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1. INTRODUCTION 

In the modular and integral representation theory of finite groups one of 
the most often used operations is that of the tensor product of modules. In 
general, however, there has always existed the problem of finding the 
decomposition of a tensor product into a direct sum of indecomposable 
modules. Very few techniques exist which reveal or even hint at the nature 
of such decompositions. One method of addressing this problem is to con- 
sider the tensor operation as the product in the representation ring or 
Green ring of the group ring and to look for ring-theoretic properties of 
this object. This investigation began with J. A. Green’s theorem [ 111 that 
the reprcscntation ring of a group algebra kG is semisimple in the case 
where G is a cyclic p-group and k is a field of characteristic p. Much sub- 
sequent work has centered on the semisimplicity question in the form: 
“Does the Green ring have (nonzero) nilpotent elements?” This question 
has been largely answered. If R is a rank one complete discrete valuation 
ring whose maximal ideal contains p # 0, then the Green ring of RG-lattices 
has nilpotent elements except in certain cases where the Sylow p-subgroup 
P of G is cyclic of order p or p2 [ 14, 15, 173. If k is a field of characteristic 
p, then the Green ring has nilpotent elements except when P is a cyclic 
group or an elementary abelian 2-group (the case of an elementary abelian 
2-group of rank of least 3 is still open to the best of our knowledge) [7, 11, 
13, 17, 181. Nevertheless, the proofs given for these results were heavily 
computational, and neither explained the properties of nilpotent elements, 
nor indicated a general method for constructing them. 

In this paper we give new approaches to these questions, as well as 
producing some results of independent interest concerning tensor products 
and endomorphism rings. 
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Let G be a finite group, R a commutative ring with a unit, and k a field 
of characteristic p. By an RG-lattice (RG-mod& if R is a field) we shall 
mean a finitely generated RG-module which is projective as an R-module. 
If M is an RG-lattice let [M] denote its isomorphism class. Let a(RG) be 
the free abelian group generated by all symbols [M], modulo the subgroup 
generated by all elements of the form [M] - [L] - [N], where 
0 + L + M + N + 0 is a split exact sequence. If M and N are RG-lattices, 
M OR N is an RG-lattice with G-action given by g(m 0 n) = gm @gn for all 
g E G, m E M, n E N. The Green ring or representation ring of RG is a(RG) 
with product given by [M] . [N] = [M OR N].Let A( RG) = a( RG) 0 I @, 
where C is the field of complex numbers. 

In Section 2 we present a basic result which determines when the trivial 
kc-module k is a direct summand of a tensor product of two kc-modules; 
we also give a generalization of this to Scott modules. As an easy con- 
sequence of this result we exhibit an ideal a(G;p) ca(kG) with the 
property that a(kG)/a(G;p) h as no nilpotent elements. Using some results 
from [2] we produce a new proof of the semisimplicity of the Green ring in 
the case where G has cyclic Sylow p-subgroups. 

In the last two sections we consider the problem of existence of nilpotent 
elements. In Section 3 a general technique is given for producing nilpotent 
elements as well as idempotents. The results duplicate those of Zemanek 
[ 17, 181 except that instead of giving a few isolated examples, the method 
produces an infinity of nilpotent elements. The major feature of the techni- 
que is to replace Zemanek’s difficult tensor product calculation with a com- 
paratively easy cohomology calculation. Examples of the use of the method 
are given in Section 4. 

Throughout this paper all lattices and modules will be assumed to be 
finitely generated. Maps will be written on the left, and all modules will be 
left modules. The symbol @ will denote tensor product over the coefficient 
ring R unless otherwise indicated. Reecall that if M and N are RG-lattices 
then Hom,(M, N) is an RG-lattice with G-action given by 
(g-f)(m) =g(,f’(g ‘m)) for g E G, f’E Hom,(M, N) and m E M. We have 
Hom,(M, N) r M* @ N, where M* = Hom,(M, R) is the dual of M. Let 
End.(M) = Hom,(M, M) and End,,(M) = Horn&M, M). We say that 
M is a component of N if M is an indecomposable direct summand of N. In 
this case the multiplicity of A4 in N is the greatest integer s such that a 
direct sum of s copies of M is a direct summand of N. 

2. NONEXISTENCE OF NILPOTENT ELEMENTS 

The basic theorem in this section is Theorem 2.1. We also deduce 
Proposition 2.4, which is a generalization to Scott modules of 2.1, although 
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we shall not use this generalization in what follows. Theorem 2.1 was first 
proved in the absolutely irreducible case by Peter Landrock. 

DEFINITION. We say a kc-module M is absolutely indecomposable if 
End,,(M)/Rad End,,(M) g k. 

Note that this implies but is not implied by the property that M is 
indecomposable under any extension of the field of scalars. If k is 
algebraically closed then all indecomposable modules are absolutely 
indecomposable. 

THEOREM 2.1. Suppose that M and N are absolutely indecomposable kG- 
modules. Then M@ N has the trivial module k as a direct summand if and 
only if the,following two conditions are satixfied. 

(i) Mg N*. 
(ii) pJdim(N). 

Moreover if k is a component of N* @ N then it has multiplicity one. 

