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1. Introduction.

Diagrammatic methods have long been used to produce examples

and generate intuition in group representation theory and in the

representation theory of Artin algebras. However the techniques

have seldom actually been used to prove anything, and, as a

consequence, the literature contains very few articles describing

the methods. Papers such as (IJ, (6J and (14] are examples of

exceptions, but even these do little more than expostulate a

diagrammatic scheme for modules. The problem with making

calculations from such a scheme lies primarily in justifying the

techniques.

In this paper G denotes a finite group and K a field of

characteristic p > 0 Our aim is to develop, with complete
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justification, a system for corlstructing and llsing diagrams for

KG-modules. The main application of the techniques is in the

computation of cotlomology groups and rings. Foe geoups for

which the projective modules I,ave nice diagrams, the methods work

amazingly well and yield eesults that would be exceptionally

difficult to verify by other means. Nevertheless the reader

should bear in mind that the methods have limited applications.

Many modules simply do not 11av~ corresponding diagranls, as we

have defined them. Moreover, because of an i'lability to

visualize diagranls in more tl13Tl two dilneIlsiollS, we are

constrained to consideriTig groups of p-rank at most two.

In section 2, we begin wit)] a variation on Alperin's

definition of a module diagram and its r~presentalions.

properties of the diagrams are explored in this and the next

three sections. ITl Section 6, 7 and 8 we investigate diagrams

which are strings or rigid strings. Throughout the fir~t half of

the paper the emphasis is on the implications of a diagrum's

structur~ to that of the corre~pondiTlg mudule. For example,

under certain cunditions, homomorphisms of modules must reSpl~ct

their diagramlnatic structure and TIlodules whose diagrams are

strings must be indecomposable. The diagram for a module

determines its socle and radical (Proposition 4.1). Section 9 is

a digression into homological algebra. The principal eesult is

that, with proper hypotheses, the cohomology ring for a module

can be determined from only H few terms and eelations.

The remainder of the paper is devoted to the consideratiorl

of some specific examples. Basic 110tational cOTlventiol1S are
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outlined in Section 10. The examples for G ~ SL(3,2), MIl

and A
6

are discussed in detail with the primary focus being

on the calculatiorl of their cohomology rings. Other examples are

mentioned without detail. In the final section we give a

variation on our oletllods for calculatil1g the cohomology ring of a

semi-dihedral group.

We owe t}lanks to Claus Ritlgel for POllltitlg uut a Ini~take in

the origillal manuscript.

2. Basic definitions.

In this section we define module diagrams, their

reprpSE'IltatioTls and homomorphisms. The eustonl among experts ill

modular representations is to use different types of diagrams in

difflo.">rent situations. We do llot presume to claim that (lllr

definition is the only possible or even the best.

consisterlt, or near-ly so, witll current practice.

Yet it is

We differ from

Alperin [I] by adding the condition (2.I,iii). This requirement

is a convenience that permits the proof of some of the theol-ems

of the paper. More stringent (and also abstruse) conditions

would yield better results but at a cost.

Definition 2.J. A KG-module diagram is a pair D(X,f)

consisting of the following data.

i) X is a finite directed graph with vertices

If there is an edge from X.
1.

to we denote it by e( x. ,x.)
1. J

We write x.
1.

x.
J

if there is a sequence X.
1. 'Yt x.

J



S6 BENSON AND CARLSON

of vertices such that there exist edges e(Y~_l'y~) for

J- = l ..... t The graph X must satisfy the following conditions.

a) X has no loops or multiple edges. That is. there is

no x E X such that x < x • and between any two points of X

there is at most one edge.

b) If xl' x 2 • x
3

E X with xl > x
2 > x

3
then there is

no edge e(x l • x
3

)

ii) The function f assigns to each vertex x E X an

irreducible KG-module f(x) and to each edge e(x.y) an

extension class
1

f(e(x.y» E ExtKG(f(x),f(y» The modules

fix) should be taken from a fixed set of representatives of the

isomorphism classes of irreducible modules. The assignment must

satisfy the condition given below.

iii) Suppose that are vertices with

If there exist edges e(x'Yi)

i = l •...• t • then the classes f(e(x. y
i

» are K-linearly

independent in Ext~G(f(x).N). Dually. if there exist edges

then the classes f(e(y .• x», i ·l •...• t. are
1

linearly independent. In particular. for any edge e(x,y)

f(e(x.y) " O.

Suppose that D(X,f) is a module diagram. The relation

defines a topology on X. Namely. a subset U C·X is open

provided that whenever x E U and x > y then y E U , and

that an edge is in U if and only if it connects two vertices in

U. Hence an open set in X is actually a subgraph of X, but

it is determined entirely by its set of vertices. Consequently
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all set theoretic operations in X may be regarded as taking

place on the level of vertices. The union of two open sets is

the open set determined by the union of the sets of vertices.

The complement of an open set U is the closed set U
C

consisting of all vertices not in U and all edges that join two

S7

points neither of which is in U So a closed set V must

satisfy the condition that if x 6 V and y > x then y 6 V

Note that if U is an open (or closed) set in X , then there

• I;
is a corresponding module diagram D(U,fI

U
) which we usually

write as D(U,f)

Definition 2.2. A representation for a module dlagram

D(X, f) is a KG-module M and a function U ~ M
U

from open

sets in X to submodules of M which satisfy the following four

conditions. Let U, V and W be open sets in X

{Of and MU ~ MV whenever U C V .

iii) If V a U U {xi with x ~ U then

we have an exact sequence
i

O -tM ~'l.
U ."

f(x) ~ 0

with iU,V being the inclusion. If, in addition. W • U U jy}

y ~ U then the diagram
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iv) Suppose that V = U U {xf , W = V U {yf , x il U ,

y ~ V and there exist an edge e(y,x) Then in the diagram

0 0

1 1
1\ MU

1 1
0

A. v W-- M
V - Mw

,
f( y) --0

A. u V 1 1,

0 - f(x) -.. ~/MU ------+ f( y) --0

1 1
0 0

the bottom row represents the extension class f(ely,x» in

If X = {x) then any representation ~ of DIX,fl has the

If X = {x,y) with no edges then by

condition (iii) any representation of D(x.f) is isomorphic to

fIx) ~ f(y). Suppose that X = {x,yf with x < y. By

condition (iv) any representation of D(x,f) is the (unique up

to isomorphism) middle term of a short exact sequence

o ~ fIx) ~ M ~ fCy) ~ 0

representing the extension class f(e(y,x». For larger graphs

x , diagrams may not have representations or the representations

may not be unique up to isomorphism. By way of sample

calculations we present the following.

Proposition 2.3. Suppose that D(X, f) is a module

•• , < x
n
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(a) If n. 3 ,then D(x,f) has a representation if and

only if the cup product f(e(x
2

,x
l

» • f(e(x
3

,x
2

» is zero in

2
Ext

KG
(f(x

3
),f(x

l
» . Moreover if the condition is satisfied

and if f(x
3

) 'J f(x
l

) with f(x
l

) ,f(x
3

) absolutely

indecomposable, then the set of all isomorphism classes of

representations ~f D(x,f) has a natural structure as an affine

59

space over the vector space

(b) If n = 4 , then D(x,f) has a representation if and

and the Massey triple product

Proof. These facts are most easily checked by direct

matrix calculation. For example if M is a representation of

D(x,f) as in (a) then there exists a K-basis for M relative

to which the action of G is given by the matrices

f(x 3 )g f(e(x 3 ,x
2
»g A

g

g ---+ 0 f(x 2 )g f(e(x
2

,x l »g

0 0 f(xl)g

for g E G with the obvious notation. An easy calculation

shows that the coboundary of the map g ~ A
g

represents the cup

Also if we have another representation with A replaced by B

then

g ---+
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is an extension f(x
3

) by f(x
l

) . This is a result of the

cocycle condition

The conditions on f(x
1

) ,f(x
3

) simply insure that the only

endomorphisms of a representation are scalars. Otherwise the

statement may be false as for example in the representations of a

cyclic p-group.

Statement (b) of the proposition follows immediately from

the definition of the Massey triple product (see [12] or (13J).

For chains of five or more modules the higher ~assey products

playa role which is harder to describe directly. The reader is

referred to [12J for a fuller discussion. We investigate this

situation from a different angle in Section 5.

Proposition 2.4. Let M be a representation for a module

diagram D(X,f). If X has n vertices, then the composition

length of M is n.

x. implies i
J

Proof. Index the vertices of X so that

an open set and if M
i

= M
U

. then {Of • M
O

~ M1 C... c M
n

= M
J.

is a composition series with M
i

/M
i

_
1

; f(x
i

) .

Remarks (2.5): (1) We could equivalently have defined a

representation of D(X,f) in terms of closed subsets W of X

That is, to each closed W of X there is a corresponding

quotient ~ and epimorphism ~W:M ~ ~ such that the duals
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of conditions 2.2 li), ... ,liv) are satisfied. The equivalence of

the definitions is proved by letting M
U

be the kernel of ~W

when U is the complement of W or, conversely, by letting

~ = M/MU for U open and W its complement.

(2) Suppose that DIX,f) is a module diagram. We define

the dual diagram D(X*,f*) as follows. The graph X* has the

same vertices as X but each edge e(x,y) in X is replaced by

ely,x) in X*. For each x E X* let f*(x) be the dual

61

module If(x»)* If e(x,y) is an edge in X*

let f*(elx,y»
1

Ifle(y,x»)* E ExtKC(f*(x),f*(y» That is

if f( e( y ,x» is represented by the extension

a a
o --1 fix) --1 L --1 fly) --10

then f*(e(x,y» is represented by

a* a*
O--(f(y»* -- L* -- (f(x»* ----. 0

It is easy to see using the previous remark that a KG-module M

represents D(X,f) if and only if M* represents D(X*,f*)

Many of the theorems in the paper have 'dual statements which we

will write out but not prove.

