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1. Introduction 

Let G be a finite group, R a commutative ring with a unit, and V an RG-module. 

An RG-Moore space of type (V, n) is a G-space K (i.e., a topological space equipped 

with an action of G as homeomorphisms) with 

@;(K; R)= 
V, i=n, 
0 

9 otherwise 

as RG-modules. Here, tij denotes reduced singular homology with coefficients in 

R. We say V is realizable if there exists an RG-Moore space of type (V, n) for some n. 

Steenrod’s Problem. Which RG-modules are realizable? 

We shall mainly be interested in the cases R = Z and R = k a field of characteristic 

p, and in finitely generated RG-modules. 

The original formulation of the problem by N. Steenrod in 1960 was the following 

(quoted from Swan [20]): 

“Let A be a finitely generated abelian group and 71 a finite group of auto- 

morphisms of A. Let n be a positive integer. Is there a finite complex K with 

l?;(K) = 0 for i# n, H,(K) =A such that rc acts on K, preserving the cellular struc- 

ture, and induces the given action on A =H,(K)?” 

In this form, the problem was solved in 1969 by Swan [20], who gave a counter- 

example with A =Z/47L and rc a subgroup of Aut(A) of order 23. However, his 

methods also showed that there is an infinite complex realizing this module, and in 
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1977 Arnold [ 1,2] showed that every finitely generated module for a cyclic p-group 

is realizable using an infinite complex. Vogel [23] has also proved that if /G 1 has 

no square factor then every LG-module is realizable. Vogel (unpublished) has also 

extended these methods to show that if G has cyclic Sylow p-subgroups for all p, 

then every finitely generated ZG-module is realizable. 

If we delete the condition that the complex be finite from Steenrod’s original 

formulation, the first counterexamples were produced by Carlsson [9] for the 

elementary abelian group of order p2 (p any prime, although the details are only 

given for p=2). 

In [ 131, Kahn gives an interpretation of Carlsson’s results in terms of a construc- 

tion of Waldhausen in algebraic K-theory, and uses this to produce some further 

examples of non-realizable modules. In this paper, we shall give another interpreta- 

tion of G. Carlsson’s results, this time in terms of J. Carlson’s concept of 

associating algebraic varieties to modular representations [7]. We give necessary 

conditions for a modular representation to be realizable, in terms of the varieties 

associated to direct summands of the module (see Theorem 6.3 and the following 

remarks). Our methods may be used to construct a wide range of non-realizable 

modules, including those of Carlsson and Kahn. (Vogel has also obtained some of 

our examples independently.) 

In Section 7 we investigate the homotopy theory relevant to realizability, and in 

particular we show that if two modules are cohomologically equivalent, one is 

realizable if and only if the other is. In the case where G is the Klein four group, 

BaSev [4] has classified the 2-modular representations (see also Conlon [l l]), and 

we show using the results of Section 7, that in this case the condition given in 

Theorem 6.3 is necessary and sufficient. Calculations with the quaternion group of 

order eight indicate that this is not true in general (Vogel, private communication). 

2. Preliminary remarks 

In this section, we gather together some observations (mostly well known) which 

we will use in the course of the paper. 

2.1. Since every topological space has the weak homotopy type of a CW-complex 

[26, V.31, it is no loss to replace topological spaces by CW-complexes in the original 

definition. By the same argument, we may also assume that the G-action is cellular. 

2.2. If K is an RG-Moore space of type (I’, n), then the unreduced suspension ZK 

of K (i.e., Ix K with (0) x K identified to a point and (1) x K identified to another 

point) is an RG-Moore space of type (k’, n + 1). This shows that when talking about 

realizability, we may assume that G fixes some point of K, and work with pointed 

RG-Moore spaces. Also, this argument shows that it is interesting to ask for the least 

value of n for which an RG-Moore space of type (V, n) exists. We shall not in- 

vestigate this question here. 
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2.3. If K is an RG-Moore space of type (V, n) and EC is a contractible CW-complex 

on which G acts freely, then K x EG (with diagonal G-action) is an RG-Moore space 

of type (I’, n) on which G acts freely. Similarly if (K,x,) is a pointed RG-Moore 

space of type (V, n) then (K x EG, x0 x EG) (with x0 x EG identified to a point) is a 

pointed RG-Moore space of type (V, n) on which G acts freely outside the base 

point. 

2.4. If P’ is an RG-module and f: R -+R’ is a morphism of commutative rings, then 

I’@JR R’ has a natural structure as an R’G-module. If V is R-flat, then by the 

universal coefficient spectral sequence, if K is an RG-Moore space of type (I’, n), 

then K is also an R’G-Moore space of type (I/OR R‘, n). For example, if I/ is a Z- 

torsion-free ZG-module and K is a ZG-Moore space of type (V, n), then K is also 

an iF,,G-Moore space of type (v@z FPpr n). Thus non-realizability of a liftable 

modular representation implies non-realizability of any lift of it. 

3. Carlsson’s method 

The basic method of Carlsson [9] for producing non-realizable ZG-modules is as 

follows. He shows that if K is a ZG-Moore space of type (V, n), with V a Z- 

torsion-free ZG-module, then there is an action of the Steenrod algebra d(p) on 

Ext&(I/, ffP), which is compatible with the action of Ext&(Z, FP) by cup-product. 

For the sake of convenience, we state a slightly generalized form of Carlsson’s 

results here, with a more conceptual proof due to Vogel, avoiding the Serre spectral 

sequence. This has the advantage that not so many routine checks on transferring 

actions are necessary. 

Definition 3.1 (Carlsson). Let A* be a graded d(p)-algebra (i.e., the Cartan for- 

mula @(ala*) = Ci+j=k P’(ai)Pj(az) holds), and M* a graded A*-module equipped 

with an action of d(p). We say M* is an d(p)-A*-module if the Cartan formula 

@(am) = C i+j=k P’(a)@(m) holds for all a E A* and m EM*. 

Proposition 3.2. Suppose P is a (not necessarily non-zero) maximal ideal in R, and 
R/P = k is a field of characteristic p. Suppose V is a realizable (not necessarily R- 
torsion-free) RG-module. Then Ext&( V, k) admits an d(p)-Ext&(R, k)-module 
structure. 

Proof. Suppose (K, x) is a pointed RG-Moore space of type (V, n) (see Remark 2.2). 