Proof: The set of G-fixed points of MO N is isomorphic to 
Hom,,( N*, M), while the set of G-ftxed points of (M @ N)* is isomorphic 
to Hom,,(M, N*). Thus the trivial kc-module k is a direct summand of 
M 0 N if and only if we can find homomorphisms 

k+M@N-+k 

whose composite is nonzero; namely, if and only if the composite map 

Horn&N*, M) cf, MO N-!L+ (Hom,,(M, N*))* 

is nonzero. 
Associated to p ,> i, there is a map 

q: Hom,,(N*, M) 0 Hom,,( M, N*) -+ k 

with the property that pc i # 0 if and only if ‘1 # 0. This map is given as 
follows. Choose a basis n, ,..., n, for N and let n’, ,..., n: be the dual basis for 
N*. Let IY E Hom,,(N*, M) and fi E Hom,,(M, N*). Then 

i(u)= i; cc(ni)@nj, 
/=I 

Am 0 n)(B) = B(m)(n), 
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and so by definition 

=,;, p(a(n:)Qn,)(B) 

= ,y BMn:))(n,) 
i= I 

= tr(B c a). 

Hence we may factor v as composition followed by trace. 

Horn&N*, M) 0 Hom,,(M, N*) - End,,(N*) --% k. 

Since N* is absolutely indecomposable, End&N*) is a local ring, and 
every kG-endomorphism of N* is of the form AZ+ n with n nilpotent. Now 
we have tr(n) = 0, and tr(Z) = dim N* = dim N. Thus for k to be a direct 
summand of MO N (i.e., for q to be nonzero) we must have pjdim N. 
Moreover, we must have elements (x E Horn&N*, M) and 
/3 E Horn&M, N*) such that tr@ a) # 0; namely, such that POCY is an 
isomorphism. Since M is indecomposable this means we must have 
M z N*. Moreover, in the case where pldim N and A4 z N*, it is clear that 
q(flo E) # 0 for any isomorphisms SC and B. 

Finally, suppose k is a component of N* 0 N with multiplicity greater 
than one. Then the image of p 0 i has dimension greater than one. This 
means that there are subspaces of Hom,,(N*, M) and Hom,,(M, N*) of 
dimension greater than one, on which q is a nonsingular pairing. Thus 
there is a subspace of Horn&N*, M) of dimension greater than one all of 
whose nonzero elements are isomorphisms, and this we know to be 
impossible. 1 

PROPOSITION 2.2. Suppose that M is absolutely indecomposable and 
p / dim M. Then for any module N and any component U of MQ N we have 
pldim U. 

ProoJ Suppose that p[dim U. Then by Theorem 2.1, k is a component 
of U@ u*, and hence of (MO N)@ U* g MO (NO U*). But by Theorem 
2.1 again, this implies that pldim M and that M* is isomorphic to a sum- 
mand of NO U*, contradicting the hypothesis. 1 
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In the statements of Lemma 2.3 and Proposition 2.4, the notation 
SC,(D) is used to denote the Scott module for G with vertex D. For the 
definition and basic results on Scott modules, see [3]. We would like to 
thank Peter Landrock for suggesting that proposition 2.4 might be true. 

LEMMA 2.3. Suppose that M is a D-projective kG-module. Then M has CI 
direct summand Nr SC,(G) if and only tf there is a kG-module 
homomorphism from M to k which splits on restriction to D. 

Proof Since the natural map from SC,(D) to k splits on restriction to 
D, the “only if” part is clear. Conversely, if there is a kc-module 
homomorphism from M to k which splits on restriction to D, choose a 
component N of M with the same property. Since N is D-projective, N 
must have vertex exactly D and trivial source. Hence N z SC,(D). 1 

PROPOSITION 2.4. Suppose that M is an absolutely indecomposable kG- 
module with vertex D and source S. Then SC,(D) is a direct summand of 
MO M* if and only if p/dim S. 

Proof: Without loss of generality, we may assume that k is algebraically 
closed. First, suppose that pi dim S. Then by Green’s indecomposability 
theorem [ 10, Theorem 81, and the Mackey decomposition theorem, 
p 1 dim U for every component U of ST” J,>. Thus by Theorem 2.1, k is not 
a direct summand of St” J.@(S*) t” LD and hence it is not a direct sum- 
mand of (MO M*) 1”. Since k is a direct summand of Sc,( D) I,,, this 
implies that SC,(D) is not a direct summand of M@ M*. 

Conversely, suppose that p/dim S. Denote by c(: k + (MO M*)J, the 
kD-module homomorphism corresponding to the composite map 
M 1 n ++ S 4 M 1 n. Since p 1 dim S, u is a D-splitting for the kc-module 
homomorphism tr: MOM* -+ k. Hence by Lemma 2.3, SC,(D) is a direct 
summand of MO M*. 1 

Motivated by Proposition 2.2, we make the following definitions. 

DEFINITIONS. A kG-module M is absolutely p-divisible if, for every exten- 
sion field k, of k, and every direct summand M, of k, Ok M (as a k, G- 
module), p ( dim,,(M, ). 

Let a(G; p) denote the linear span in a(G) of the absolutely p-divisible 
kG-modules, and let 

Note that 

A(G;p)=a(G;p)@ CsA(G). 
H 

a(G;p)=A(G;p)nu(G). 
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LEMMA 2.5. (i) a(G;p) is un ideal in u(G). 