Definition 2.6. Suppose that DIX,f) and D(Y,g) are

module diagrams. A diagram isomorphism ~: D(X,f) ~ D(Y,g) is

an isomorphism ~: X ~ Y of directed graphs with the property

that g 0 ~ = f on both vertices and edges. A diagram

homomorphism ~: D(X,f) ~ D(Y,g) consists of a closed set V ex,

an open set U C Y and a diagram isomorphism ~O: DIV,f) ~ D<U,g) .
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The kernel of $ is the diagram D(Vc,f) where V
C = X - V

is the open complement of V The image of ~ is the diagram

D(U,g) If W C X is open we write $(W) for $O(vnw)

Suppose that M and N are representations of DIX,f) and

D(Y,g) respectively. A homomorphism 0: M ~ N is a

diagrammatic homomorphism, or D-homomorphism, if there exists a

diagram homomorphism I: DIX,f) ~ D(Y,g) with oIM
U

) = N
1IU

) for

andIn particular Ker 0 = M
Ker

I

Note that not all module homomorphisms are

all open sets U C X

D-homomorphisms and conversely a diagram homomorphism may not be

represented by a D-homomorphism of the modules.

Lemma 2.7. Suppose that M and N are representations of

D(X,f) and D(Y,g) respectively. Let 0: M ~ N be a

D-homomorphism with underlying diagram homomorphism $. If V is

an open subset of Y then

Proof. The lemma follows directly from the fact that Ker ~ C W

3. Cutting and pasting.

The basic tool for cutting and pasting is the following.

Proposition 3.1. Let D( X, f) be a module diagram. Let U,

V be open sets in X with X = U u V Suppose that M and N

are representations of D(U, f) and D(V, f) respectively and

that there exists a D-isomorphism 0: M
unv

~ N
unv

Then the
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pushout L defined by the commutative diagram

a
Munv ----1 Nunv _.--t N

1 1
M l L

is a representation of D(X,f)

( 3.2)

63

Dually, if U and V are closed sets with D-isomorphism

a: Munv ~ Nunv then the pullback L' of the diagram

------------, NL'

1 a
-+

1
is a representation of D(X,f) .

Proof. Assume the hypotheses with U and V open. If W

is an open set in X, then L
W

is defined to be the pushout

M ~N ---wnunv wnurw

1
~nu

1 ( 3.3)

L
W

is identified with a submodule of L via the commutative cube

of injections (3.3) ~ (3.2). From now on we identify M with L
U

and N with LV' We must check the four conditions of Definition

(2.2). The first is obvious. If W, W' are open in X • then

LWUW ' = M(WUW'lnu + N(WUW')nv

• ~nu + ~'nu + Nwnv + Nw'nv
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It is clear that Lwnw ' ~ LW n L
W

' and we may show

equality by counting composition lengths and using Prop. 2.4.

Let ~(-) be the composition length function. Then by (3.3)

~(LW) = ~(~nu) + ~(Nwnv) - ~(~nunv)

= IWI

the number of vertices in W. Hence we have that

,l.<L
W

n L
w
') ,i.(L

w
! - ,i.(Lw!(L

W
n L

w
'))

IWI - ,i.«LW + Lw,)!Lw ')

= IWI - ,i.( Lwuw ' /Lw')

~ IwI - (I WUW' I - Iw' I )

• Iwnw' I = ,. ( L
wnw

') •

This proves condition (ii).

To check the last two conditions we need only note that any

ve~tex o~ any edge of X must be either in U o~ in V. The

dual statement is p~oved by the dual argument (see Remark 2.5 (2).

Definition 3.4. Suppose that D(X,f) and D(Y,g) are

module diagrams. Let U ~ X, V C Y be open sets and assume that

there exists a diagram isomo~phism $: D(U,f) ~ D(V,g) The

z E: X

z E: Y

if

if

D(X,f)x$ D(Y,G) is the diagram obtained by

D(U,f) with $(D(U,f» . That is, it is the diag~am

Z = X u Y!(x=$(x» and

I f(z)
h( z) = )

. g(z)

amalgamation

D(Z,h) , with

identifying

on both ve~tices and edges. Note that D(Z,h! is a module
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diagram if and only if condition (iii) of Definition (2.1) is

satisfied. Dually we can apply the same construction if U and

V are closed.

Proposition 3.5. Let L, M, and N be representations of

the module diagrams D(X,f) , D(Y,g) , and D(Z,h) respectively.

Suppose that there exist D-homomorphisms 0 1 : L ~ M , O 2 : L ~ ~

with underlying diagram homomorphisms ~1: D(Z.h) ~ D(X,f) ,

~2: D(Z,h) ~ D(Y,g). Let W, U, V be the closed sets

W = Z - (Ker $1 U Ker ~z) C Z

U ,. '1>1 (Z) - $l(Ker ~z) C X

V ,. $Z(Z) - $Z(Ker $1) C Y

Let ~ denote the composite isomorphism

-1 $Z
~1

D(U,f)~ D(W,h) ~ D(V,G) .

Then the cokernel of (o
l

,a
Z
): L ~ MeN is a representation

is a module diagram.

65

Dually, let a
1

: M~ L , a Z: N ~ L be D-homomorphisms with

underlying diagram homomorphisms $1' $Z Let

W () ( U ~-11 (W) -1 (= 1m $1 n 1m ~Z), ,. ~ - Ker $1 ' V = $Z W) - Ker '1>Z '

-1
~2 $1

and let $ be the composite D(U,f) l D(V,g). Then the

kernel of (a 1,aZ): MeN ~ L is a representation of

-1 -1
D($l (W),f) x D($? (W),g) provided this is a module diagram.

$ ~

Proof. The proof follows by applying Proposition 3.1 to the

pushout
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--------~l N
Y-<I>2(Ker <1>1)

1

or the corresponding pullback in the dual case.

4. Socles and radicals.

for the purposes of this section we assume that all

irreducible KG-modules are absolutely irreducible. Suppose that

D(X,f) is a module diagram. The radical and socle of X are

defined by

Rad X ~ Ix ~ Xl x (y for some y ~ Xl

Soc X {x ~ XI there exists no y ~ X with y < xl

That is, Soc X is the maximal open subset of X that has no

edges and Rad X is the minimal open set whose complement has no

edges.

Proposition 4.1. Let M be a representation of the module

diagram D(X,f) Then Rad M a M
Rad

X and Soc M 3 M
Soc X

Proof. Let U = Rad X and let X - U = {Y1"" 'Ytl . For

each i the set Vi = X - {Yi} is open and there is a

homomorphism !jJ.: M .... f( Y.)
~ ~

with kernel M
V

i
So the sum

t

!jJ (!jJ1.···.!jJt): M .... $ f(y
i

)
i=l
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t

is surjective and has kernel n
i=!

My. = 'IV by (2. 2. i i ) .
1.

Since the image is semisimple we must have that Rad M ~ 'IV .

Suppose now that Rad M ~ M
U

and that M is an example

with minimal composition length with respect to this property.

Then there exists a homomorphism 8: M 4 N where N is

irreducible and 8(M
V

) ~ O. By minimality there is no non-empty

open subset W C X with 8(~) = 0 Thus for each x ~ X with

{x} open, we must have that fix) = N. On the other hand if

{y} is not open and V is any open set containing y then ~

has the desired property and, by minimality, V = X Hence X

has only one vertex y with {y} not open. This all implies

that X '" {y,x1 "" ,x r } with edges e(y,x
i

) , i '" 1 , ... , r and
r

f(x. ) ;; N So U . Soc X = {x1'''''xr } and 'Iv ;; Ql f( x.)
1.

i=I
1.

Therefore we have exact sequences

and

i
o ----+ M

U
-0 M -0 fry) - 0

*
••. 4 HomKC(M,N) ~ HomKC(MU,N) ~ Ext~c(f(h),N) 4, ••

Now because N is absolutely irreducible, HomKC(MU,N) has basis

~!""'~r where ~j is a homomorphism with kernel

is the extension class representedMoreoverf( x. )
1.

i"j
by the pushout of the diagram

---4 M ---4 fry) ---4 0

f( x,)
J

That is, 6(~.) • f(e(y,x,». By (2.I,iii), o(C), .•. ,o(~) are
J J J r

1
linearly independent in ExtKC(f(y),Nl . Therefore is an



68 BENSON AND CARLSON

injection and i* is the zero map. This produces the desired

contradiction since 8(M
U

) a i*(8)(M
U

) a O. Hence

Rad M = M
Rad

X. The second statement is dual to the one we have

proved.

5. Uniqueness.

Definition 5.1. A module diagram D(X,f) is said to have

a unique representation if it has a representation and any two

representations are isomorphic as modules. If, in addition, any

two representations are D-isomorphic, with underlying diagram

isomorphism equal to the identity map on D(X,f) , then we say

that the representation is D-unique. Finally, D(X,f) has an

absolutely D-unique representation if it has aD-unique

representation whose only D-automorphisms, with underlying

diagram automorphism equal the identity map, are scalar multiples

of the identity.

Thus if X a {x} then D(X,f) has aD-unique

representation which is absolutely D-unique if and only if f(x)

is absolutely irreducible. The following shows how D-uniqueness

behaves under cutting and pasting.