We form the singular chain complex C, = C,(K x EG, x x EG; R) (cf. Remark 2.3) 

and the cochain complex 

C*=HomRG(C*, k)=Hom, KxEG,xxEG; R 
G G 
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Then by hypothesis, C, is a ‘shifted resolution’ of V as a RG-module, in the sense 

that the Cj are free RG-modules, C, = 0 for i< 0, and 

H;(C*) = 
V, i=n, 
o 

3 otherwise. 

Using this resolution to calculate Ex& (V, k) we get 

ExtlRG(V,k)EHi+n(C*)~~Hi+n 
( 

KxEG,xxEG; k . 
G G > 

This gives the action of &(I?) on Ext&( V, k), and the Cartan formula follows as 

in [9] from the fact that the Ext&(R, k)-module structure on Ext&( V, k) is in- 

duced by the diagonal maps 

and 

K:EG-(pt;EG)x(K;EG) 

x,EG+(pt,EG)x(x,,>. 0 

Remarks. The proposition may be interpreted as providing a functor @ making the 

following diagram commute. 

{RG-Moore spaces) 2 { d(p)-Ext& (R, Q-modules} 

(RG-m:dules) Ext’G(-’ ‘) + {Ext&(R, i)-modulesj 

In this diagram, F denotes the forgetful functor. 

Carlsson [9] then continues by providing a construction of a module I/ such that 

Ext&( V, Fp) is not in the image of F. We shall instead investigate the consequences 

of the above proposition in terms of the cohomological varieties defined in the next 

section. We shall show that it forces the variety to have a very special form 

(Theorem 6.3), whereas without the realizability condition, almost anything can 

happen (Proposition 4.3). 

4. Varieties for modules 

In this section, we recall the basic definitions and properties of the cohomological 

varieties Xo (V). For the remainder of this paper we shall only deal with finitely 
generated modules, except where otherwise stated. 

4.1. Definitions. Let k be an algebraically closed field of characteristic p. If p=2, 
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let H’(G, k) denote H*(G, k), while if p is odd, let H’(G, /c) denote He”(G, k), the 
even part of the cohomology ring. Then H’(G, k) is a commutative graded ring. 
Note that we must take H*(G, /r) rather than He”(G, k) in case p = 2 since we need 
an action of the total Steenrod operation in Section 5. We form the affine (homo- 
geneous) variety X, = Spec H’(G, k), and the projective variety & = Proj H’(G, k) 
of one smaller dimension. 

Denote by Zo( V) the ideal of H’(G, k) consisting of those elements x such that 
for all modules S, there exists a positive integer j with H*(G, V@S) .x’=O (cup- 
product action). Note that by [5, Lemma 2.25.21 it is sufficient to check this condi- 
tion for S simple. 

The variety X,(V) is defined to be Spec(H’(G, Q/Z,(V)), as a homo- 
geneous affine subvariety of Xo. Similarly we have a projective variety XG( V) = 
Proj(H’(G, Q/Z,(V)) c Xo, of one smaller dimension. 

If H is a subgroup of G, denote by tH,G the map from X, to Xo induced by 
resG,” : H’(G, k)-tH’(H, k). The following theorem summarizes some of the main 
properties of these cohomological varieties, not all of which we shall need. 

Theorem 4.2. Let HS G, and V be a kG-module and W a kH-module. 
(i) dim Xo( V) is equal to the complexity of V. Namely the rate of growth of 

the dimensions in a minimal projective resolution of V is bounded by a polynomial 
of degree dim X,(V) - 1, but not by one of degree dim Xo( V) - 2. 

(ii) Xo( V) = Xo( V*) = Xo( V’& V*) = Xo(Q V) (here, B denotes the Heller 
operator, of taking the kernel of the projective cover). 

(iii) X,( Vl,) = t&lo(Xo( V)). 

(iv) Xo(Wt’)=tuo(Xn(W)). 
(We use the symbols 7” and 1, to denote induction and restriction of representa- 
tions between G and H.) 

(v) If 0-t V, + V2+ V, +O is a short exact sequence of kG-modules, then 

Xo(V)CXo(~)UXo(VtA {i,j,k}={l,2,3). 
(vi) Xo(V@V’)=Xo(V)UXo(V’). 

(vii) Xo(V@V’)=Xo(V)fIXo(V’). 
(viii) Xo( V) = (0) if and only if V is projective. 

(ix) Xo ( V) = IJE te, o (X,( V 1,)) as E ranges over the elementary abelian p-sub- 
groups of G. 

(x) Given a closed homogeneous subvariety Xc Xo, there is a module V with 
X,(1/)=X. 

(xi) Zf Xo( V) n Xo( V’) = {0}, then Ext&( V, V’) = 0 for all i > 0. 
(xii) Zf Xo( V) c X1 U X,, where X1 and X, are closed homogeneous subvarieties 

of Xo with X1 fl X2 = { 0}, then we may write V = V, @ V2 with Xo( V,) c X, and 
Xo ( V,) C X,. In particular, if V is indecomposable, then Xo ( V) is connected in the 
Zariski topology. 

Proof. This is proved in [5, Theorems 2.26.9, 2.26.10, 2.27.3, 2.27.7 and 2.27.81, 
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and are mostly due to Carlson [7,8] and Avrunin, Scott [3]. 0 

The following proposition, which is analogous to part (x) of the above theorem, 

will also be of interest to us. 

Proposition 4.3. Given a closed homogeneous FP-rational subvariety (IF,-rational 

means stable under the Frobenius morphism) XC_ X,, there is a Z-free ZG-module 

U with XG(UOn k)=X. 

The proof of Proposition 4.3 depends on the following lemma. 

Lemma 4.4. Let XEH~~(G,Z/~~Z). Then xp is in the image of the natural map 
HZnp(G, U/pk+’ Z)‘HZnp(G,Z/pkR). 

Proof. Corresponding to the short exact sequence 

o~n/pn~n/pk+‘n-tn/pknjo 

we have a long exact sequence 

. ..-H’(G. Z/pk+’ n)~H’(G,L/p”iZ)~H’+‘(G,L/pL)~-.. 

in which the Bockstein homomorphism 6 is a derivation with respect to the 

cup product pairing H*(G, Z/pkZ) x H*(G, Z/pZ)+H*(G, Z/pZ). Hence S(xp) = 

p(xp-‘U&x))=0 and so xp is in the image of H2”p(G, ~/~~“~),H~~~(G,ni/p~n). 
0 

Lemma 4.5. Let XE H2”(G, Z/pZ). If IG / =paq with (p, q) = 1, then xp”” is in the 

image of the natural map 

H*(G,L)+H*(G,z/~~). 

