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1. Introduction 

tn the study of representation theory, many people find themselves drawing some 
kind of diagram describing the  submodule structure of a module. The amount of 
information displayed varies: at one extreme we can show the complete lattice of 
submodules together with information about the isomorphism types of sub- 
quotients; at the other extreme we may only give the set of composition factors. 
Between these extremes we have for example the Loewy and socle series. 

In the case where the module has no subquotient isomorphic to a direct sum of 
two isomorphic simple modules, there is an easy definition of a diagrammatic 
notation, in which the composition factors are given a partial order, and the lattice 
of submodules may be recovered from the partial order (see for example the 
discussion in Alperin [2]). The purpose of this paper is to describe a notation for 
a~'bitrary modular lattices satisfying an appropriate finiteness condition, in such a 
way that the lattice may always be recovered from the diagram, and if the lattice 
is finite then the diagram is also finite, and usually has significantly fewer vertices 
than the lattice has elements. 

Finitely generated modules over an Artinian ring have the property that the lattice 
of submodules satisfies both the ascending and descending chain condition, and has 
a maximal and a minimal element. We say such a lattice has finite length. 

Modular lattices of finite length in fact have a well defined length l(F), and the 
number of modes in our diagram for F is at least l(F). in the case of the lattice of 
submodules of a module, l(F) corresponds to the number of composition factors, 
and equality occurs if and only if the module has no subquotient isomorphic to a 
ci rect sum of two isomorphic simple modules. 

An unfortunate feature of our diagrams is that they do not behave well under 
duality, in the sense that it is difficult to relate the diagrams for a lattice and its 
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opposite. Also, the diagram for an extension of  two modules is difficult to relate 
to the diagrams for the two modules; but  this appears to reflect the complexity of 
the extension problem. 

For a basic reference on lattice theory, see Aigner [1]. 

2. Notation and definitions 

Definitions. A lattice is a partially ordered set any two of  whose elements have a 
greatest lower bound or 'meet '  denoted xAy, and a least upper bound or ' join' 
denoted xvy .  A lattice is complete if every subset has a meet and a join.  

A lattice has finite length if  it has no infinite ascending or descending chains. It 
is clear that  such a lattice is automatically complete, and has unique maximal and 
minimal elements, denoted 1 and 0. 

A lattice is modular if  a<_b=(avc)Ab=av(cAb). 

Let F be a lattice. For x e F, let 

p(x)= { y e F  : y < x  and ]z eF, y<z<x} .  

If  F has finite length, we have 

p(x)=O = x=O. 

We define 

Rad(x)=(y~l,~x)Y)AX' 

n(x)=l~(x)l (possibly n(x) = oo), 

hr(F) = {x ~ F : n(x) = r}, 

h(F)  = h l ( f '  ) . 

We denote by F*  the opposite lattice of  F; namely the points of  F*  are the same 
as the points of F, but x<_y in F* if and only if y<_x in F. Thus the r61es of meet 
and join are reversed. 

It i s  interesting to note that  Dilworth [3] has proved that if F is finite, then for 
any r, Ihr(F)[ = ]hr(F*)l. This theorem with r =  1 will tell us that our diagrams for 
f '  and F* have the same number of nodes, al though there is in general no natural 

one-one  correspondence. 

3. Definition of the diagram 

If F is a modular lattice of  finite length, the diagram D(F) for f '  consists of some 
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points, some directed edges and some 'dotted lines' (subsets of the set of points) as 
follows. 

The points of D(F) are the elements of h(F). 
There is a directed edge from x to y, x,y~hO,), if and only if y < x  and there is 

no z ~ h(F) with y < z < x. 
A subset X c_ h(F) forms a dotted line if and only if the following conditions are 

satisfied. 
(a) I XI >_ 3 (possibly X is infinite). 
(b) For all x, y ~ X, x vy  = V (X). 
(c) X is maximal with respect to properties (a) and (b). 

Lemma. Any subset X c_ h(F) satisfying (a) and (b) is contained in a maximal such 
subset. 

Proof. If  X1 and X2 satisfy (a) and (b) with X1 _X2, then V ( X I ) = V ( X 2 ) .  Thus 
the union of any ascending chain of such subsets is again such a subset. The result 
now follows from Zorn's lemma. [] 

Note that there may be more than one dotted line containing a given set of points. 
Note also that since there are no directed loops, the direction of a directed edge may 
be (and will be in our examples) indicated by placing the tail of the arrow higher 
on the page than the head, and drawing an undirected edge. 

If F is the lattice of submodules of a module, then we may mark each point 
x~D(F) with the isomorphism type of x/Rad(x), which is a simple module. 