(ii) A(G;p) is an ideal in A(G). 

Proof: This follows immediately from Proposition 2.2. 1 

LEMMA 2.6. Suppose that x=x u;[M,] E A(G). Define x* =x a,[M,*]. 
[fxx*~A(G;p) then XEA(G;~). 

Proqf: If XX* =I lu,i2[M,@M,*] +C~zjui3,[M,@M~] does not 
involve the trivial module [k], then by Theorem 2.1, each [M,] lies in 
A(G;p). I 

THEOREM 2.7. For an urhitrury,finite group G, the ring A(G)/A(G; p) has 
no nonzero nilpotent elements. 

Proof: If A(G)/A(G;p) has a nonzero nilpotent element, then there is a 
nonzero element XE A(G), not in A(G;p), but with x2 E A(G;p). Let 
J’ = xx*. Then y)j* = (XX*)’ E A(G;p). Applying Lemma 2.6 twice, we 
deduce first that YE A(G;p), and then that .YE A(G;p). 1 

Now, we wish to use the above results to give a new proof that A(G) has 
no nilpotent elements in the case where G has cyclic Sylow subgroups; and 
more generally that A(G, Cyc), the linear span in A(G) of the modules with 
cyclic vertex,has no nilpotent elements. 

Recall from [2] that a subgroup H of G is called p-hypoefementury if 
H/O,(H) is cyclic. We also use the notations rti,[, and iH,L-. to denote the 
linear maps between representation rings given by restriction and induction 
of representations. 

First, we must study the case of a p-hypoelementary group H with 
O,,(H) cyclic. 

PROPOSITION 2.8. Assume that k is algebraically closed. Suppose that H 
is p-hypoelementur~~ und 1 # D = O,,(H) is cyclic. Let H, hcj a subgroup of’H 
of’ index p. Then 

A(H; p) = Wi,,,,,,). 

Prooj Suppose that M is an indecomposable kH-module. Then M is 
uniserial and M lL) is indecomposable. Let D, be the subgroup of D of 
index p. Since indecomposable kD-modules are simply Jordan blocks with 
eigenvalue one and length at most IDI, it is clear by Green’s Indecom- 
posability Theorem [ 10, Theorem S] that such a module has dimension 
divisible by p if and only if it is induced from a kD,-module. Thus M has 
dimension divisible by p if and only if it is H,-projective. Hence it only 
remains to show that if N is an indecomposable kH,-module then N 7” is 
indecomposable. But this is clear since N y” In z N In, 7” by the Mackey 
Decomposition Theorem. 1 
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PROPOSITION 2.9. If H is p-hypoelementary with D = O,(H) cyclic, then 
A(H) has no nilpotent elements. 

Proof: Since extension of scalars gives an injection of Green rings [2, 
Proposition 5.11, we may assume without loss of generality that k is 
algebraically closed. 

If IDI = 1 then H has order coprime to p, and the result follows from 
ordinary character theory. If IDI > 1, then by Proposition 2.8 and 
[2, Theorem 6.71 

A(H) = Im(i,,.,)O Ker(r,.,,) 

=A(H;p)OKer(rH,,,,) 

as a direct sum of ideals. Assume inductively that the result is true for H,. 
Then rH,HI maps A(H;p) injectively into A(H,) and so A(H;p) has no 
nilpotent elements. Since A(H)/A( H; p) has no nilpotent elements by 
Theorem 2.7, the result follows. 1 

We pass from p-hypoelementary groups to arbitrary groups using a 
method of Conlon. If H is a subgroup of G, we denote by A(G, H) the 
linear span in A(G) of the H-projective kG-modules, and by A’(G, H) the 
linear span in A(G) of the modules which are K-projective for some proper 
subgroup K of H. 

LEMMA 2.10 (Conlon [6] ). For any H 6 G, A( G, H) is an ideal direct 
summand of A(G). Contained in A(G, H) there is a canonical ideal direct 
summand A”(G, H) of A(G), with the properties that 

A”(G, H) 2 A(G, H)/A’(G, H) z A(N,( H), H)/A’(N,( H), H) 

and 

A(G, H) = A’(G, H) 0 A”(G, H). 

This gives a direct sum decomposition 

A(G, H) = @ A”(G, D). 
D 

In this decomposition, D runs through a set containing exactly one represen- 
tative from each conjugacy class in G of p-subgroups of H. The map 

rG,NG(H): A”(G W -+ A”(NdW, HI 

is an isomorphism. 1 
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PROPOSITION 2.11. Let X be a set consisting qf one representative af 
each conjugacy class of p-hypoelementary subgroups H 6 G with O,,(H) 
cyclic. Then the map 

A(G, CYC)+ 0 A(H) 
HE Yi 

given by the sum qf the restriction maps, is injective. 

Proaf From Lemma 2.10, we have 

A(G) = @ A"(G, D). 
n 

where D runs through a complete set of nonconjugate p-subgroups of G. 
Moreover rC,N6(nI : A”(G, D) -+ A “(N,(D), D) is an isomorphism. If D is 
not cyclic, then A”(G, D) A A(G, Cyc) = { 0}, and so we may restrict our 
attention to D cyclic. The result now follows from the fact [8, Sect. 51 that 
the map 

A”(N,(D), D) -+ @ A”(H, D) 
HE K 

O,( H, : D 

given by the sum of the restriction maps, is injective. 1 

THEOREM 2.12. For an arbitrary ,finite group G, the ideal A(G, Cyc) has 
no nilpotent elements. 