(cf. Maranda’s theorem [12, Theorem 30.141). 

Proof. Applying Lemma 4.4 and induction, xp “’ is in the image of the natural 

map H*(G, Z/p ‘+ ‘Z) + H*(G, Z/pZ), and hence also in the image of 

H*(G, Z/p /G / Z) = H*(G, Z/p “+‘Z)@H*(G,Z/qL)+H*(G,H/pH). 

Denote by 6, the connecting homomorphism associated to the coefficient sequence 

0 -+ Z/ / G / Z + Z/p 1 G 1 Z + Z/pZ + 0, by S2 the connecting homomorphism associ- 

ated to O-+ Z -+ Z -+ Z/pZ + 0, and by 8 the coefficient homomorphism determined by 

Z-+Z/ /G / Z. Then 0 = G1(xp”“) = B(82(xp”+‘)), and since 0 is injective, a2(xPUt’) = 0. 

Thus xp”+’ IS in the image of the natural map H*(G,Z)+H*(G,Z/pL). q 

4.6. Definitions. If [E H”(G, k)=Ext,“,(k, k), we may represent < by a homomor- 
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phism [: Q”(k)+k. If <#O, this homomorphism is surjective, and we denote by L, 

its kernel. Thus we have a short exact sequence 

Similarly if r E H”(G, z) = Ext&(& z), we may make an analogous construction. 

Let ... -+P2+P, -+P,+;Z+O be a projective resolution of z as a ZG-module, 

where the P, have minimal z-rank (cf. [19,25]), and denote by a’(??) the ith kernel 

of this resolution. Then < is represented by a surjective map g: Q’@)(@zG)-+& 

and we denote its kernel by L,. 

The following lemma is clear from the definitions. 

Lemma 4.7. If [- < under the natural map H”(G, z)-tH”(G, 7?/pZ) c H”(G, k), then 

LgOz k=LLg@projective. 

Lemma 4.8 (Carlson [S]). Zf IEH”(G, k), then X,(LC) is the hypersurface X,(c) 

given by considering < as an element of the coordinate ring of X,. 

We are now ready to prove Proposition 4.3. 

Proof of 4.3. If X is an IF,-rational homogeneous subvariety of X,, then let Z= 

(i ,, . . . , &.> be the corresponding ideal in H’(G, k), with 5; homogeneous and in the 

image of H’(G, z/pQ-+H’(G, k). By Lemma 4.5, if we replace 5; by some power 

of &, we may assume that it is the image of some ri E H’(G, ll). Then by 4.7, 

4.2(vii) and 4.8, 

=xG(Lgp'nxG(L&) 

=xGmn--nxG(r,) 

=X,(<~,,...,<,))=x. 

Thus Ltl On ... & L,” is a Z-free ZG-module with the desired properties. 0 

5. The total Steenrod operation 

Denote by T the total Steenrod operation, namely Ii”=, P’ if p is odd, and 

CE, Sq’ if p =2. Then T is an algebra endomorphism of H’(G, k), since P’ has 

even degree if p # 2. We also denote by T the corresponding map Xc + Xd. 

If X is a homogeneous subvariety of X,, we denote by X(r) the homogeneous 

span of the images of X under powers of T. Since T is not homogeneous, X(r) will 

usually have greater dimension than X. 
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Theorem 5.1. Suppose X is a homogeneous subvariety of Xo. If X is not of the 
form u, tE,o(XE) for some collection of elementary abelian p-subgroups E of G, 
then XCT)>X. In particular , XCT) is always of the above form. 

Proof. If G is elementary abelian, this is proved in [17, Proposition I]. For G ar- 

bitrary, the result now follows from the fact that X, = U, tE,o(XE) as E ranges 

over the collection of all elementary abelian p-subgroups of G (this is 4.2(ix) in the 

case where V is the trivial module. See also [14,15]). 0 

Definition 5.2. Let M* be a graded A*-module, as in Definition 3.1. Somewhat 

weaker than having an d(p)-A*-module structure is just having an action of the 

total Steenrod operation T, without requiring the Adem relations to hold. We say 

M* is a T-A*-module if there is a linear map g= CL0 q on M*, satisfying the 

following conditions. 

(i) 6 is homogeneous of the same degree as Pi (or Sq’ if p=2). 
(ii) gO is the identity map. 

(iii) 9(xy) = T(x)g( y) for XE A*, y EM*. 

Any d(p)-A*-module is a T-A*-module by letting g= T. 

Proposition 5.3. Let M” be a T-A*-module. Then any direct summand (as 
A*-module) N* of M* is also a T-A*-module. 

Proof. Let i denote the inclusion of N* in M*, and 7c the projection of M* onto 

N*. Then .Y’= rc 0 .Yo i is the desired linear operation on N*. 0 

Thus by Proposition 3.2, we have the following. 

Proposition 5.4. Suppose P is a (not necessarily non-zero) maximal ideal in a com- 
mutative ring R, and R/r = k is a field of characteristic p. Suppose V is a realizable 
RG-module. Then for every summand W of V, Ext&(W, k) admits a T- 
Ext&(R, k)-module structure. 

Corollary 5.5. If H is a subgroup of G and V is an RH-module such that 
Ext&( V, k) does not admit a T-Ext&(R, k)-module structure, then Ext&( VT’, k) 
does not admit a T-Ext&(R, k)-module structure. In particular, VT’ is not 
realizable. 

Proof. This follows from Proposition 5.3 since VfG1,z V@ W for some module 

W. The last remark follows from Proposition 5.4. q 

Corollary 5.6. Suppose k’ is a finite separable extension of the field k. Let V be a 
k’G-module and let W be the kG-module obtained from V by restriction of scalars. 
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Then Ext,$o( V, k’) is a T-Ext,$o(k’, k’)-module if and only if Ext/TG( W, k) is a T- 
Ext&(k, k)-module. 

Proof. One way follows from the observation that 

Ext~o(W,k)O,k’rExt:,,(WO,k’,k’)~Ext,*,,(VO,,(k’O,k’),k’) 

=Ext$o(V@V’, k’)=Ext&#‘, k’)@Ext,*,,(V’, k’) 

for some k’G-module V’, combined with Proposition 5.3. The other way follows 

from the fact that the restriction to k of Ext&( V, k’) is Ext&( W, k). 0 

6. The main theorem 

We begin with some lemmas. 