Proposition 5.2. Let D(X,f) be a module diagram, and

suppose that U and V are open sets in X with X = U U V

If D(U,f) and D(V,f) have D-unique representations, and

D(UnV, f) has an absolutely D-unique representation then D(X,f)

has a D-unique representation.
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Proof. The existence of a representation is proved in

69

Proposition 3.1. Suppose that M and N are two representations

of D(X,f) By hypothesis there exist D-isomorphisms

and Since D( unv, f) has an

absolutely D-unique representation ~l is a scalar multiple of

on :1unv Replacing by a suitable scalar multiple we may

assume that they coincide on :1
unv

However we know that

The similar formulation for N and the isomorphism

Of course, Proposition 5.2 has a dual statement for closed

sets U, V with X = U U V If, in the proposition, D(UnV,f)

has only a D-unique representation, then it can be shown that

D(X,f) has a representation but it is not necessarily D-unique

or even unique.

Proposition 5.3. Assume that all irreducible KG-modules

are absolutely irreducible. If a module diagram D(X,f) is

represented by a projective module P then it has a unique

representation (which is not necessarily D-unique).

Proof.

U = Rad X

Suppose that M also represents D(X,f)

Then by Proposition 4.1. M
U

= Rad M, Pu

Let

Rad P and

M/M
U

;; Ql

yEX-U
the homomorphism

Since P is projective,

= M/M
U

lifts to a homomorphism

~: P ~ M which must be onto because M
U

= Rad M. By

Proposition 2.4, ~ is an isomorphism.
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For the purposes of computing example~ we need the following

combinatorial lemmas. Our convention throughout the rest of the

paper will be to write diagrams with edges indicated

by line segments with the greater vertex appearing

above the lesser on the page. For example, if X

is the graph in (5.4) then the edges in X are

(5.4)

Proposition 5.5. Suppose that all irreducible KG-modules

are absolutely irreducible. Let D(X,f) be a

module diagram where X has the form of (5.6).

Here Z is an open subdiagram with the property

b

that the only edges connecting Z with vertices

for some z E Z. Assume that fib) i f(a.) for
1.

a
t

Z -----
(~)

e(b,z)orare of the formZoutside of

i = 2•... ,t and that D(X.f) is represented by an

indecomposable projective module P If Y is the closed

subset of X with vertices a
1

, ... ,a
t

then DiY,f) has a unique

representation. (In 6.1 we show it is D-unique.)

Proof. Note that D(Y,f) has a representation, namely

P/Pu where U = X - Y = Z U {b} Let M be another

representation. Then M/Rad M ; f(a
1

) and since P is the

projective cover of f(a
1

) there exists an epimorphism cr: P 4 M .

To prove the lemma we need only show that Pu ~ Ker cr

Let V be the smallest open set containing b By (:'.1).

V C Rad X
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Also Rad Y = Y - {b} and Py/Rad Py ; fIb) . By hypothesis no

composition factor of Rad M is isomorphic to fIb) and

71

Let W be the smallest open set containing at By an

easy induction so

The indecomposability assumption on P requires

that for any z E Z either z < b or z < a
t

That is

either z EY or z E Rad W So U Y URad W

Pu = Py + PRad W This proves the lemma.

Lemma 5.7. Suppose that all irreducible

KG-modules are absolutely irreducible. Let

D(X,f) be a module diagram with X having the

form of (5.8). Here Y, Z are subdiagrams with

the property that every edge connecting a vertex

of Y (resp. Z) to a vertex outside of Y (resp. Z)

a

b<,'l t

Z
(~)

has the form e(a1,y), e(y,b) or e(y,z) (resp. e(at,z), e(b,z)

or e(y,z» for y EY , z E Z We are assuming that there

exist edges e(a1,y) e(y' ,b). e(at,b) for some y, y' E Y .

Suppose the following conditions are satisfied.

i) D(X,f) is represented by an indecomposable projective

module P

ii) The subgraph U = Y U {al,b} has as the

unique maximal element and b as the unique minimal element.

iii) f(y) j f(a
i

) for all y E Y, i = 2, .... t .

iv) If V is the smallest open subset containing a
2

'

then Z C V .



72

Then D(U.f) has no representation.
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Proof. As in the proof of the last lemma, if ~ is a

representation of D(U,f) then there exists an epimorphism

a: P .... M By condition (iii). iJ(P
V

) ~ Soc(M) = fib) , and

P Rad V C Ker a By a dimension argument P
Rad

V = Ker iJ .

Since Soc(P/P
Rad

V)

isomorphic to M.

is not irreducible. P/P
Rad

V cannot be

6. String diagrams.

A module diagram D(X, f) is called a uniserial diagram if

the vertices xl' ... , x n
of X can be indexed in such a way

that xl > x
2

>•.• > x It is a string diagram if the
n

vertices can be indexed so that for each i a l, ...• n - there

other edges. In particular a string diagram is necessarily

connected and, because of condition (2.1.iii). has no proper

diagram automorphisms.

Proposition 6.1. Suppose that all irreducible KG-modules

are absolutely irreducible.

a) A string diagram has a representation if and only if

each uniserial subdiagram has a representation.

b) A string diagram has a D-unique representation if and

only if every uniserial subdiagram has a unique representation.

Proof. Statement (a) is an immediate result of Proposition

3.1 and induction. For (b) we must show that uniserial diagrams
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with unique representations have D-unique representations. Suppose

that M and N are representations of D(X.f) where

The open sets in X are

all of the form V. s {xi+1·····xn } , i • D, ... ,n - or
1

V • 0 But then ~.
• RadiM Hence if a: M ~ N is an

n
1

isomorphism then a(~ ) • N The proof of (b) is completed
i Vi

by applying induction and Proposition 5.2. For example. if

D(X,f) is a string diagram with a minimal vertex x that is not

at one of the ends of the string, then there are open sets V. V

such that V n V • {x}, V U V s X and D(V,f). D(V.f) are

string diagrams. By induction and the fact that D({x},f) has an

absolutely D-unique representation, we are done.

Corollary 6.2. Let D(X.f) and D(Y.g) be string diagrams

with the property that every uniserial subdiagram has a unique

representation. Suppose that M and N are representations of

D(X,f) and D(Y,g) respectively. If ~: D(X.f) ~ D(Y.g) is a

diagram homomorphism then there exists a D-homomorphism a: M ~ N

corresponding to ~.

Proof. Let V· Ker ~ ~ X and V· 1m ~ ~ Y. Observe

that D(X - V.f) and D(V,g) are each disjoint unions of string

diagrams and they are isomorphic under ~. By hypothesis and

the previous proposition they have D-unique representations. M/M
V

and a(M) respectively, which are necessarily D-isomorphic under ~ .

Lemma 6.3. Let M be a representation of the module

diagram D(X,f) Given an open set W C X and a E K we
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form a new module diagram D(X,f') as follows. Let

f'(x) a f(x) for all vertices x. Let f'(e(x,y» a af(e(x,y»

if yEW, x ~ Wand let f'(e(x,y». f(e(x,y» otherwise.

Then M is also a representation of D(X,f') •

Proof. Let U ~ ~ be the function that defines M as a

representation of D(X,f) For D(X,f') use the same

assignment. However if U and V are open sets with Va U U {x} ,

x ~ U then we choose the homomorphisms \U,V: My ~ f'(x)

as follows

i) If x E W then let \U,V· \U,V

ii) If x E W , then we multiply by a as in the diagram

\u,V

My~ f(x)

al ~
\U,V

My~ f'(x)

It is straightforward to check that with these new

identifications, M is a representation of D(X,f')

Definitions 6.4. A diagram

whenever e(x,y) is an edge in

D(X,f) is said to be rigid if

1
X , Dimx ExtKG(f(x),f(y» a 1

By condition (2.1,iii) any subdiagram of a rigid diagram

that has the form

y

I \
x z

or
x z

\ /
y

has the property that f(x) _ f(z). Moreover each f(x) in a
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rigid string diagram is absolutely irreducible (see (8.4».

Proposition 6.5. Suppose that D(X,f) and D(X,f') are

rigid string diagrams such that f(x). f'(x) for all vertices

75

x E X Then a KG-module represents D(X,f) if and only if it

represents D(X,f') .

Proof. This follows directly from Lemma 6.2.

The preceeding result implies that for studying the

representations of rigid string diagrams there is no point in

labeling the edges. This shall be our practice, when possible,

in the examples.

7. Homomorphisms of rigid string diagrams.

In view of Proposition 6.4 we may assume that rigid string

diagrams are normalized in the following sense. Given any two

simple modules M and N with 1
Dim ExtKG(M,N) • 1 select a

nonzero element We say that the rigid

string diagram D(X,f) is normalized if for any edge e(x,y) EX,

f(e(x,y» • (f(x), f(y». If D(X,f) and D(Y,g) are normalized

and if there exist subsets U C X V C Y , U closed, V open, and

an isomorphism of directed graphs ~: U ~ V with g(~(u»· feu)

for all u E U ,then ~ defines a diagram homomorphism with

kernel X - U and image V. Moreover if M and N are

representations D(X,f) and D(Y,g) and if uniserial subdiagrams

have unique representations, then by Proposition 6.1 there exists

aD-homomorphism 8: M ~ N corresponding to ~ .
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Theorem 7.1. Suppose that D(X,f) and D(Y,g) are

normalized rigid string diagrams and that any uniserial subdiagram

of either has a unique representation. Let M and N be

representations of D(X,f) and D(Y,g) respectively. Then

every homomorphism a: M ~ N is a K-linear combination of

D-homomorphisms.