Proqf: This follows from Propositions 2.9 and 2.11. 1 

COROLLARY 2.13. Lf G has cyclic Sylowt p-subgroups then A(G) has no 
nilpotent elements. 

ProoJ In this case A(G)= A(G, Cyc). 1 

Finally, we would like to point out that we can express the basic 
Theorem (2.1) in terms of almost split sequences. Since Proposition 2.15 is 
false in greater generality, we shall assume for the rest of section two that k 
is algebraically closed. We start with a preliminary discussion of short exact 
sequences. 

Suppose O-+A+B+C+O and O-+A’-+B’+C’+O are short exact 
sequences with A z A’, B % B’, and CE C’. Then it is not necessarily true 
that there is an isomorphism of short exact sequences 
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O-ALB-C-O 

O-A’>BB’-C’-0. 

For example, we could let G= V4= (x,~/x~=~‘=(x.v)~= l), 
B= B’ = Q2(k), and A E A’= k. The socle of L?‘(k) has dimension two. 
Choose any basis ur , v2 of the socle and let a( A) = ku, , z(A’) = ku,. Then 
C = B/a(A) E k @Q(k) z B’/s(A’) = C’. But because L?‘(k) is absolutely 
indecomposable, any automorphism of Q’(k) fixes the submodules o(A) 
and T(A’). 

For split and almost split sequences, however, the situation is different. It 
follows by counting dimensions of spaces of homomorphisms to C, that if 
O+A+B-+C+O is split (resp. almost split), then O-+A’+B’+C’+O 
is also split (resp. almost split). 

Suppose 0 + L?(k) + X-+ Q ‘(k) + 0 is the almost split sequence with 
XZ P, @Rad(P,)/Soc(P,) (here, P, is the projective cover of the trivial 
one-dimensional kG-module k, Q denotes the Heller operation of taking 
the kernel of the projective cover, and Q I denotes the dual operation of 
taking the cokernel of the injective hull). Tensoring with an indecom- 
posable module M, we obtain a short exact sequence 

O-+Q(k)@M-,X@M-+Q ‘(k)@M+O. 

Since fi(k)@MrQ(M)@projectives and Sz ‘(k)@MzQ-l(M)@ 
projectives, and since projective modules are injective, we may remove some 
projective summands from the sequence if necessary, to obtain a short 
exact sequence 

O+Q(M)+ I-n-‘(M)+O. (2.14) 

PROPOSITION 2.15. The sequence (2.14) is always either split or almost 
split. It is split if and only ifp 1 dim M. 

Proof: Let tl= [X] - [L?(k)] - [W l(k)] as an element of A(G). Then 
by [2, Theorem 3.51, for N indecomposable 

if Nzk 
otherwise 

(the bilinear form ( , ) is the one introduced in [2, Sect. 21). 
Thus by Theorem 2.1, 

if MzN and pJdimM 
otherwise. 

But (a, [M* 0 N]) = (a. CM], [N]), and so by [2, Proposition 3.71, 
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cx. [M] is equal to the difference of the almost split sequence terminating in 
Q ~ ‘(M) if p 1 dim A4, and zero if p ) dim M. The result now follows from the 
above discussion of short exact sequences. 1 

Remark. One may also prove Theorem 2.1 by first proving Proposition 
2.15 and then using the above argument backwards. For further details, see 
c11. 

EXAMPLE 2.16. The following example indicates why M needs to be 
absolutely indecomposable in Theorem 2.1, and why we take k 
algebraically closed for Proposition 2.15. 

Let G = A,, the alternating group on four letters, k = [F,, the field of two 
elements, and M be the irreducible two-dimensional module (which splits 
upon extension to [F, as a sum of two one-dimensional modules). Then 

M*@Mrk@k@M, 

and in the notation of Proposition 2.15, 

(CY, [M*@M])=2. 

EXAMPLE 2.17. The following example shows that the ring 
A( G)/A( G; p) discussed in Theorem 2.17 can be quite complicated in struc- 
ture. 

Let G=(~,yIx”=yP=[x,y]=l)~C~xC~, p odd, and let k be an 
infinite field of characteristic p. Let 

M=M,=kG/((x- l)(y- I), (y- l)‘-a(x- I)” ~‘) (ZEk), 

so that dim M=p + 1. By direct computation, it can be shown that 
MgM*, and MJ,,,z k @ F, where F is a free k(x)-module. We apply 
the following lemmas to this situation. 

LEMMA 2.18. Suppose M is an indecomposable kc-module such that ,for 
some element x of order p in G, M 1 C-rj E k @I F, where F is a ,free k(x)- 
module. Then [M] + a(G; p) is a unit in a(G)/a(G; p), with inverse 
CM*1 + 4G; p). 

Proqfi (M@M*)JC,y>gk@F@F*@F@F*. Also M@M*zk@L 
for some kG-module L. Hence L is free as a k(x)-module and so every 
component of L is in a(G; p). 1 

Applying this lemma to our situation, we find that 

([Ml] + a(G; p))’ = Ck] + a(G; p). 