Lemma 6.1. If H is a subgroup of G, and V is a kG-module, then 

reso,H(zo(V))~ZH(VIH). 

Proof. By Shapiro’s lemma [18, p. 116-71, if S is a kH-module, we have an iso- 

morphism 

H*(H, V~,@S)~H*(G,(V&,@S)tG)=H*(G, V@(ST’)), 

with the property that the cup product action of XE H’(G, k) on H*(G, V@(St’)) 
is the same as that of reso,H(x) on H*(H, Vl,@S). 0 

Lemma 6.2. Let P be a Sylow p-subgroup of G and V a kG-module. Then 

rG(v/>=resc,b(lp(vl,)). 

Proof. This follows from Lemma 6.1 and the fact that 

reso,p : H*(G, k) + H*(P, k) 

is injective. q 

Theorem 6.3. Suppose R is a commutative ring with a unit, r is a maximal ideal 
in R with R/p = kO c k an algebraically closed field of characteristic p, and U is 
a (finitely generated) realizable RG-module. Then for every direct summand 
V of UQR k (as a kG-module), X,(V) is T-stable, and hence of the form 

UESG~E,G (X,) for some collection of elementary abelian subgroups E of G. 

Proof. In order to show that Xo(V) is T-stable, we must show that 

T(Io( V)) G Io( V). Let P be a Sylow p-subgroup of G. Since the action of T com- 
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mutes with reso,p : H’(G, k)-+H’(P, k), by Lemma 6.2 it suffices to show that 

T(Z,( Vi,)) c Zp( Vi,). Thus we may assume that G = P is a p-group. In this case, 

there is only one simple module, namely the trivial one-dimensional module k, and 

so by Theorem 4.2(ii) and the definitions, Zo (V) = I, (V*) is the set of x E H’(G, k) 
such that for some j > 0, Ext& ( V, k) . x’ = H*(G, V*) . xj = 0. 

Now by Proposition 3.2, Ext&(U, k) admits an d(p)-Extzo(R, k)-module struc- 

ture, i.e., Ext&((U@, k, k) admits an d(p)-H*(G, k)-module structure. Hence by 

Proposition 5.3, Ext&( V, k) admits a T-H*(G, k)-module structure. It is now easy 

to see from the above description of Zo( V), that T(Z,( V)) c Zo( V) since the action 

of T commutes with cup products. 0 

Remarks. We may combine the results of Proposition 4.3 and Theorem 6.3 as 

follows. If U is a finitely generated Z-free realizable ZG-module, then by 2.4, 

CJ& k is a realizable kG-module. By Theorem 6.3, for every summand I/ of 

U@z k, X,(V) is T-stable, and hence of the form U, fE,o(XE) for some collection 

of elementary abelian p-subgroups E of G. On the other hand, Proposition 4.3 

shows that for every [F,-rational homogeneous subvariety X of X,, there is a Z- 

free ZG-module U with X,(U & k) =X. As soon as the p-rank of G is at least 2, 

almost all [F,-rational homogeneous subvarieties are not of the form U, tE,o(XE), 

and so we have a plentiful supply of non-realizable Z-free ZG-modules, expressed 

as tensor products of the modules Ly appearing in the proof of Proposition 4.3. 

Note that these modules are not even direct summands of realizable modules. 

These methods say nothing in the case where G has p-rank one. In this case either 

the Sylow p-subgroups of G are cyclic, and all modules should be realizable (see the 

introduction), or p = 2 and the Sylow 2-subgroups of G are generalized quaternion. 

We shall deal with the latter case in Section 9. 

If p=2 and G=((L/2L) x (2/2Z), the Klein four group, let 

ff*(G Z) = Z[x, Y, z1/(2x, 2y, 22, z2 - x2y - xy2) 

with deg(x) = deg(y) = 2 and deg(z) = 3. Then the counterexample of Carlsson [9] is 

the module L,, where < =x2 +xy +y2. Since Ly 0 k is a direct sum of two four- 

dimensional modules La+wj and Ln+Cw+ l)g where w and o + 1 are the primitive 

cube roots of unity in k, Xo(L[@k) is a pair of lines through the origin in A2(k) 
of slopes o and o + 1, swapped by the Frobenius morphism. We shall say more 

about this case in Section 8. 

Amir Assadi has pointed out to us the following corollary to Theorem 6.3. 

Corollary 6.4. Suppose R is a commutative ring with a unit, and suppose U is aJg. 
realizable RG-module. Then U is projective if and only if UL,,, is projective for 
each cyclic subgroup lx> of G of prime order. 
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7. Cohomology equivalence and realizability of modules 

In this section, we develop the technical machinery necessary for demonstrating 

that a given module is realizable. We use some of this machinery in the next section 

to investigate modules for the Klein four group. 

Because of Remark 2.1, all spaces in this section will be assumed to be CW- 
complexes with cellular G-action. For the purpose of this section, however, we shall 

not assume that the RG-modules which we are dealing with are finitely generated, 

since with this restriction Lemma 7.2 is no longer true. 

7.1. Definitions. A map V--% V’ of RG-modules is realizable if there is a G- 

equivariant map Kf. K’ of RG-Moore spaces of type (V, n), (V’, n) for some n, 

with H,(f) = h. 

Warning. It is not necessarily true that the composite of two realizable maps is 

realizable. 

An RG-module V is cohornologically trivial if for all subgroups Hr G, 

I?*(H, V) =0 (Tate cohomology). A homomorphism V L V’ is a cohomofogy 
equivalence if for all subgroups HI G, A*(H, h) : fi*(H, V)+fi*(H, V’) is an 

isomorphism. 

An RG-module V is weakly injective if given a monomorphism 0 -+ W -+ W’ and 

a homomorphism W + V which extends to an R-linear map W’ + V, then it extends 

to an RG-homomorphism W’+ V. 
Standard properties of cohomologically trivial modules are given in [lo, 16,181. 

In particular, we shall need the following. 

Lemma 7.2. Let V be an RG-module, with R = Z or F,,. Then the following two 
properties are equivalent. 

(i) V is cohomologically trivial. 
(ii) There is a short exact sequence O-tF, + F2+ V +O with F, and F2 free. 

Properties (i) and (ii) are implied by: 
(iii) V is weakly injective. 

Proof. This follows from [16] and [27, X11.1.1]. 0 

Lemma 7.3. Let R = Z or IF,. Suppose a homomorphism VL V/factors through a 
weakly injective module. Then h factors through the natural inclusion V+ VOR RG 
given by v++ CgEG v@g. 