To prove the theorem we need the following.

Lemma 7.2. Let D(X,f) • D(Y,g) • M and N be as in the

theorem. Assume that the conclusion of the theorem is true for

any similar data D(X' .f·) • D(Y' ,g') , M', N' with IX'I S IXI

and IY'I S IYI . Let ~ a ~(X,f; Y,g) • {~l""'~r} be the set

of all diagram homomorphisms ~: D(X,f) ~ D(Y.g) such that rm ~

is a connected string in Y. (Note that rm ~ is connected if

and only if X-ker ~ is connected). For each i choose a

D-homomorphism 9
i

: M ~ N whose underlying diagram homomorphism

is ~i' Then {9 l •. ··.9 r } is a K-basis for HomKG(M.N)

Proof. The proof is ~y induction on IXI + IYI . Suppose

Let x E X be a

closed point and let U C X be the minimal open set containing

x. Let ~l""'~t be the elements of ~ with x ~ Ker $i

For S i, j St. ~i(x) • ~j(x) if and only if i· j .

So if m E~ , m ~ Rad ~ then 9
l

(m), ...• 9
t

(m) are K-linearly

r t
independent elements of N Since E a

i
9

i
(m) ·0· E a,a,(m)

i-l i-l
1 1

we must have that Now do the same for the
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other closed points of X. We conclude that a
1

, ... ,a
r

are

linearly independent.

77

By hypothesis it is sufficient to prove that any n-homomorphism

Let a: M ~ N be an-homomorphism

corresponding to diagram homomorphism ~. Suppose that there

exists a closed point y E Y with y ~ 1m ~ Then

a( M) c NU , U • Y - {y} By induction we are finished because-

any ~' E 4>(X,f; U,g) coincides with some ~i E 4> with y ~ 1m ~i ,

and the a' : M ~ N
U

corresponding to ~' may be taken to be a.
~

Similarly we are done if there exists an open point x E Ker ~

Therefore we may assume that ~ is a diagram isomorphism. In

this case ~ E 4> , say ~. ~l' Let y be a closed point in

Y and let ~: N ~ g(y) be a n-homomorphism with kernel N
U

'

U = Y - {y} Because g(y) is absolutely irreducible there

exists a E K with ~(9-a91)· 0

induction 9 is a linear combination of 9
l

, ... ,a
r

Proof of Theorem 7.1. For convenience let i, ... ,n denote

the vertices of X and let t, ... ,m be the vertices of Y

The proof is by induction on the sum of the lengths n + m . The

theorem is obvious if either n· 1 or m· 1. The argument

has three major steps which are reductions based on the assumption

that the given data represent a minimal counterexample.

Step I. Let r be the least index such that r E Y is

open, and let t be the least integer with t > rand t

closed. Then t. m That is, Y has only one open point.
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Suppose that t m Let U· {iii < t} , Y • {iii> t} ,

U • Y - U , and y. Y - Y Then we have the following

commutative diagrams of diagram homomorphisms and corresponding

D-homomorphisms:

~U
D(Y,g)~ D(U,g)

N
Y

As in Lemma 7.2, let ~(X,f;U,g)· {~I""'~q}

~(X,f;Y,g) • {~i""'~~} , and choose for each

corresponding D-homomorphisms a
i

: M ~ N_ and
U

By induction, and Lemma 7.2, there exist ai' B
j

w' N{t} ;; get)
U

and

i and each j

a' . M-" N..
J -

V

e K such that

Alsoand WyCI. E B.a~
J J

WU
CI • E aia i

E Bjw;aj
Let k be a closed point in X. Note that there is at

most one index i and at most one j such that ~.(k) = t
].

and ~: (k) • t
J

This is a consequence of rigidity and the

fact that 1m ~i is an open substring (connected) in U and

X-ker ~i is an isomorphic closed substring. Suppose that

and ~. (k)
].

t and

Let W be the smallest open set in X that

must be an index j

and there.. to}

and

• w;wyCI(IoV

~:(k) • t
J

such that

Then

f(k) • g( t)

contains k

Now is a closed substring in X. By reversing

the ordering on the vertices of X , if necessary, we get that

U
I

= {~, c~~~k} for some c ~ 1 and that f(k-d)· get-d) for
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d-O, ... ,k-c. Because g(t+l) ~ g(t-l) , the closed set (~:)-I(V) _
J

VI must have the form VI· {~I k~~$d} for some d Therefore

U
I

U VI is a closed connected subset of X and there is a

diagram isomorphism from D(UIUVI,f) to

Let ~i: D(X,f) ~ D(Y,g) be the corresponding diagram

homomorphism and 9i: M ~ N a corresponding D-homomorphism .

Note that and ... ... " .....
'l'V'I'i 'l'j' Because g(t) is

absolutely irreducible there exist I') , fl' in

T11J>uuv9 i and II j 1J>~9 j . T1'1J>uuv9i Since ai1J>~9i

a}~9j on ~ we must have that I') " 1')' and

coincides with

Continuing in this fashion we can find D-homomorphisms

9" 9" f M t N1"'" q rom 0 (where au • 0
i

so thatand elements 1')1"" ,I')q E K

1J>UUv(a - r fli9i) • 0 .

That is (a - r T1i9i)(M) C N
uuv

' By induction we are

finished unless t· m .

Step II. Let sand t be the least indices such that

sEX is closed, t > sand t E X is open. Then t = n .

That is, X has exactly one closed point.

This step is exactly dual to step I. That is, if n > t

then X _ U U V where U and V are open sets with U n V _ {t} .

Now show that there exist D-homomorphisms

induction.

9'~: M ~ Nand
:l.

Again apply the
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Step III. By I and II we have that X. {i, ... n} with

unique closed point sand Y· {i, ...•m} with unique open

point r. By reversing the ordering on the indices of

necessary, we may assume that s - 1 ~ n - sand r- ~ m - r .

Observe first that For if s > r

Then by induction the induced

homomorphism a' : is a linear combination of

D-homomorphisms. On the other hand if s < r then

s-1 A

cr(M) ~ Soc (N) ~ Ny for y. Y - {I} , and again we are done

by induction.

y • {jl 2SjSm} . By induction, cr

Suppose that s > 2

s-2
cr(M

U
) ~ Soc (N) C Ny

Let U· {il ISi<s} C X Then

restricted to ~ is a sum of D-homomorphisms, at least one of

which is not

homomorphism

zero on M{l} . Hence there exists a diagram

~: D(U,f) ~ D(Y,g) such that ~(l). 9 • ?

Since 1m ~ is an open connected uniserial subset of Y we have

exactly three possibilities.

1. 1m ~. {il 2SiSr} and fO)· g(r-i+l), i· 1, .. ,8-1.

However we know that f(s)· g(l) Therefore there is a diagram

homomorphism ~': D(X,f) ~ D(Y,g) with kernel {il i > s}. If

e is a corresponding D-homomorphism then there exists some a ~ K

such that By induction we are finished.

2. 1m <!> = {il rSi<m}. This requires that m - r = s -

= r - 1. So reverse the ordering on the vertices of Y and

apply case 1 .
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3. 1m q, = {i I lSiSm} So m - l' s - 2 ,and f(i) - g(r+i-l)

for i

such that

1, ... ,s - Let A

Then

Since g(r-l) j g(r+l) ~ f(2)

since otherwise

8-2
a(um) E Rad (N) - N

W

where W - {r-I,r} This is impossible.

Finally suppose that s = 2 By our assumptions m = 2 or 3 .

However it is not possible to have m - 3 because gel) ~ g(3)

Similarly if m - 2 , D(X,fl

O-homomorphism.

is isomorphic to DIY,g) and (] is a

Remark 7.3. Without the assumption that uniserial string

diagrams have unique represeIltatiolls, Theoretn 7.1 fails exc~pt iTl

some very special cases. For example if D(X,f) and D(Y,g) are

normalized. rigid. uniserial diagrams w'ith representations M and

N , then every KG-homomorphism from M to N is itself a

D-homomorphism. This can be easily proved by looking at powers of

the radical and using Proposition 4.1.

8. The indecomposability theorem.

The purpose of this section is to show that, under the same

assumptions as in Section 7, rigid string diagrams have only

indecomposable representations.

following.

Specifically we prove the

Theorem 8.1. Suppose that D(X,f) is a normalized rigid

string diagram such that any uniserial subdiagram has a unique

representation. If M is a representation of D(X,f) then M

is iTldecomposable.
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To prove the theorem it is sufficient to show that HomKG(M,M)

is a local ring or that HomKG(M,MJ/Rad HomKG(M,M) a K .

Hence the theorem is an immediate consequence of the following.

~roposit_~.'-'n 8.2. Let D( X, f) and M be as in Theorem 8.1.

Let $ = $(x,f; x,f) = {$1"" ,$r} be the set of all diagram

homomorphisms from D(X,f) to itself, wllose images are cODIlected

strings. Assume that $1 is the identity. Then if i ~ 2 , $i

has nonempty kernel. For each i choose aD-homomorphism

9
i

: M 4 M whose underlying diagram homomorphism is $.
1

Then

basis for

Proof. As noted before, there is only one diagram

homomorphism from D(X,f) to itself that is bijective, because

D(X.f) is rigid. By Corollary 6.2, the homomorphisms

9
1

•. · •• 9
r

exist and in Theorem 7.1 and Lemma 7.2 we showed

that they form a basis for HomKG(M,M) . Therefore to prove

the proposition it is only necessary to demonstrate that the

subspace J spanned by 9
2
•... ,9

r
is a nilpotent ideal.