Also M, ?$ M, if !I #/I, and so in this case a(G)/a(G; p) has an infinite 
number of units of order 2. Note that we may also use this to manufacture 
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idempotents in A(G)/A(G;p) since if u*= 1 in A(G)/A(G;p) then &(l -u) 
and $( 1 + U) are orthogonal idempotents. 

3. EXISTENCE OF NILPOTENT ELEMENTS 

In this section we describe a general method for producing nilpotent 
elements in the Green ring a(RG). The method appears to have some 
validity for any commutative ring R, but for convenience we assume that R 
is an integral domain. In Section 4 we give specific examples of nilpotent 
elements using this method. We begin with a general result, which is a 
generalization of Schanuel’s lemma. 

PROPOSITION 3.1. Let A he a ring with a unit element. Suppose that 

o-w,-L&v-0 

and 

o- WIy+P,--jl-, v-0 

are exact sequences of A-modules such that P, is a projective A-module and 
the homomorphism IJ factors through a projective A-module. Then 

Proof By hypothesis there exists a projective A-module P, and 
homomorphisms CI: U, -+ P,, T: P, -+ V such that z 3 c( = C. Since p is onto 
and P, is projective, there exists a map /3: P, -+ P, with p 0 fl= T. Now con- 
struct the pull-back diagram. 

0 0 

y,-“.\ L 
o- w,A x >,P,y-+o 

II i 
/ P: 

Yo< I’ i 
o-w,:u,- v-o 

I I 
0 0 
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Because P2 is projective there exists a splitting homomorphism 
3’: P, + A’. Note that ~=aSy/Ia. So let 8: U, -+A’ be defined by 
0 = ybcc + ([e ‘)( 1 - @pa). Then 68 is the identity on U,, and so 0 is a 
splitting for 6. Hence 

Suppose that R is an integral domain such that the prime p is not a unit 
in R. Let G be a finite group with p ( ICI. For any RG-lattice M, let an(M) 
be an RG-lattice of minimal rank such that there exists an exact sequence 

0 -+ f?(M) + F,, , -+ . + F, + A4 -+ 0, 

where F, ,..., F,, , are free RG-lattices. We insist that F,,..., F,, , be free lat- 
tices rather than just projective for the sake of convenience. That is, it 
makes the statements of the results easier. In case R is a field or a complete 
discrete valuation ring, the RG-lattices satisfy the Krull-Schmidt Theorem, 
and we may substitute Qn(M) for &‘(M). In any case an(M) has a sort of 
stable uniqueness in the following sense: 

LEMMA 3.2. Suppose that 

0 + N + E,, , -+ . . + EC, + A4 -+ o 

is a long exact sequence of RG-lattices with E,,..., E,, , ,free. Then there 
exist free RG-latticesp, and P, such that N@ P, z d”(M) @ P,. Moreover, 
$ Rank(N) = Rank(@(M)) then [N] = C&(M)] as elements of‘a( RG). 

Proof: The extended Schanuel lemma [ 16, (1.4)] states that 

N@F,, ,@E,, 2@ ... rS?in(A4)@E,,m ,@F,, r@ ... 

The last statement follows because the rank condition implies that P, s P,. 
Therefore 

[N] = [NO P,] - [P,] = [S?“(M)@ P,] - [PJ = [fin(M)]. 1 

THEOREM 3.3 (see Carlson [S]). Let [: !?(R) + R be an epimorphism 
with kernel Li. Let [ be the cohomology class in Ext&(R, R) represented by 
<. Suppose that A4 is an RG-lattice such that [ annihilates Ext&(M, M) 
(with the cup-product action of Ext&(R, R) on Extg,(M, M)). Then there 
exist free RG-lattices P, and P, such that 
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Proof. Suppose that 

O-,@‘(R)+F,m ,-+ ... -+F,+R+O 

is a long exact sequence of RG-lattices with F,,..., F,,+ , free. Let 
ZE ExtO,,(M, M) = Hom,&M, M) be the identity homomorphism. Then 
the product [Z is represented by the exact sequence which is the pushout of 
the diagram 

(see [ 121). But [Z= 0 and hence [@Z is a coboundary. This means that it 
factors through the projective module F,, ,@ M. Hence we have exact 
sequences 

O+W(M)+E+M+O 

and 

0-t L;@M+fi”(R)@M101- M-+0, 

where E is a free RG-module and [ @ 1 factors through a projective. Apply- 
ing Proposition 3.1 we obtain 

(L;@M)@E=~(M)@@“(R)@M). 

By Lemma 3.2 there exist free RG-lattices Q, and Q2 with 

(ii”(R)OM)OQ,ra”(M)OQ-,. 

This proves the theorem. [ 

We are now ready to set up the method for producing nilpotent elements 
in the Green ring. 

THEOREM 3.4. Let [: a”‘(R) + R (n > 0) he an epimorphism with kernel 
Lr. Suppose that L; satisfies the following three conditions. 

(i) For some m > 0, there exist ,free RG-lattices F,,..., F,,,- , and a 
long exact sequence 

That is, Lr is periodic with even period 2m. 
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(ii) Cfr,l, (- 1 )’ rank(S?i’(L;)) = 0. 