Proof. Suppose h factors through h’: V+ W with W weakly injective. Since the 
natural map a : V--t VOR RG is an R-split monomorphism h’ factors through (Y as 

R-modules, and hence as RG-modules since W is weakly injective. Thus h factors 

through (Y. q 
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“1 4 
Lemma 7.4. Let 0 -+ V, -+ V2 4 V, -r 0 be a short exact sequence of RG-modules. 
If either h, or h2 is realizable, so is the other. 

Proof. Consider the mapping sequence K, 2 K2 A C,z .ZK,. If f realizes h l , 
then j realizes hZ. If f realizes hZ, then Q realizes hl. 0 

Lemma 1.5. Let K,, K2 be simply connected Z-Moore spaces (i.e., G = 1) of type 
(VI, n) and ( V2, n) respectively. Then the map H, : [K,, K2] + Horn,,, VI, V,) is sur- 
jective, i.e., all homomorphisms of U-modules (abelian groups) are realizable. 

Proof. Let F be a free Z-module with basis B and surjecting onto VI. Let F’ be the 

kernel, again free by [28, Theorem 14.51 with basis B’. The maps F-t V, and 

F‘+F are represented by maps S”r\B,-ftK, and S”AB~~S”AB+, where 

B,, Bi denote the discrete spaces B, B’ with base point added. Moreover, since 

the composite map F’-+F + V, is trivial, the map fog extends to a map 

D “+‘AB:-+K~, i.e., we get a map Cg+ K, inducing an isomorphism on homology 

and hence a homotopy equivalence. Thus if V, + V, is any homomorphism, we 

can construct a map Cg-+ K, realizing it. Thus the map H, : [K,, K2] = [C,, K2] -+ 
Horn,,, V,, V,) is surjective. 0 

Warning. If VI and VZ are ZG-modules with trivial G-action (but G not necessarily 

the trivial group), and K,, K2 are simply connected ZG-Moore spaces of type 

(V,, n) and ( V2, n) respectively, then it is not necessarily true that H, : [K1, KZ]o --t 
Homzo( VI, VJ = Horn,,, V, , V,) is surjective. 

Proposition 1.6. Let K be a simply connected pointed EPG-Moore space of type 
(V, n) with nr 3. Then 2ere is a G-equivariant map K+K’ inducing an EP-equi- 
valence (i.e., H*(K; FP) q H&K’; E,_,)) with K’ (n - I)-connected. 

Proof. Suppose K is (m - 1)-connected with 1 <m < n. We shall show that there is a 

G-equivariant FP-equivalence K-t K’ with K’ m-connected, and the result follows by 

composing these maps. Let V= H,(K) o n,(K). If m < n - 1, we have V& EP = 0 
and Tor( V, FPp> = 0 by the universal coefficient theorem. Let L be a Z-Moore space 

of type (V, m). Then L is an FP-Moore space of type 0. Moreover, by Lemma 7.5, 

there is a map L -+ K inducing an isomorphism H,(L) -+ H,(K). Denote by G, the 

discrete space G with base point added and left G-action. Then there is a G- 

equivariant map LA G, f. K inducing an epimorphism H,(L A G,) + H,,,(K). 
Then K’=C’, the mapping cone of f, is m-connected and K-K’ is an FP-equi- 

valence, by the long exact sequence of homology. 

If m = n - 1 and H,(K)+ H,(K; lFP) is surjective, we may proceed as above, 

finishing the proof. If not, we reduce to this case by showing that there is an F,- 

equivalence K + K’, with K’ (n -2)-connected and H,,(K’) + H,(K’; ‘FJ surjective. 

We have an exact sequence 
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(universal coefficients). Let V= Tor(H, _ , (K); ffp) = {x E H,, ~, (K) : px = 0} , an 

EP vector spye, say with basis B. Since H,_ , (K) is p-divisible, there is a map 

@nZ/pmZ-H,_, (K) inducing an isomorphism on Tor(- ; Fp), where Z/p”Z 
denotes 1% Z/p”Z. Let L be a Z-Moore space of type (Z/pmZ, n - 1). Note that 

since n z 3, we can suppose L = ZL, (see 2.2), and hence that a coproduct L + L V L 
exists. Since K is (n-2)-connected, by Lemma 7.5 there is a map LAB+& K 
inducing the map @ on homology, where B, is the discrete space B with base point 

added. 

Similarly let IV= H,(K) Or ff,, with basis B’. There is a map oB, Z 3 H,,(K) 
inducing an isomorphism when tensored with FP. Since K is (n-2)-connected, 

the Hureyicz homomorphism n,(K)+H,(K) is surjective. Hence there is a map 

S”A B: -% K inducing the map 0’ on homology. Then t,uv ty’ is a map from 

L, = (L A B+)V (S” A Bi) to K inducing an FP-equivalence. 

Now H’(L; xj(S”))=O for i#n, and so H’(L; Z)= [L, S”]. Since H”(L; Z)+ 
H”(L; EP) = EP is surjective, there is a map L+S” inducing an FP-equivalence. 

Thus there is a map r;l from L, to L,=(S”AB+)V(S”AB>)=S”A(B+VB~), induc- 

ing an FP-equivalence. 

The map L, -+ K extends to a G-equivariant map L, A G, LK. Since L and S” 

have a coproduct, so does L, , and hence so does L, A G, . Denote by f the com- 

posite G-equivariant map 

L,AG, -‘(L,AG+)V(L,AG+) B(L,AG+)vK. 

Since v is an FP-equivalence, the map K -+ Cf is also an E,-equivalence. Moreover 

C, is (n -2)-connected, and the diagram 

WL,AG+; Z)- WC,; z) 

W,(L,A G,; E,,) -WC,; F,,) 

shows that H,(Cf; Z)+H,(Cf; Er) is surjective. 0 

Lemma 1.7. Let V be a realizable RG-module with R = Z or FP. Let F be a free RG- 
module with basis B. Then every RG-module homomorphism F-r V is realized by 
a G-equivariant map S” A B, A G, + K, for some n, and some RG-Moore space K 

of type ( V, n). 