The key idea in the proof is the observation that if

$: D(x.f) 4 D(x.f) is a diagram homomorphism which is not the

identity then there exists no element x. E X such that
1

$(x
i

) = xi' For suppose otherwise. Because ker $ and 1m $

must be open sets and $ must give an isomorphism from D(X-Ker $,f)

to D(Im $, fJ • neither x
i

_
1

nor can be in the kernel

of $ . So since D( X, f J is

rigid. Continuing in this fashion we get that $ is the identity.
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Suppose that Y1""'Y
t

are plements in the set

We can ~ee t.hat. for any i , t.he sequence = x
i

element in X . That. is for i .. j . This assumes

t.hat Yi-l. Ker 7
i

' i=l, ... ,t. The Just.ification for

this step i~ t.he preceding paragraph, noting t.hat. if 1 S r S s S

then 7 0 ... 07 is a diagram homomorphism with nonempty kernel.
s r

Consequent.ly the composition of any n = IXI elements in

{t
2

, ... ,t
r

} has all of X in its kernel. From the definition

of D-homomorphi~m~ it follows that

with underlying diagram homomorphism

sub~pace J has the property that

a. 0 a.
1 J

t. 0 t.
1 J

In = {OJ

is aD-homomorphism

Therefore the

Let I E HomKG(H,HI be the identity element. Then

is a basis for Hom (H,H)
KG

Hence if

a E HomKG(H,H) then a = al + 7 for a E K and y E J So
n n n ( n)

a P a (p ) I + yP a P I Thus the map I);: HomKG(M,H) .... KI ~ K
n

given by ~,( a) a(p ) is a ring homomorphism (though not a

K-algebra homomorphism). Since the kernel of ~ is J, J is a

nilpotent ideal. This completes the proof.

Corollary 8.3. Suppose that. D(x,f) and M are as in

Theorem 8.1. Then M is absolutely indecomposable.

9. Rank two groups.

One of the uses that we make of the diagrammatic methods is

that of calculating the modules QJ(K) and subsequently



84 BENSON AND CARLSON

unveiling the structure of the cohomology ring H*CG,R) One

question arises. Once we have determined the structure of gr CR )

for several values of r, how do we know that the patterns we

see persist indefinitely? II) this sectiOJl we S}lOW how t.}lP use of

the varieties of modules enables UB to reduce the problem to a

finite calculation for groups G of p-rank 2. In fact the

method works more generally for calculating grCM) [or any

module M of complexity two.

We refer the reader to [4] for a comprehensive treatment of

varieties for modules. Briefly, VeCK) is the maximal ideal

spectrum of H*CG,K) if p = 2 and of HevCC,K) = [ H2n IC,K)
n=O

if p)2. For a KG-module M, VGCM) is the subvariety of

VCIR) corresponding to the ideal of all elements in the

cohomology ring that annihilates v (M)
G

is

a homogeneous affine variety and its dimension is the complexity,

elM) of M The dimension of VC(R) is t h,> p-rank of G
C a £

For a KG-module M , let ---+ PI
-l...,p ---+/01 _ 0

0

be a minimal projective resolution of M The module Qn CM ) is

defined to be the kernel of an_I: P
n

-
I
~ P

n
- 2 An element

~ E Ext~G(M,M) is represented by a cocycle 2: Qn CM ) ~ M

and if 2 is onto then we have an exact sequence

The isomorphism class of the kernel, M~ , depends only on ~.

kernel of a representing cocycle

Similarly if
r

y E ExtKG(K,K) • let L denote the
y

y: S{(K) ~ K By (8] ,
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VG(Ly ) • VG(y) , the hyper surface determined by y as an

element of the coordinate ring of VG(K) .

Suppose that M is a periodic KG-module. Then dim VG(M) • 1

(4), and there exists some y E Ext~G(K,K) = Hr(G,K)

So M Q L is
y

projective and the exact sequence

lQ?
a~ M Q L ~ M Q Qr(K) ~ M~ a

y

splits. That is Qr(M) i M and we say that y generates the

periodicity of M

Suppose that ~ E Ext~G(M,M) is an element represented

by an epimorphism e: Qn(M) ~ M For each j ~ a , define a

as follows. Tensor the sequence

(8.1) by Qj(M). Since KG is a self-injective ring any

projective submodule in either of the end terms can be factored

out. Then is the projective factor in the middle term of the

resulting sequence:

Theorem 9.3. Suppose M is KG-module with cG(M). dim VG(M) • 2 .

Let have an epimorphic representative e as

in (9.1). Suppose that M~ is periodic and that its periodicity

r
is generated by y e ExtKG(K,K). If Qj. Qj(M,~) • {a. for

j = a, ... , r - 1 , then Qj. {a. for all j ~ a .

Proof. Assume that Q.• {a} .
J

We wish to show that

and prove the theorem by induction. The assumption implies that
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is exact. Tensor this with the sequence

y
o~ L ~ Qr CK ) ~ K~ 0

r

to obtain the commutative diagram

0 0 0

1 1 1
O~ QJ (M,) ~ L ~ Qn+ j

cM ) ~ L - Qj (M) @ L ~o
r r r

1 1 1
o --+ Qj(M ) @ Qr(K) -+ Qn+J(M) lil Qr(K)_-+ QJ(M) @ Qr CK ) -+0,

1 1 1
o ---. Qj (M,) Qn+ j

cM ) Qj (M) ----f 0

1 1 1
0 0 0

Because Qj(M,) @ L
r

is projective we may factor this and

other projectives from the corners to get the diagram

0 0

1 1
Qn+J(MlilL ) -l!-; QJ (MlilL )

r r

1 1
0_ Qj+r(M ) --!!.....+ Qn+j+r(M) • p~ Qj+r(M) • p' --+0,

1v 19 1
o - gj(M ) Qn+j (M) I gj(M) 0

1;

1 1
0 0

where ~,v are isomorphisms, P and p' are projective. Because
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B is surjective, it must map P onto p'

a simple submodule of P with B(S)· to}

Suppose that S is

Then 9 ( S) • {O}

because gn+j(M) has no projective submodules, i.e. Soc(P) C Ker 9 .

However this is impossible because S C 1m a and 9a is

injective. Therefore P n Ker B • to} and P ~ p' . This

proves the theorem.

Proposition 9.4. Suppose that is represented

by an epimorphic e: gn(M) ~ M

are equivalent.

For any j ~ 0 the following

b) For any irreducible module S, the map

j n+j
~: ExtKG(M.S) ~ ExtKG (M,S)

given by cup product with ~,is an injection.

Proof. Because 5 is irreducible

That is, no homomorphism from gj(M) to 5 can factor through

this inclusion of

~ is the same as

diagram

gJ(M) into p. Moreover cup product with
J-1

composition with gj(2) as in the commutative

----~) 5

~9 .

Clearly if Q.• 0
J

then is injective. On the other hand if

Q
j

~ {O~ , then the map gn+j(M)/Rad gn+j(M) to gj(M)/Rad gj(M)

induced by gj<e) can not be onto since Qj(M~) has no

projective submodules. 50 in this case ~. is not injective.
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Theorem 9.5. Suppose that M and ~ E Ext~G(M,M) satisfy

the hypotheses of Theorem 9.3. If for 0 S j $ r - 1 ,

then for any irreducible module S. and any j ~ 0

~

Also the Poincare series PM,S(t). E t
j

DimK Ext~G(M,S) satisfies
j-O

Proof. By Theorem 9.3, Q. - {O. for all j
J

sequence (9.2) we have the long cohomology sequence

From

By Proposition 9.4 the connecting homomorphisms are zero. Since

n+j
Ext

KG
(M,S) the first statement is proved.

The second is an easy consequence of the first.

In the applications of these results the following lemma

will be needed. The proof is found in [8J (Lemma 4.1).

Lemma 9.6. Suppose that and that VG(Y) -

VI u V
2

U... U V
t

where each Vi is a closed projectively

connected subvariety of VG(K)

Then

and

is

i ~ j

indecomposable for i-I, ...• t .

10. Introduction and notation for the examples.
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The specialized nature of the examples in the next three

sections allows us to employ conventions which are outlined in

this section.