(iii) The cohomology class [ annihilates Ext*,,(L;, L;). 

Then in the Green ring xfz, ( - l)‘[@(L;)] ‘. I.5 a nilpotent element rthose 
square is zero, bt,hile (1/4m) C,?:, [a’( Lo] - F is idempotent, provided F is u 
suitable multiple qf [RG] to ensure that the total rank is zero. 

Proqf: By Theorem 3.3 and condition (iii) there exist free RG-lattices 
P, and P2 such that 

(L;@L;)@P, r~~“(L~)&yL;)OPZ. 

Now suppose that 

O+@L<)+E+L;+O 

is a short exact sequence of RG-lattices with E free. Then 

O~~(L;)OL;~EOL;-,L;OLc-,O 

is exact and E @ L; is free. Thus there exist free RG-lattices P, and PA such 
that 

(sli(L,)~L;)~P,~szi~“+‘(L;)~s?l~(L;)oPq. 

Continuing in this way, we tind that there are free RG-lattices P, and Q,, 
such that 

Hence working module free modules in a(RG) we have 

( 
2m 

? c (-l)‘[@L&] 
,= I 1 

= 1 1 (-l)‘+‘[d’(L;)@D(Lc)] 
,=lj=l 

2m 2m 

= 1 c ( ~ 1 )‘“( [s’i’“+‘+‘(L;)] + [d’ +‘+‘(L;)]). 
,=I j=l 

By the periodicity statement (i), this is equal to 

2m ffj (-1)“[d2n+k(Li)] + $J (-1)“[!2 
( k=l k=l 

Again by periodicity, and the fact that 2n - 1 is odd, this expression is 
equal to zero. 
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If we put back in the free modules, then by condition (ii) we still get 
zero, and the first statement is proved. The second statement follows from 
an entirely analogous calculation. 1 

Remarks. (i) In the applications (see Sect. 4) of this theorem, we shall 
only be using the case n = 1. In this case the result takes on the form 

(CL;] - [ii(L;)])2= [L,@L;] -2[L;@sli&)] + [cyLr)@i2(Lc)] =o. 

(ii) In fact it follows from the conditions of Theorem 3.4 that in the 
case where R is a field of characteristic p, G must be a group of p-rank at 
most two (i.e., G has no elementary abelian subgroup of order p’). The 
method may be used to construct nilpotent elements in the case where G is 
an abelian group of larger rank, for example, by putting some of the group 
into the kernel of the representations used. 

(iii) It is interesting to note that for R = k, the nilpotent elements 
constructed in Theorem 3.4 all lie in the subspace Rad dim Ext;l, of A(kG) 
investigated in Sect. 4 of [2]. It is not true in general that all nilpotent 
elements lie in this subspace, as may be observed by using the device men- 
tioned in the second remark, that is, the inclusion A(G/N) 4 A(G). 

4. EXAMPLES 

In Section 3 we outlined a general method for finding nilpotent elements 
in a(G). It remains to show that there exist modules L; which satisfy the 
conditions of Theorem 3.4. In this section we produce a large class of 
examples satisfying the conditions. We work only with the group 
G = Z/(p’) x Z/(p”), for r and s positive integers. A similar thing can be 
done for the dihedral 2-groups. In the case of a quaternion 2-group, not 
many examples can be constructed by our method since Q4”(R) 2 R for all 
n > 0. The details of some of the calculations are straightforward but rather 
lengthy and hence in some cases we shall give only sketches of the proofs. 

Let G = (x, J’ / .x”’ = J”’ = [.u, J] = 1) and let R be an integral domain in 
which p is not a unit. Define projective resolutions of R with R(x)-lattices 
and R( p)-lattices. 

as follows. Let U,= R(.u).u,rR(.x), vi=R(y).o,zR(~)). Let e’ and 



344 BENSON AND CARLSON 

E” be the augmentation maps E’(Q) = 1, E”(u~) = 1. The boundary 
homomorphisms are given by 

au,)= 
(x- l)u,- I for i odd 
N u- 

Y ,-I for i even, 

(.v-l)u, 1 
a;(uj)= N,t 

1 ’ 
for j odd 

> / 1 for j even 

where N, = Ct’=, xi and NJ = c;l, /. Now form the double complex 
(W,a)=(U,c’)@(V,s”) where c=E’@c”,W,,=@~+,=,, U,O Vj and 
13,: W,, -+ W,, , is given by 

for U, E U;, vi E V,, i +j = n. Then by the Kiinneth tensor formula, ( W, E) is 
a projective resolution of R with RG-lattices. It is in fact the tensor product 
of R with the usual ZG-resolution of Z. Moreover, if 9 is a maximal ideal 
of R containing (p), and k = R/P, then (k 0 R W, 1 0s) is a minimal pro- 
jective resolution of k with kG-modules. Hence the following result is clear. 