Proof. Let K be an RG-Moore space of type (V, n). By suspending if necessary, we 

may suppose K is pointed and simply connected (Remark 2.2). If R =Z, then K is 

(n - I)-connected, and n,(K) z H,(K) E V. Choosing representative maps S” + K 
for elements of the basis B and extending G-equivariantly, we obtain a G-equi- 
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variant map realizing F-+ V. If R = EPp, by Proposition 7.6 we may replace K by an 

(n - 1)-connected RG-Moore space of type (V, n), after suspending if necessary to 

ensure nr3. Then n,(K)zHH,(K)+H,(K; ~F,)z V is surjective and we may pro- 

ceed as before. 0 

Lemma 7.8. Denote by J the cokernel of the map Z-+ZG given by 1 - CgEG g. 

Then for large n, the map Z+ ZG is realizable by a map S” + S” A G,, and J is 
realizable. 

Proof. Let V be a finite-dimensional faithful IRG-module with a fixed point (e.g., 

V= F?G). Then the unit sphere in V is a ZG-Moore space of type (Z, n) for some 

n, and with a free G-orbit. Contracting the complement of a small neighborhood 

of this free orbit to a point gives us a realization of the map Z+ZG. By Lemma 

7.4, this implies that J is realizable. 0 

Lemma 7.9. Let V be any UC-module. Then there is a Z-free ZG-module V’ and 
a surjection I/‘+ V which is a cohomology equivalence. Moreover, if V is realizable, 
then so is V’. If V is finitely generated, we may take V’ also to be finitely generated. 

Proof. Let F be a free module surjecting onto V& ZG, and let V’ be the kernel 

of the composite map F-+ I/& ZG + VoZ J, where J is the cokernel of the 

map Z-+LG given by 1 H CBEag. Let V” be the kernel of the composite map 

V’& ZG + VBn ZG --f VBr J, and W denote the kernel of the map I/‘-+ V-+0. 

0 0 

1 1 
W W 

I +I 
o- V’ F ’ V@,ZG-0 

I I 
o- V- V&ZG- V@,ZG-0 
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Now applying the snake lemma to the diagram 

0 V’ V” 

I ,. I 
0’0 V’@,ZG- V’@,ZG-0 

I I I 
0- W@,J- V’&J- I’& J- 0 

I I I 
W&J 0 0 

we obtain a short exact sequence O+ V’+ V” + W Or J+ 0. 
Now suppose V is realizable. Since J is also realizable by Lemma 7.8, this shows 

that V&J is realizable (take the smash-product of the complexes). Applying 

Lemmas 7.4 and 7.7 to the short exact sequence 

O+ I”‘+ V’@,ZG+ I’& J+O 

shows that V” is realizable, since V’& ZG is free. 

Since V& ZG is free, the sequence 0-t W+F + I/OH ZG +O splits and so W 
is free. This shows that W&J is free, and so I/“= V’@ W&J. We may thus 

apply Lemmas 7.4 and 7.7 again to the injection W&J-t V” to show that V’ is 

realizable. 0 

Proposition 7.10 (compare [23]). Let R = Z or ffD. 
(i) Every cohomologically trivial RG-module is realizable. 

(ii) Let V, and V, be realizable RG-modules. Then any homomorphism 
I$ : V, --t V, which factors through a cohomologically trivial module is realizable. 

(iii) Let 0 + V, + VI+ V, + 0 be a short exact sequence of RG-modules. If V, 
is realizable and Vj is cohomologically trivial then Vk is realizable, where 

{i,.Ah)={l,2,3). 
(iv) If @ : V, + V, is a cohomology equivalence, and either V, or V, is realizable, 

then V,, V2 and I$ are all realizable. 

Proof. (i) If P is a cohomologically trivial RG-module, then by Lemma 7.2, there 

is a short exact sequence 0 + F, -+ F2 --t V + 0 with F, and F, free. The result now 

follows from Lemmas 7.4 and 7.7. 

(ii) Suppose first that the map @ : V, + V, factors through a weakly injective 

module. Then by Lemma 7.3, @ factors through the natural inclusion V, + 
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Vi OR RG. We shall realize the maps Vi -+ V, OR RG and V, OR RG --t V, by maps 

K,+L and L-K,. 

The map z-+ZG is realizable by Lemma 7.8, and so by smashing this map with 

a realization of V,, we obtain a realization of VI + V, OR RG by some map Kt + 

L=K,/\G,. Using Proposition 7.6 in case R= IF,, we may assume that K, and 

hence L are realizations in degree n, say, which are (n - 1)-connected. Suspending 

K, and L if necessary to increase n, and again using Proposition 7.6, we may also 

choose an (n - 1)-connected realization K2 for V2 in degree n. 

If R = Z, we may realize the abelian group homomorphism V, OR 1 + V, by a 

map K, +K2, by Lemma 7.5. We now extend this to a G-equivariant map 

K, A G, -+ K2 realizing V, OR RG -+ Vz. 

If R = Fpp, then V,OR RG is RG-free with basis B, say. By Lemma 7.7, there are 

maps S”AB,AG+-+L and S”l\B+/\G, -+K2 realizing the identity map on 

V, OR RG and the map V,OR RG -+ V,. Finally, we replace K, -+ L by K; + L’ 

defined by the homotopy pullback diagram 

K;-L’=S”r\B,r\G, 

K, - L 

We now deal with the case where R =Z, and @ : V, + V, only factors through 

some cohomologically trivial module P, say, which is not necessarily weakly injec- 

tive. Using Lemma 7.9, we may find a realizable z-free ZG-module V{ and a sur- 

jective cohomology equivalence Vi-+ V,. The kernel F of this map is Z-free and 

cohomologically trivial, and hence ZG-free. The composite map If,‘--+ VI + V2 fac- 

tors through a weakly injective module, and so by the first part of the proof it is 

realizable by some map K; --t K,. The proof of Lemma 7.7 in case R = Z allows us 

to choose our ;G-Moore space, and so the map F-t V[ is realizable by some map 

S”AG, AB, -KK;. Since the composite F-+ V;+ V, is trivial, the composite 

S”AG,AB,+K;-K, extends to a map D”+‘AG+AB+-Y. Thus taking K,=Cf 

we get a map K, + K2 realizing V, + V,. 

(iii) By (i) and (ii), if V, is either realizable or cohomologically trivial then one 

map, and hence by Lemma 7.4 both, are realizable. 

If V, is realizable and V, is cohomologically trivial, let F be a free RG-module 

which surjects onto V,. Then there is a short exact sequence 0 + V, + V, OF + V, -+ 0 

with V4 cohomologically trivial and V,@F realizable. Hence V, is realizable. 