(10.1). Notation. Use capital letters to denote the

irreducible KG-modules. Let D(X,f) be a module diagram. In

place of a vertex xi' we write a symbol consisting of a

letter, denoting the isomorphism class of f(x
i

) and a

subscript i indicating the index of the vertex. Every edge is

denoted by a line between the symbols corresponding to the

vertices of the edge. If there is an edge e(xi,x
j

) , then

89

the relation is indicated by placing Ai above

B
j

(f(x
i
)" A , f(x

j
) ;; B) on the page. Edges are

labelled with extension classes only when necessary. For

example, in a rigid string diagram no labeling on the edges is

necessary (Proposition 6.4); it being assumed that the diagram is

normalized (see Section 7).

in (10.2). It is a string diagram with vertices

x
l

, .. ·,x4
Here x

2 < xl > x
3 > x 4 , and

f(x
l

) ;; f(x 4) iii M , f(x
2

) " K and f( x
3

) ;; N

(10.3). The diagram of Q(M) Assume that

As an example consider the diagram D(X,f)

M and all of

the indecomposable projective summands in its projective cover,

PM ' are representations of diagrams. Proposition 4.1 says we

be the smallest open set containing

in the diagram

may write

x

P •
M Pi

D(X,f)

where

for Jot and

are the closed points

Pi • Pf(x.) . Let Vi ~
1

xi' Suppose that for
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each i there is aD-homomorphism 9
i

: Pi ~ M whose underlying

diagram homomorphism 'i has image Vi· Suppose further that

Xl , ... , X can be ordered in such a way that V. n V, ~ 0t ~ J

unless i-I S j S i+1 and if V. . v. n Vi+1 , then Vi n V. . 0
~ ~ J

if i ,. j Visually X must have the form

, W w
/ t-l / t

"V t-1

in the diagram D(Xi,f
i

) Xi must have the form

Then by repeated use of Proposition 3.5

the diagram D(Y,g) for Q(M) is the amalgamation

Thus Y has the form

00.4). of
n

Computation ExtKG(M,N) Here it is assumed

that we have diagrams for gn(M) and for N If N is

irreducible or if gn(M) and N satisfy the hypothesis of

Theorem 9.3, representatives for a basis for can

be chosen as D-homomorphisms from gn(M) to N It may be

necessary to establish that such a homomorphism does not factor

through a projective module, thus being cohomologous to zero. This

is clear if the underlying diagram homomorphism takes a closed

point to a closed point, since then the image of gn(M) would not

be in the radical of N.
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To compute cup products we use the following procedure.

that m nSuppose !; E ExtKG(M,M) , y E ExtKG(M,N) are represented

by O-homomorphisms 2: gm(M) -+M and 9: gn(M) -+ N Find a

O-homomorphism gn(2): gm+n(M) -+ gn(M) as in (9.2). The cup

product Y!; is represented by the composition 9 0 gn(2) If

n
ExtKG(M,N) has dimension one, then any O-homorphism from

gn+m(M) to gn(M) that does not factor through a projective

will serve as gn(2) (at least up to scalar multiple).

Otherwise we may compute gn(2) inductively by lifting gn-l(2)
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to a homomorphism of projective covers and observing the action on

the kernels.

11. Example: G. SL(3,2), characteristic of K = 2.

The principal block for KG has three irreducible modules

which we denote K,M and N; M* They have dimension 1, 3

and 3 respectively. The only other irreducible KG-module is the

Steinberg module which is projective. The projective covers of

K,M and N have the following diagrams (see (9.1» .

M
1 /N1

P
K

: K PM: / "'-N
P

N
: '"/' 1" M

3
M

2
N

3 1
3

I

"K
/' K

2
M

4
K

2
N

4
4

\
I

\
I

N
S

M
S/ /'

M
6

N
6

Lemma 11.1. If O(X,f) is a representable string diagram

of modules in the principal block of KG , then it has aD-unique

representation.
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Proof. By Proposition 6.1 it is sufficient to show that

all representable uniserial diagrams have unique representations.

Note that every string diagram in the block is rigid, and hence

we may assume it is normalized. By examining the projective

modules and applying Lemma 5.7 it can be seen that the following

is a complete list of uniserial diagrams of maximal length.

(11.2) (i) N (ii) M (iii) K (iv) K (v) M (vi) N
I I I I I I
M N M N K K
I I
N M
I I
M N

Clearly the four diagrams of length 2 have unique representations.

Diagrams (i) and (ii) are the U translates of (vi) and (v)

respectively. Likewise, by examining composition factors, we see

that a uniserial module of length 3 must be either Rad2(P
M

}

or Rad
2

(P
N

)

Theorem 11.3. The modules Qi(K) ,IS i S 6 , have

diagrams as given in (11.4).

Proof. This follows by repeated use of Proposition 6.5 as

outlined in (10.3). For the sake of clarity we show one

calculation in detail. The dia&ram for Q(K) is clear from that

of P
K

• By Proposition 4.1, the projective cover of Q(K) is

isomorphic to PM. PN • Let 01: PM ~ Q(K) and

02: P
N
~ Q(K) be D-homomorphisms corresponding respectively to

dia&ram homomorphisms +1 and +2 which are as follows
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vertex
of PM

2

'1 ~2
---"--+ vertex vertex ---"--+ vertex

of Q(K) of PN of Q(K)

1 3

2 2 2

By D-uniqueness there is no problem finding D-homomorphisms

corresponding to $1 and $2 Both ~1 and ~2 take the

vertex K2
(in PM and PN

respectively) to K2 in the

diagram Q(K) -1 has vertices {K2 'for So $1 ({K2}) N
3

, N
4

,

!'{s' M6} while -1
({K

2
}) has vertices {K

2
, M

3
, N

4
, MS' N6}~2

The diagram for Q2(K) is obtained by identifying the K2

vertices as in (11.5).
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The diagrams for Q3(K) , •••• g6(K) are worked out by

repeated applications of this technique.

It should be noticed that in (11.4) the diagram for

gr+2(K) is obtained from that of Qr(K) by adjoining a

uniserial (open) diagram at the end of each string. The diagrams

that are added appear to depend on the residue class of r

modulo 3. Using the results of section 9 it can be shown that the

pattern persists for all r.

Clearly

generator.

2
ExtKG(K,K) has dimension 1. Let C be a

Then e: g2(K) ~ K is the obvious D-homomorphism.

with kernel L
C

a A • B where A and B represent the
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diagrams (11.2) (i) and (ii) respectively. By examining the

diagrams it can be seen that 03(A); A , Q3(B) ; Band

Q(A) , Q(B) , Q2(A) , Q2(B) are representations of (11.2)

(iii), (iv), (v) and (vi) respectively. In particular

Q3(L~) ; L~ By Lemma 8.6, VG(L~) a VG(~) is a

union of two lines a and b with VG(A). a , VG(B) - b .

Let Yl' Y
2

: Q3(K) ~ K be the D-homomorphisms
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corresponding to the closed points {K
1

} and

the diagram for 03(K). We compute 0(Y
1
):

{K
7

} in

Q4(K) ~ O(K)

by diagrammatically lifting 7
1

to a homomorphism of the

projective covers and seeing what happens in the kernels.

51 '1 1 n
2

("1-
1

) , etc.m1 ar y we compute .. We get that

Qi(7,) are D-homomorphisms with underlying diagram
J

homomorphism given in (11.6).

vertex in domain ~ vertex in range(11.6)

1'2
1 (7

1
)

QZ(7
1

)

1'2
3(7

1
)

Ql(7
Z

)

1'2
2

(7Z)

Q3(9
Z

)

Q(~)

QZ (e)

03(~)

r

r

r

r

r

r

r

r

r

r

r

r

r-10

r-6

r-10

r-Z

r-Z

r-4

for values of r

r a l , Z, 3

r-l, ,7

r-l, ,6

r-Il, 1Z, 13

r-9, ,lS

r-lZ, ,17

r-3,4,S

r a 3, ,11

r-S, ,II

Note that

3
"1 Z • ExtKG(K,K)

"1 1"1 Z a "1 Z"1 1 - 0

are elements represented by 7
1

Also e 1'2
3(9

1
) and eQ3(7

Z
)

So if

then

are
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D-homomorphisms from gS(K) to K corresponding to the closed

isCSince.. 0 .

Now. L • ker(e
r;Y 1

extension of the form o .. B .. C .. L
Y1

indecomposable by Theorem 8.1, it follows that

points {K
S

} and {K
11

} respectively in gS(K) . Hence they

5
represent a basis for ExtKG(K,K) , namely the elements r;Y 1

6 2 r3 2
and r;y 2 . Similarly ExtKG(K,K) has basis Yl , ~ 'Y 2

g2(Yl» ; A • C where C is an

By Lemma 9.6, a!VG(Y l ) Now VG(Y 1) U V
G

(Y 2) • VG(K)

since Yl Y2
• 0 Hence VG(Y I

+ Y
2

) • VG(Y 1) (1 V
G

(Y
2

) contains

neither a nor b We have established that Y • Y
l

+ Y2

generates the periodicity of Lr;' Consequently, by Theorem 9.3,

for every j ~ 0 there is an exact sequence

Proposition 9.4 implies that r; is not a zero divisor in

Ext~G(K,K). Theorem 9.5 provides the Poincare series formula

From the periodicity of Lr; and (11.2) we have that

2t
• ---3

1 - t

Hence The final

consequence of this analysis is the following.

where deg r; • 2 , deg Y
1

• deg Y
2

• 3 .
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Proof. By the above we have a homomorphism

9: K(x'Y1'YZ)/(Y1 YZ) ~ H*(G,K) given by 9(x)· ~ , 9(Y1) • Y1 '

9(y
Z

) • Y
Z

' We need only show that 9 is an isomorphism.

Because the Poincare series for the two rings are identical it

suffices to show that e is injective. By induction and the

97

fact that multiplication by ~ is injective we have the following.

(1) If 3 does not divide r then

r-2
Di-X Ext

KG
(K,K) and we are done.

(2) If r· 3t, then Dim
K

Ext~G(K,K) •

to·). ( )Dim
K

Ext
KG

K,K + 2 Hence it is sufficient to exhibit two

linearly independent elements in the image of e in

r r
Ext

KG
(K,K)/(~ . Ext

KG
(K,K» We claim that

are such elements. This is because VG(~)· a U b but a! V
G

(y
2

)

12. Example: G· MIl ' characteristic of K· 2 .

Having giving one example in the last section we abbreviate

all arguments which are similar in nature. The cohomology ring

of MIl ' the Mathieu group on 11 letters has not been

previously calculated. We shall also comput~ the action of the

Steenrod algebra on the cohomology ring.