4. Examples 

(1) Let B be a block of a group algebra kG, with cyclic defect. The principal in- 
decomposable modules in B are either uniserial, or have the following lattice of sub- 
modules and diagram: 

lattice 

\ 
I ) 

i ] 

diagram 



114 D.J. Benson, J:H. Conway 

(2) Let F~ denote the lattice 

Then 

D(FI) = and D(FI*) = 

(3) The direct sum of three copies of an absolutely irreducible representation of 
a finite group over GF(2) has its lattice of submodules and diagram as follows. 

h , . i p  "~ 
/ t , ,  I ~/ • 

lattice diagram 

(4) Again working over GF(2), we may glue three different simple modules B, C 
and D on top of A @A to obtain a module with the following lattice of submodules 
and diagram. 

A'- A A 

lattice diagram 

5. Recovering the lattice 

Let D be a diagram arising from a modular lattice as in Section 3. We define a 
lattice F(D) as follows. 

The points of F(D) are the subsets M of the points of D satisfying the following 
conditions. 

(a) I f  x e M  and there is a directed edge x ~ y ,  then y e M .  
(fl) I f  X is a dotted line, then either IsnMl<_l or Xc_M. 



Diagrams for  modular lattices 115 

We give F(D) a poset structure by defining MI<M2 if and only if M1 _cM2 as 
subsets of D. Our main result is the following. 

Main Theorem. Suppose F is a modular lattice o f  finite length. Then F(D(F)) has 
meets and joins, giving it the structure of  a modular lattice naturally isomorphic to F. 

6~ Proof of the Main Theorem 

Before proving this theorem, we need some preliminary lemmas. 

Lemma 1. Suppose E & a lattice satisfying the descending cha& condition. Then for  
any x~F,  

x = V  { y e h ( F ) :  y<_x} 

Proof. Suppose false, and choose a minimal u ~ F which does not have the given 
property. Let u '=V{y~h(F) : y<_u} .  Then if v<u ,  vvu ' =u '  and hence v<_u'. 
Thus u e h(F), and we have a contradiction. [] 

Lemma 2 (Replacement Lemma). Suppose F is a modular lattice and 

x = x I V  . . .  VXm = Y l V  . . .  V y  n 

with xi and yj elements o f  h(F). Then for some i, 1 <_ i <_ n, 

X = X l V  . . .  V X m _ l V Y  i. 

In particular any two minimal such expressions have equal length. 

Proof. See Aigner [1, 2.23]. [] 

Lerama 3. Suppose F is a modular lattice o f  finite length. Then F(D(F)) has ar- 
bitrary meets and joins. 

Proof. Suppose { M i : i e I }  c_F(D(F)). Then ~i , :MieF(D(F)) ,  and so we have 

AiEIMi= Ni~IMi • 
Now L]i~zMi is not necessarily an element of F(D(F)). However, h(F) is the 

maximal element of F(D(f')), and so {M~f'(D(F)):M3_ Oj~:Mi} ~0. Thus we 
have 

V Mi = A [M ~ F(D(F)) " M D_ U Mi 1. [] 
i ~ l  i ~ I  

Proof of Main Theorem. By Lemma 3, F(D(F)) has meets and joins making it a 
lattice. We define a map 

: r ~ r ( D ( r ) )  
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via 

x ~ Mx = { Y e h(F) : y <- x }. 

We easily check from the definitions that  Mx ~ F(D(I")). For example, property 
(b) of  the dotted lines shows that  (fl) is satisfied. 

By Lemma 1, x < x "  if  and only if M x < M x , ,  and x < x '  if  and only if Mx<Mx," 
Thus Q is injective and order-preserving. 

To show that  p is surjective we must show that  every element of  I"(D(F)) is of 
the form Mx for some x. Given M e F ( D ( F ) ) ,  let x = V ( M ) .  We must show that if 
y ~ h(F) and y < x, then y e M. 

Suppose false. Then there exists M, x = V (M) and y ~ h(F)  with y < x and y ~ M. 
Let 

ny = inf{Card(U) : U c_ M, y__V (U)} 

(ny is finite since F has finite length), and choose the above data so as to minimize 
ny. Note that ny___2 by property (t~) of  M. Choose U =  {u 1, . . . ,  un} as above with 
n =ny so as to minimize y v u l .  If ul-<y, then 

y = y A V  (U) = U 1V(yA(U2V " .  VUn) ) = y A ( U 2 V  "-- VUn) 

since y ~ h(F). This contradicts the minimality of  Card(U),  and so u I :~y. Let a = 

(ulVy)A(u2V .'. rUn), and write a = a l v  ... vat  with ai e h ( F ) .  Since ai<_u2 v . . .run,  
minimality of  Card(U) implies a i e M .  Now 

/'/1 Vy = (/'/1 Vy)A(u Iv . - -  Vun) = Ul Va = Ul Val v ... Vat 

and so by Lemma 3, u l v y = b l v b 2 = u l v b  I for some {bl,b2} _c {ul ,a l ,  . . . ,at}, so 
that  ny = 2. By minimality of  u l v y ,  we have u l v y  = bl vy,  and so { y, ul, bl } is con- 
tained in a dotted line. Hence y e M .  [] 
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