If V3 is realizable and V, is cohomologically trivial, let Z be the injective hull of 

V,. Then there is a short exact sequence O+ V, -+ V, @ I+ V4 -+ 0 with V, 

cohomologically trivial and V, @I realizable. Hence V, is realizable. 

(iv) Consider the short exact sequence 

O-+ Vp V,@ VI& RG+ V--O. 
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The modules V, and V,OR RG are cohomologically trivial. Thus if Vi or V, is 
realizable, so is the map Vi -+ V, @ Vi OR RG by (iii). Let Ki -+ K2 be a realization 
of this map. We realize the inclusion ViOR RG + V2@ VI OR RG by a map 
K3 f. K2 as follows. If R =Z we take K3 =K, AC,, while if R = FPp, we take 
K3 = L A G,, where L is a bouquet of spheres. The composite K, + K,+ C, then 
represents @ : V, + V,. q 

Finally, we shall need the following lemma. 

Lemma 1.11. Let k be a field, and also denote by k the one-dimensional kG-module 
with trivial action. 

(a) If@,:k-+V~aand@2:k-+V2arerealizable, thens~are(@~,@~):k+V,@V~, 
the cokernel map V, 0 V2 --t (V, @ V2)/k = coker(#, , &), and the composite maps 
V,-+(V,@V2)/k and V,-+(V,@l/,)/k. 

(b) If @; : VI + k and 0; : V2 --f k are realizable, then so are (@;, 0;) : V, @ V2 + k, 
the kernel map ker(@;, Q;)-+ V, 0 V,, and the composite maps ker(@;,&)+ V, and 

ker(@;, O;)P V,. 

Proof. (a) If IJ~ :X-t Y, w2 : X’+Z realize @, and G2, then so do 
(vi AX’) : X/\X’-+ YAX’ and (Xl\ wz) : XAX’ + XAZ. Thus we may assume 
X=X’. Suspending if necessary, we have a coproduct map X-+ XVX. The 
composite f: X + XV X-+ YvZ represents (@i, G2) : k --) VI @ V2. By Lemma 
7.4, YvZ --* C’ represents VI @ V2+ (V, @ V2)/k, and the composite maps 
Y + YvZ+C’and Z+ YVZ+Cfrepresent V, -+(V,@ I/,)/k and V,-+(V,@ V,)/k. 

(b) Dually, if w; : Y-+X and w; : Z-+X’ represent @; and &, then so do 
(w;AX’): YAX’+XAX’ and (XAW;): XAZ+XAX’. Thus we may assume X= 
x’. The mapf’= I,U;V w; : YvZ-+X then represents (@;, @;) : V, @ V2+k. By Lemma 
7.4, the map C’+~(YVZ)=~YVEZ represents the kernel map ker(@;,&)-+ 
V,@V,, and the composite maps C,-,-+2YV2Z-+2Y and Cy+,TYv_XZ-2Z 
(given by sending one wedge summand to the base point) represent ker(@;, &) + V, 
and ker(@;,@;)+ V,. 0 

8. Modules for the Klein Four group in characteristic 2 

Throughout this section, let G denote the Klein four group (i.e., the elementary 
abelian group of order four) and k an algebraically closed field of characteristic two. 
We discuss here which finitely generated kG-modules are realizable. We shall see 
that the condition given in Theorem 6.3 is necessary and sufficient in this case. 

Denote by Q the Heller operator of taking the kernel of the projective cover of 
a module, and by Sz-’ the dual operator of taking the cokernel of the injective 
hull. Note that 

V=Qnl((SZ(V))@projective=Q(Q-‘(V))@projective. 
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Let H*(G, k) = k[x, y], with deg(x) = deg(y) = 1. It follows from the classification 

given in BaSev [4] (see also Conlon [ll]) that every indecomposable kG-module is 

isomorphic either to kG, of dimension 4, to Q’“(k), of dimension 2n-t 1 (where k 
denotes the trivial one-dimensional module), or to Lt,+pYY, of dimension 2m, 
where the definition of this module is the same as in Definitions 4.6. The only 

isomorphisms between these modules are Lt,+pYyr8 = Lc,,,+88u),PV if a/3’= a//3. Thus 

the modules of dimension 2m are parametrized by P’(k), and by Lemma 4.8, 

XG(L~aX+PY)~~~) is the point (o : /I) E P’(k). 
By Theorem 6.3, LcaX+flYRy) lri is not a direct summand of a realizable kG-module if 

((w : /3) $ { (1 : 0), (0 : l), (1 : l)}. We shall show that all the other indecomposable kG- 
modules are realizable. 

The free module kG, the trivial module k, and the modules L,, L, and Lcx+yj, 
are all permutation modules, and are hence realizable by bouquets of spheres per- 

muted by G in the same fashion. By Lemmas 7.5 and 7.6, if I/ is realizable, then 

so are Q(V) and sZ-‘( V). Thus the modules Q’“(k) are realizable. We shall realize 

the remaining modules by a process of gluing together permutation modules as we 

now describe. 

The remaining modules are the modules Lx,,,, Lyj,, and Lcx+yy with m > 1. By a 

change of notation (i.e., a change of basis of G) we need only consider LxlIi. 

Theorem 8.1. The modules Lx., are all realizable. 

Proof. Step 1. We realize the map 2: Q(k)-+ k (see 4.6) as follows. Denote by 

Vk(S”) a wedge of k copies of the n-sphere. Then there are obvious maps 

S”%V2(Sn) and V4(S”)AV2(Sn) realizing the maps k-L, and kG+L,. 

By Lemma 7.5, the mapping cone C,,, of 

realizes the kernel of k@ kG+L,, namely Q(k), and the inclusion Cave% 

_Z(S”VV4(Sn)) realizes the inclusion Q(k)&k@ kG. It is easy to check that project- 

ing onto ZS”= S”+ I gives us a map q : C,vp -+ S”+ ’ realizing x : Q(k) + k. 
Step 2. We realize (.?“,O) : Qm(k)@(free)+k as follows. Let q : K, +K2 be the 

map constructed above realizing 2. Then 

(q/\l)o(l~q): K,r\K,+K,r\K,+K,AK, 

realizes the map 

~~(l@_f):Q(k)@Q(k)+Q(k)+k. 

But f2(k)@Q(k)=Q2(k)@kG, and Zo(l@Z) is the map (*2,0):Q2(k)@kG+k. 
We repeat this procedure inductively as follows. 