In the principal block of KG there are three irreducible

modules K, M and N having dimensions 1, 44 and 10

respectively. The projective covers of these modules are

representations of the following diagrams. As before we are not

giving the assignments on the edges.
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The structures of these modules were calculated independently by

Alperin (unpublished) and Schneider [16]. They are not difficult

to compute using the permutation modules for MIl ' and the

modules for the subgroup MIa ~ A
6

. 2 .

(12.1) \<.
(i) .. ( ii) N ( iii) N

/ "- / "- / "-
N ~ M K N K N

I~I I~I 1/1K K M N M N

I I I I
M N N K

(12.2)

( i) K ( ii) M ( iii) M (iv) N (v) K

I I I I I
N K M N M

I I I I
K N N K

I I
M K

Lemma 12.3. For each of the diagrams in (12.1) there exists

an assignment of extension classes so that the diagram has a

representation. Moreover any two representations of one of the

diagrams are isomorphic regardless of the (representable)

assisgnments and if the assignments are the same they are

D-isomorphic. The same result holds for all closed subdiagrams
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of those in (12.1) and for their duals. In (12.2) is a complete

list of representable uniserial diagrams of maximal length. All

representable uniserial diagrams have unique representations.

Proof. Observe first that all string diagrams are rigid

and hence can be assumed to be normalized. The proof uses

Propositions 4.1 and 5.2 and a simple count of composition

factors. For example. any representation of (12.2.i) must be the

Q translate of the unique representation of (12.2.iii).

Similarly Q takes (12.2.i) to (12.2.ii). A representation of

(12.2.iv) must be isomorphic to the unique submodule of Rad
2

P
N

having those composition factors. The remainder of the proof

concerning uniserial modules is similar.

By Proposition 4.1 any module representing one of the

diagrams in (12.1) must be a factor of P
K

or of P
N

• The

uniqueness of the kernels implies the uniqueness of the

representations of (12.1). The D-uniqueness is likewise implied

by the fact that the kernel is the unique submodule of the given

projective with the prescribed composition factors.

Theorem 12.4. The modules Qi(K) • i-I •...• 7 are the

D-unique representations of the diagrams in (12.5).

Proof. The diagrams are constructed using (10.3) as in

the proof of Theorem 11.3. The D-uniqueness follows from Lemma

12.3 and Proposition 5.2 and its dual.

and one for2andi-Iis zero for

We proceed now to calculate the cohomology ring H*(G.K)

Dim Hi(G.K)Notice that
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i • 3,4,5,6 and 7. Let a, e and r be nonzero cohomology

elements in degrees 3, 4 and 5 respectively. Then a is

represented by aD-homomorphism &: Q3(K) ~ K As in the last

section we apply the methods of (10.4) to compute the underlying

diagram homomorphisms for the maps QJ(5): Q3+J(K) ~ QJ(K) The

results are given in table (12.6). It is immediate that
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M13
I
K12
I

K7 Mg NIl
/ "- / "- /

N6 MS K10
I

M3 KS
/ " /

K2 M4

Q7 (K) :
I
N

1

(12.6) vertex in domain --.:, vertex in range for values of r

& (Q3(K» (K)

Q(a) r CQ\K) ) r (Q(K» 3 :;; r :;; 7

Q2(&) r (QS(K) ) r-6 (Q2(K) ) 10 S; r :;; 13

Q3(&) r (Q6(K» r-S UhK» 9 :;; r :;; 15

Q4(&) r (Q7 (K» r-6 ClhK» :;; r :;; 13

a (Q4(K» (K)

Q(e) r (Q5(K) ) r (Q(K» :;; r :;;

Q2(e) r (Q6(K» r (Q2(K» :;; r S

lhe) r (Q7 (K» r (Q3(K» :;; r :;; 7

r 11 (Q5(K) ) (K)

Q(9) r (Q6(K» r-4 (Q( K) ) 7 :;; r :;; 11

Q2(y) r (Q7 (K» r-2 (Q2(K» 6 :;; r :;; 9

Q6(a) r (Q10(K)) r (Q6(K) ) S r S 15

Q5(y) r (Q10(K» r-4 (Q5(K» 7 S r :;; 17

& 0 Q3(&) and & 0 Q3(a) represent nonzero cohomology elements.

Hence H6(G,K) and H7(G,K) are generated by a 2 and aB

respectively. By direct calculation of the projective

resolutions it can be seen that the kernels La' La of & and

a are periodic of periods 4 and 3 respectively. By Theorem 8.1
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has two components since LaB
is not indecomposable.

n VG(B) . {Of , and a generates the periodicity

rha) is onto for i . 1,2,3, we have an exactL
B

• Since

and Lemma 9.6 the varieties VGCL
a
)· VGCa) and VGCL

B
)· VGCB)

are lines in VG(K) . Also by Lemma 9.6, VG(aB) • VG(L
aB

)

VG(a) U VG(B)

of

sequence

(12.7)

for all j ~ ° by Theorem 9.3. Using Theorem 9.5 and the series

(t + t
2

)/Cl - t
3

) we obtain the Poincare series.

345
(l-t )(l-t )(l-t )

Lemma 12.8. For proper choice of
2 2

Y , a B • Y in

Proof. By continuing the calculation in Theorem 12.4 or by

using C12.7) we may establish that 010(K) is a representation

of the diagram in (12.9). The underlying diagram homomorphisms

for 06(p) ,05(9) are given in (12.6). So & 0 0 3(&) 006 CP )

has the same underlying diagram homomorphism as 9 0 05(9 )

and replacing y by a suitable K-multiple, if necessary, we get

that a
2
B. i
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Theorem 12.10.
2 2

H*(G,K) ; Ext~G(K,K) ; K(a,a,rj/(a a+r )

where deg a • 3 , deg a • 4 and deg r • 5 •

Proof. There exists a homomorphism

Poincare series for the two rings are identical, a is an

isomorphism if it is injective. Injectivity is proved by induction

on degree and the fact that cup product with a is injective.

There are three cases to consider.

1 ) If 3 divides r-l , then
r r-4

Dim
K

H (G,K) • Dim
K

H (G,K)

and we are done.

2) If 3 divides r, then Dim
K

Hr(G,K) •

Dim
K

H
r

-
4

(G,K) + 1 In this case a r / 3 is an element in Hr(G,K)

that is not in the image of a since VG(a) n VG(a) {O}

r
3) If 3 divides r - 2 , then Dim

K
H (G,K) •

Dim
K

Hr-\G,K) + 1 We may assume r ~ 5 Let n • (r-5)/3

We need only show that
n is a multiple of a Supposea 7 not

that
n

l1a for E Hr - 4 (G,K) Then l1ar
n 2 n+2

a r = 11 . Ct 7 a a

As multiplication by is injective, 117
n+2• a This implies

This completes the proof.

Now consider the action of the Steenrod algebra. Evens and

Priddy (11] have computed the cohomology ring of the semi-dihedral



104 BENSON AND CARLSON

2-group, Q • SD(2
n

) • of order 2
n

. They showed that
n

H*(Qn,K) • K[x.y.z.w]/(xy,
3

x • xz,
2 2

z + wy )

where the degrees of x. y, z and ware 1,1,3 and 4

respectively. Also the Steenrod algebra A(2) acts as follows.

Sq1 Sq2 Sq4

2
0 0X x

2
0 0y y

0
2

0z y z + wy

0 2 2
w z w

The Sylow 2-subgroup Q of G· MIl is semi-dihedral of order 16.

To compute the action of A(2) on the cohomology of MIl ' it is

only necessary to know the embedding given by the restriction map

~ • res : H*(G,K) ~ H*(Q.K) .
G.Q

Lemma 12.11. The restriction map is given as follows:

+(a) • z •
4 2

+(8) • w + y • +(y) • y z + wy .

Proof. Because these calculations may be performed over the

prime field ~2 there are three possibilities for $(a) •

namely y3. z. and 3
y + Z Suppose first that $(a)

3
• y

Sql(y3) • y4 .. 0

4
• y But then

Since
1 1

we must have that $(Sq (n» • Sq ($(n» •

$(y2) • $(a2 B) • ylO and the restriction

map $ is not injective. This is not possible. So suppose that

4 522
y • (y + Y z)

3
$(a) • y + z .

2 3 2
$(a B) • (y +z)

Again
142

Sq (+(a» • y • $(B) • and $( y ) •

It is easily seen that the
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squaring map from H5(Q,K) to H10(Q,K) is an injection. Hence

~(y) • yS + y2 z . But then Sql(~(y». y6 is not in the image

of ~.

We can conclude that ~(~). z. Because Sq2(z).

2 2
y z + wy ~ 0 , it must be that ~(y). y Z + wy .

Hence ~(y2). ~(a28) • y4 z 2 + w2
y 2 • (y4 + w)z2. Since

4
H (Q,K) has basis

4
{y , yz,w} it is necessary that ,jl( 8 )

4
• y + w .

This proves the lemma.

Theorem 12.12. The action of the Steenrod algebra A(2) on

H*(M
11

,K) is given by the table

degree ~ K ~

a 3 0 y 0

8 4 0
2

8
2

a

5
2

0
3

+ Byy a a

Remark 12.13. It is easy to see from the diagrams for

Qr(K) that the trivial module K has a minimal projective

resolution that is the total complex of the almost periodic

double complex in Figure 1 of [5]. Moreover the double grading

on H*(G,K) , coming from the double complex, is compatible with

the cup-product structure. In particular the double degrees of

a , Band yare (3,0), (2,2) and (4,1) respectively.