LEMMA 4.1. W, is a free RG-module with RG-basis { w;, 1 i +,j = N } where 
U1i, = ui@ v,. Let Q”(R) denote the kernel of d,, , : W,, , + W,, 2. Then 
R”‘(R) is generated as an RG-module by, the elements a,,,..., a,,, where 

a2, = ~2,(w21.2n-2i) = N,wzi I.2n 2i + N,~w,.z,,-~~ I (O<i<n)), 

a 2r+,=~2n(w,+l,*,1 2,~,)=(.~-1))~‘2;.2,, 2, ,-(.1‘-1)~~2!+1,2n 21-Z 

(Odidn- 1). 

Moreover these elements also satisfy the relations 

(x-~I~z~=N~~z,+~, (Y - 1) a2, = -N,a2, ,. 

(For notational convenience we are assuming that w,,, ~~, and a, are zero 
whenever i < 0 or i > n. ) 

If i and j are nonnegative integers with i+j= n, then let d,,,: W,, -+ R be 
given by 

dr,i(~Bk,,) = (:, 
if (k, 1) = (2i, 2j) 
otherwise. 

That is, d,., is the augmentation map on RG. w~,~. Let [, be the 
cohomology class of qS,,O in ExtZ,,(R, R) and let i2 be the class of do,, . It is 
easy to check that the cohomology element [‘, ‘1; is represented by the 
cocyclc d,,i: W,,, -+ R for i + j = 2n. 
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Let a be any element of R. Let [ = cx<, + c2 E Ext&(R, R) and 
~=i”=C~=~(;)c~~i~r;~~=cls(~), where 

ak#2k,2(n k): WZ,, -+ R. 

Note that 4 is a cocycle, and hence we have an induced homomorphism 
d: Q*“(R) + R given by $(a,) = (7) G(! The kernel Li. of f is generated as an 
RG-module by the elements 

bi = a*; - (Y) da, 

c; = u*, , (1 <i<n). 

LEMMA 4.2. The RG-lattice L, is indecomposahle. 

ProoJ The easiest proof of the lemma requires several results from the 
theory of varieties for modules (see [4] or [S]). Consider M= L, 0 R k^, 
where k^ is the algebraic closure of R/Y and 9 is a maximal ideal in R con- 
taining (p). The point is that M is the kernel of y’ = y 0 1: 
a*“(R) OR k^ + k^, and y’ can be regarded as an element of Ext&(k^, R). If 
p > 2 then y’ = 8” for some irreducible element 0 E Ext&(ff, k^). If p = 2 then 
y’ = 0”’ for some 0 E Ext.&(& k^). In either case the variety of M is the same 
as the variety of the ideal generated by 8, and this is a connected subvariety 
of the variety of G. Therefore by Lemma 4.1 of [S], M is indecom- 
posable. i 

LEMMA 4.3. There exist ,free RG-lattices F,, F,, each on 2n generators, 
and an exact sequence 

O- L,L F, L, F,,--ri, L,- 0. 

Proqfi Let 

F,= F RG.b,, 
211 

F,= 1 RGyi 
r=l i= I 

be free RG-lattices with RG-bases 8, ,..., P2n and 7, ,..., y2,,, respectively. 
Then we define 8, T and c as follows. 

e(h,)=N.,Y2i+N,,Y2i+,- y 
0 

@IN,. Y I (1 <i<n- l), 

B(h) = Nxy,,, - @“Nyy,, 

@Cc,) = (x - 1) YZi- I - (Y - 1) 72, (16i<n), 
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s(y,i~,)=d,=(1’-1)Bzi+NI-P2; I (1 di<n), 

%,)=er=(-x- l)Bzi+N,(-PI,+, + ; afB,) 0 
(1 bidn- 1), 

7(y,,) = e,, = t-x - 1) Bzn - r”N,.B, > 

N&L I) = L’i (1 di<n), 

o(B*i)=h, (lbi6n). 1 

It is not always true that L, 2 Q(L;.) ( see [9]). In the following lemma, 
we list some cases where it is true. 

LEMMA 4.4. In each qf the following cases CL:.] # [Q(L,,)] as elements 
of a(RG). 

(i) p>2. 

(ii) p=2,r>l ands>l. 

(iii) p=Z,r>l anda=O. 

(iv) p = 2, r = s = 1, 2 E {O, 11 and R has characteristic zero. 

Proof: The first three cases may be proved by reduction modulo a 
maximal ideal 9 containing (p). Let k^ be the algebraic closure of R/.9’ and 
let M = L.,. 0 R k^. Then we have an exact sequence 

‘r 0 --f A4 + L?*“(k^) - /c + 0. 

where y’ = ‘/ @ 1: Q*“(k) g J?*“(R) @ l -+ k. For convenience we identify A4 
with its image in Q”‘(k”). Clearly it is sufficient to show that M 2 Q(M). 

In case (i) let ,Y~=# ‘, !‘o=.J ,P’ ’ and u=l+(x,,-l)+(1)‘” 
(J,,- 1)&G, wh ere L? is the image of c( under the homomorphism R + 6. 
Then u is a unit of order p in k^G and res,,,<,)(y’) = 0 (see Proposition 2.20 
of C41). Since Q*YQ l(,,, rl,,,,O!proj), we have that 
Ml (u> = k^<,, 0 Q(k^ (,>)@(proj) where Q(k,,,) ?A {(,,, is the uniserial 
k(u)-module of dimension p - 1 (> 1). Let aE Q*‘(k) be a generator for 
the component of A4 isomorphic to R,,,,. Then y’(a) = 0. On the other 
hand, there does exist an element 8~ Ext&(k^, k^) such that res,(,>(8) #O. 
Consequently Q(a) # 0 and a $ Radfc;(Q2n(R)) 2 RadkJM). So there exists 
a &G-homomorphism Q: A4 -+ k^ which is k(u)-split. We claim further that 
a is not in the socle of M. For otherwise 0 would be k^G-split and L would 
be a direct summand of M. This is impossible because M is periodic. We 
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see then that there exists no RG-homomorphism 7: F-, M which is 
fC( u)-split. 

