239-294. 

3. M. AUSLANDER AND I. REIXN. Representation theory of Artin algebras, IV: invariants 
given by almost split sequences, Comm. Algebra 5 (5) (1977). 443-518. 

4. D. W. BURRY AND J. F. CARLSON, Restrictions of modules to local subgroups. /‘roe. 
Amer. Math. Sot. 84 (1982). 181~184. 

5. S. B. CONLON. Twisted group algebras and their representations, J. Austral. Math. SW. 4 
(1964), 152-173. 

6. S. B. CONLON. Certain representation algebras. J. Austral. Math. Sm. 5 (1965). 83-99. 
7. S. B. CONLON, The modular representation algebra of groups with Sylow Z-subgroups 

Z, x %>, J. Austral. Math. Sot. 6 (1966), 76-88. 
8. S. B. CONLON. Structure in representation algebras, J. Algebra 5 (1967), 274-279. 
9. S. B. CONLON, Relative components of representations, d. Algebra 8 (1968), 478-501. 

IO. S. B. CONI.ON. Decompositions induced from the Burnside algebra. J. Algebra IO (1968). 
102-122. 

I I. J. CONWAY. R. CURTIS, S. NOR’TON. R. PARKER. AND R. WII SON. An atlas of finite 
groups. to appear, OUP 1984. 

12. C. W. CURTIS AND I. REINF:R, “Representation Theory of Finite Groups and Associative 
Algebras,” Wiley-Interscience. New York/London. 



THE GREEN RING OF A FINITE GROUP 331 

13. K. EKDMANN, Principal blocks of groups with dihedral Sylow Z-subgroups, Comm. 
Algebra 5 (7) (1977), 665-694. 

14. W. FEIT, “The Representation Theory of Finite Groups.” North-Holland, Amsterdam. 
1982. 

15. P. GABRIEL, Auslander-Reiten sequences and representationfinite algebras, “Represen 
tation theory I. Proceedings of the Ottawa Conference.” Springer Lecture Notes in math.. 
No. 831, 1979. 

16. P. GABRIEL AND CH. RIEDTMANN. Group representations without groups. IComment. 
Math. Heir. 54 (1967). 24@287. 

17. J. A. GREEN, On the indecomposable representations of a finite group. Math. Z. 70 
(1959), 430-445. 

18. J. A. GREEN. The modular representation algebra of a finite group, Illinois J. Math. 6 (4) 
(1962), 607-619. 

19. J. A. GREEN. A transfer theorem for modular representations. J. Algebra I (1964). 73-84. 
20. A. HELLER. The loop-space functor in homological algebra. Trans. Amer. Marh. Sot. 17 

(1974), 197-213. 
2 I. M. F. O’REILLEY, On the semisimplicity of the modular representation algebra of a finite 

group, Illinois J. Math. 9 (1965), 261-276. 
22. J.-C. RENAUD. The decomposition of products in the modular representation ring of a 

cyclic group of prime power order, J. Algebra 58 (1979). l-l 1. 
23. L. L. SCOTT, Modular permutation representations. Trans. Amer. Math. Sot. 17~5. (1973). 

101~121. 
24. B. SRINIVASAN. The modular representation ring of a cyclic p-group. Proc. London Math. 

Sot. 14 (3)(1974). 677-688. 
25. R. G. SWAN. Induced representations and projective modules, Ann. of Math. (2) 71 

(l960), 552-578. 
26. W. D. WALLIS, Factor ideals of some representation algebras. J. Austral. Mulh. Sot. 9 

(1969), 109-123. 
27. J. R. ZEMANEK, Nilpotent elements in representation rings. J. Algebra I!) (lY71). 

453-469. 
28. J. R. ZEMANEK, Nilpotent elements in representation rings over fields of characteristic 2. 

J. Algebra 25 (1973), 534-553. 
29. 1. N. HERSTEIN. “Noncommutative Rings,” Wiley. New York. 1968. 