(ul~l~...~l)o(l~rl~...~l)o...o(l~l~...~r) 

is a map from K, A .. . AK, to K,A e.. A K2 realizing the map 
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no(l@*)o ... o(l@.**@f): @“(Q(k))+k. 

But 0” (Q(k)) E am(k with F free, and the above map is (z?, 0) : Q”‘(k)@ 

F-k. 
Step 3. By Lemma 7.4, the cone on the map constructed in Step 2 realizes 

L,. @ F. Since Lx,,, @ F is cohomologically equivalent to Lx,., it follows from Pro- 

position 7.1O(iv) that LxjrI is realizable. 

Alternative proof avoiding use of 7.10. We give the above proof because it shows 

how a construction follows closely from the definition of Lx~7~. The following con- 

struction avoids some of the heavy work in Section 7, but is slightly less transparent. 

We proceed inductively. Assume by induction that we have realized the short 

exact sequence 

0 -+ Lx,12 I + ST2 -‘(k)+k+O. 

We treat the case m = 1 exactly as in Step 1 above. 

Since we also have a realizable map L, + k, we may use Lemma 7.11 to obtain 

a realizable map Qmp’ (k) @ L, + k whose kernel is Lxm . This gives us a realizable 

map Lxrn+ D “-l(k) whose kernel is k. As before, we also have a realizable map 

from k to L,, so we may add these, again using Lemma 7.11, to obtain a realizable 

short exact sequence 

O+k+Lxm@Ly+Q”(k)-+O, 

and hence a realizable short exact sequence 

O-Lxm+QM(k)+k+O 

as required. 0 

Combining Theorem 8.1 with the preceding discussion proves the following 

theorem. 

Theorem 8.2. Let G be the Klein four group. A finitely generated kG-module U is 
realizable if and only if for all summands V of U, X,(V) is of the form 
UESG tE,o(XE) for some collection of subgroups E of G. 

Comment. Using the techniques of Section 7, together with the description in [6] 

of the indecomposable zI,G-lattices, it should be possible to determine precisely 

which 2, G-lattices are realizable. 

9. Modules for the quaternion group Qs 

Throughout this section, let G denote the quaternion group of order eight, and 

let k be an algebraically closed field of characteristic two. In this case, the variety 

X, is a single line through the origin, and so the only homogeneous subvarieties 



32 D.J. Benson, N. Habegger 

are X, and (0). Thus Theorem 6.3 gives us no information in this case about 
realizability of finitely generated kG-modules. In this section, we produce an 
example of a non-realizable kG-module. This module is the extension of an F4G- 
module V to a kG-module V&, k, and V is the reduction modulo (2) of a non- 
realizable Z[w]-free Z[o]G-module U. Here, and for the rest of this section, 
{ 1, o, Q> are the cube roots of unity either in C or in k, so that for example 
IF, = (0, 1, w, o}. We shall use a restriction of scalars argument to give a non- 
realizable F,G-module I$, and a lift to a Z-free non-realizable ZG-module. This ex- 
ample is a modification of an example of Vogel, who shows that V0 is a non- 
realizable Z-torsion ZG-module. 

Let G = (x, y 1 x2 =y*, x4 = 1, x-‘yx=yP1). The representation I/ is given as 2 x 2 
matrices over z[o] as follows. 

It is easily verified that these matrices satisfy the given relations, and hence give a 
representation of Qs. Modulo (2), we obtain the F,G-module V given by matrices 
as follows. 

Note that Z(G) is in the kernel of this lF,G-module. However, it should be 
pointed out that it does not follow from the fact that the corresponding 
F,[G/Z(G)]-module is not realizable (see Section 8) that this F,G-module is not 
realizable. We need some further argument. 

Recall that H*(G, IF*) = IF2 [x, y, z]/(x* + xy + y*, x*y + xu*) where deg x = deg y = 1, 
degz=4, and the action of the Steenrod algebra .d(2) is given by Sq’(x)=x*, 
Sq’(y)=y*, Sq’(z)=Sq*(z)=O, and Sq”(z)=z*. 

Lemma 9.1. As a module over H*(G, IF,), Ext t4G (I’, F4) s H*(G, I’*) is generated 
by elements a, in degree 0 and b, in degree 1, subject to the relations 
(x + oy)bl = (x2 + oy2)a0 and (x + oy)aO = 0. 

Proof. This follows from an examination of the spectral sequence 

H”(G/Z(G), H4(Z(G), V*)) BH~+~(G, I’*) 

HP(G/Z(G), V*) OF4 Hq(Z(G), F,). 0 

Theorem 9.2. Extc4d(I/, F,) has no structure as a T-H*(G, F,)-module extending 
the action of H*(G, F,) given in Lemma 9.1. 
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Proof. Suppose fl is a linear map satisfying the conditions of Definition 5.2. Then 

0 = S((x + oy)ae) = g(x + cuy)c7(a(J 

= (x + wy)~(&J + (x2 + oy2)~(u0), 
and 

(x2 + wy2)Y(a,) = g((x2 + cOy2)alJ = g((x + wy)b,) 

= (x+ oy)F(b,) + (x2 + cOy2)S(&). 

Comparing terms in degree 3, we see that 

(x2+coy2)b1 =(x2+~y2p-&zo)+ (X+Oy)~~(bl) 

= (x + o~)(9Xq,) + 5 @,)I E H*(G IF,). 00. 

This contradicts the fact that (x2 + oy2)bl is non-zero in 

Ext$ (v, F,)/H*(G, E4) . a,, 

which is an H*(G, F4)-module with a single generator bl subject to the relation 
(x+wy)b,=O. 0 

We now apply Proposition 5.4, to deduce that V is not realizable. 

Corollary 9.3. (i) V is a non-realizable F,G-module. 
(ii) U is a non-realizable Z[o]G-module. 

(iii) Let V. be the module V considered as an F2G-module by restriction of 
scalars. Then V. is not realizable. 

(iv) Let U. be the module U considered as a Z-free ZG-module by restriction of 
scalars. Then U. is not realizable. 

Proof. (i) This follows from Theorem 9.2 and Proposition 5.4. 
(ii) This follows from (i) and 2.4. 

(iii) This follows from (i) and Corollary 5.6. 
(iv) This follows from (iii) and 2.4. 0 

Remark. Vogel has used the fact that V. is a Z-torsion non-realizable ZQs-module 
to show that the following conditions on a finite group G are equivalent. 

(i) Every EG-module is realizable. 
(ii) All Sylow subgroups of G are cyclic. 
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