Now consider Q(M) g Q - l(M). Let P be the projective cover of 
~2*~-‘(k^). The f 11 o owing diagram is commutative with exact rows and 
columns. 

0 

o- M - P- Q-‘(M) - 0 

I /I I ^ 
0 - M*“(k) - P- Q2” ‘(I+--+ 0 

I Y’ I 
k^ 0 

I 
0 

Note that Q’“-‘(J) JC,>zQ(k^,,,)@(proj) and Q-‘(M)J,,,r 
k^(,> @Q(k^,.,)@ (proj). So q5 must be k(u)-split, because the only non- 
split extension of R <U) by 52(,$+,) is the free module. Hence by the previous 
paragraph M 2 C’(M). This proves case (i). 

In case (ii) let u= 1 +(x1 - l)+ (&)“4(y, - 1) where x, =x2’-‘, y, =y”-‘. 
In case (iii) let u=x. In both cases, res,,<,,(y’)=O and, since u2 # 1, 
Q(k^,“,) 2 &,. Hence the same argument works. 

In case (iv) we proceed as follows. Let r? denote the 5adic completion 
of R for some maximal ideal 9 lying above (p) in R. Then we have a 
Krull-Schmidt theorem for I?G-modules, and so it is sufficient to prove 
that L, @,l? & Q(L,) C3.R. But if M=(x$ l)(L:, @,ff) then 
(M/PM) lCv> is a direct sum of trivial k(y)-modules. However, the same 
is not true of M’ = (x + 1 )(Q( L,) 0 R 1). 1 

LEMMA 4.5. For y = c” as above, y annihilates Ext*,,(L,, L;,). 

Proof Let IE Ext’&(L,, L,) = Hom..(L,, Ly) be the identity 
homomorphism. As noted previously it is sufficient to show that y. I= 0. 
We construct a lifting of projective resolutions as follows. 

4X, 104.2-10 
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O- L, - F, - 

i Ir’ PI 

O- Q2(R)@L,- W,QL,- W&L,3 L,,- 0 

(01 

ii 

F. and F, are as given in the proof of Lemma 4.3, and for 1 < i G n we set 

p’- I 

Pl(Y2,) = WI.0 Qxb, - c Y]k,vwO.I @yk 

k=l 

(c,+ I -(;) .,,)? 

p’(bi)=a20xb,+a,0yb,+, - 

-a2QNJ,cj+,+ : ~~a20N,c,+aoON.,c,+l 
0 

n - 0 i 
Ci’U,Q NYC, 1 

where v,,~ = 1 + x + . + .x- ’ and a,, a,, a2 are generators for Q’(R) as in 
Lemma 4.1, and ci+, =0 for i=n. 

Now [I is represented by the cocycle ([@I) 0~’ = j; and y. I = i”. I is 
represented by f n. Consequently it is sufficient to show that .f” = 0. From 
the above expression for p’ we may conclude that for 1 < i < n, 

.f(b,)=crb,+bi+1- ; a’b, 
0 
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and 

n 
f( CJ = MC; + c, + , - 0 i 

LA,. 

Hence the matrix off on the space generated by b, ,..., h, is 

Writing I, for the n x n identity matrix, we have A = al,, $- C, where C is 
the companion matrix for the polynomial (X+(x)“. By the 
Cayley-Hamilton Theorem, C satisfies its characteristic polynomial and so 
A” = (C+ ~11)” = 0. The matrix off on the space generated by cr,..., c,, is 
also A, and so we have f )I = 0, and we are done. 1 

PROPOSITION 4.6. Suppose that a, 7, L, are as ahoue, and we are in one 
oj’the cases listed in Lemma 4.4. Then the element [ Li. ] - [!2( L;,)] is a non- 
zero nilpotent element of a(RG) of class 2. 

Proof. By Lemma 4.3, L, satisfies conditions (i) and (ii) of Theorem 
3.4, with m = 1. By Lemma 4.5, condition (iii) is also satisfied, and so it 
follows from Theorem 3.4 that (CL;.] - [Q(L,,)])’ = 0. Moreover, it follows 
from Lemma 4.4 that in the cases listed, [L,] - [Q(L,)] # 0. 1 

Remarks. (i) The question of the existence of nilpotent elements in 
A(kG) when G is an elementary abelian 2-group, which is still open for 
n >, 3, may not be resolved using these techniques. The problem is that 
every periodic kG-module has period one [4, Lemma 8.11. 

(ii) It is not always true that ?/ annihilates Ext$JL,,, L,.). For exam- 
ple, it follows from [4, 11.31 that this does not hold for certain modules for 
an elementary abelian group of order four in characteristic two. 
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