Unfortunately the double grading does not fit in well with the

action of the Steenrod algebra. Hence there seems to be no good

diagrammatic interpretation of this action.
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Using methods similar to those of Theorem 12.10 it is also

possible to calculate the cohomology rings for the other two

irreducible modules.

Theorem 12.14.

(non-commutative) where deg(7
i
)· i .

Ext~G(N,N) ~ K[~1'~2'~4]/(~~'~;) ,where deg(~i)· i

We leave the details of the proof to the reader. The module

N is periodic of period 4 and Ext~G(N,N) is commutative.

However, Ext~G(M,M) is definitely not commutative, even

modulo its radical (see [9]).

The modules ~r(M) are all representations of string

diagrams. and it can be seen that the minimal resolution of M

is the total complex of the double complex given in (12.15).

1 1 1 1
PM --- PM --- P

K --- PM --- ...

1 1 1 1
PM --- P

K --- PM --- PM --- ...

1 1 1 1
PK --- PM --- PM --- P

K --- ...

1 1 1 1
PM --- PM --- P

K --- PM --- ...

It appears that the cohomology has a basis, any element of which,

when viewed as a map of double complexes is either orientation

preserving or reversing. That is, ~(C b) C C orp+a,q+ - p,q
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We say that such a map~(c ) c C
p+a,q+b - q,p

has bidegree (a,b)+

for deg ~ a a + b .

in the first case or (a,b) in the

, 2-deg(Y2) • (0,2) ,

+
2-de g (y

2
y

1
) = (0,3)

In these terms 2-deg(Y1)· (1,0)

+
2-deg (YI Y2) a (3,0) while

second.

so that

This seems related to the fact that the underlying diagram

natural orientation on the strings.

13. Example: G a A
6

' characteristic of K a 3 .

This is the most complicated example that we have tried to

tackle by these methods. Since G a A
6

S PSL(2,9) the

cohomology ring H*(G,K) is known [7) and we will not repeat the

calculation. Rather the interest of this example lies in the

explicit diagrams for gr(K) and in the double complex whose

total complex is the minimal projective resolution for K. The

details of the calculation are left to the reader.

In the principal block of KG there are four irreducible

modules K, L, M and N of dimensions 1, 3, 3 and 4

respectively. Each of these modules is self dual. Since

1
Dim ExtKG(K,N) a 2 we must be careful about the labeling of

the edges in diagrams. We have chosen bases for

1
and ExtKG(M,K) and in each case we represent one basis element

by a single line and the other by a double line. The

indecomposable projective modules represent the diagrams (13.1)

[ 2).
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Theorem 13.2. The modules Qi CK ) • 1 ~ i ~ 9 are

representations of the diagrams in (13.3).

(13.1) K L M N

/ ~ I I //\~
N N N N K L M K

/I~ /I'\. / \ / \ \~ X)
K L K M K M K L K N N

~ ~~ / \ / \/) /IX ~\
N N N N K M L K

'\./ I I '\1/
K L M N

N N

/1" /I\-
K L K M K

~~~/
N N,/

K

K K
\- /

N N
I'\. /1
M K L

M K L

I /" IN N N N

I~ /''- /I~ /1
L K L K M K M

~~~~N N

N N,
11\ 11'\

K L KKK M K

\- 'I~ / "V'\ /
N N N N
\/ ~/

K K



DIAGRAMMATIC METHODS FOR MODULAR REPRESENTATIONS

K

/~
N N N N

/I'\. /I~ /I~ /1"'-
M L K L K M K M L

~>~VN N

K. KKK

/'\./,\- /,,\/,\
N N N N N N
I~ / '\ /1,\ /,'\- / '\- /1
L K K M K L K K M

~~ ~?/N N

N N

//1' //I'\.
K K M L KKK L M K K
'\ y~ /~ / , ?--~ /~ /

N N N N N N
,/~/ ,\/,\-/
KKK K
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The diagrams have a natural periodicity of order 8. This

can be seen more clearly by calculating more of these diagrams.

From the calculation of the diagrams it can be shown that the

minimal projective resolution of K is the total complex of the

doublE complex sketched in (13.4).
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! ! ! ! ! ! ! ! I
~~~~~~~~~~~~~~~~~~

! ! ! ! ! ! ! ! !
~~~~~~~~~~~~~~~~~~~~

14. Other examples.

Space does not permit us to explore all of the examples that

can be addressed using diagrammatic methods. In this section we

list without detail a few other calculations that we have made.

Other possible examples might be found among the calculations in [10].
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(14.1). G· PSL(3,3), characteristic of K· 2. The

principal block of KG has three irreducible modules K, M, N

of dimensions 1, 12, 26 respectively. The diagrams for their

projective covers are exactly the same as those given at the

beginning of Section 12 for the modules for MIl' Hence there

111

is an equivalence of categories and all of the results of Section

12 hold in this case.

(14.2). G· A7 ' characteristic of K· 2 The principal

block of KG irreducible modules K, M and N of dimensions

1, 14 and 20. The projective covers have the following diagrams

K M N

/ '" f/ \ I
N M K
I I I
K K N M M

I I

~ '" /
I

M N K

'" / I
K M N

Note that uniserial diagrams have unique representations and

string diagrams are rigid. It can be shown that

where deg ~ • 2 ,and deg a
i

• 3 ;

where deg Y
i

• i and
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where deg ~i z i. Notice that the cohomology ring of M is

isomorphic to that of the 44-dimensional module for MIl (see

Theorem 12.14), The module N is periodic with period 3.

(14.3). ~4' characteristic of K z 2. The group

algebra has two simple modules K and M of dimensions 1 and 2.

The projective covers are representations of the diagrams

K

/ '"K M
I I
M K

'" /K

M

/
K

I
K

'" M

\
M

/

Here we must be careful because the uniserial diagram (14.4) does

not have a unique representation. However the diagrams (14.5) do

have unique representations. This permits the calculation of

K

I
M

I
K

the cohomology. We get that

K
'\.

K

K

I
M

/

M K
I I
K M

'" /K

Again the latter is the same as that for the 44-dimensional

module for MIl (Theorem 12.14).

(14.6) G· 0
8

, (dihedral group of order 8),

characteristic of K· 2. The diagrams for modules in this

case have been treated thoroughly by Ringel (14). Since G is a
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2-group, the vertices in a diagram may be taken to represent

basis elements of the module and the edges to represent

multiplication by actual elements of the group ring. Ringel's

method is to write
422

G • <x,YI x • y • (xy) • 1> and let

A • 1 + Y , B • 1 + xy. Then

A . B
./ '-

As a projective module, KG is the representation B A

of diagram (14.7). Note that the edges, but not A B

the vertices, are labeled. Uniserial diagrams do not

have unique representations, but Ringel's classification

of the modules deals with this problem adequately. Ringel

does not compute cohomology. We can make some calculations using

the methods of this paper. For example, let M· KG/(1+x
2

, l+xy)

2
H • <x ,xy> ,tGK

H
where

and is represented by the diagram (14.8). Then

This is the induced module

A

Ext~G(M,M)
2 2 2

II K<"O'''l>/(''O' "0"1 -"1"0)
(14.S)

where deg "i = i Here "0 is the obvious nilpotent

D-endomorphism of M As noted in [9 ], this appears to be the

source of the noncommutativity of the cohomology rings

M as in (12.14), (14.2) and (14.3). All of

the modules are direct summands of modules that are induced from

the M given here for some D
S

contained in the group in question.

(14.9) Almost split sequences. In Section 3 we saw how

to construct modules which are pushouts (or dually, pullbacks)

provided all of the modules in the pushout diagram have module
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diagrams and the maps are D-homomorphisms. The almost split

sequence of a module L is the pushout of the diagram

---. -- L ---. 0

where P
L

is the projective cover of L and the cohomology

class of e is in the HomKG(L,L) - socle of
1 2

ExtKG(L,n (L» [3J.

Here Hom denotes the Hom group modulo those maps that

factor through a projective. If, for example, all maps in

and in are linear

combinations of D-homomorphisms then it can be seen that e can

be taken to be a D-homomorphism, and sometimes the middle term of

the almost split sequence can be constructed as an amalgamation.

The one problem that arises is that the amalgamation might not

satisify condition (2.1, iii) (see Propositon 3.5).

For an easy example, let L be the

representation of diagram (12.2,iii). Then

n2(M) has diagram (12.2,ii) and the middle

term of the almost split sequence has diagram (14.10).

15. Extending the Algebra.

M
I
K

I
N

" /K

M

\
M

It is clear that the diagrammatic methods, as presented

here, do not work well for p-groups. The problem is that

1Dim ExtKG(K,K) > 1 whenever G is a noncyclic p-group. For

cyclic p-groups it is very easy to calculate cohomology using

diagrams. If the p-group G has an automorphism of order prime
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to p then the following technique may be used. Consider the

group G which is the split extension of G by the cyclic

group T generated by the automorphism. The irreducible

KG-modules are precisely the one-dimensional KT modules

M
1
•... ,M

r
. Then M

ilG
I K and by Shapiro's Lemma

n n fa r n
ExtKG(K,K) I ExtKG(K,KG ) ~ e ExtKG(K,Mi ) . The

1 i s l
groups ExtKa(K,M

i
) are smaller and easier to handle. For
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example, if G is elementary abelian of order n then Tp , may

be taken to be the group generated by the Singer cycle, which is

automorphism of order n
- 1 This is obtained by regardingan p

G the additive of the field with n elements and Tas group p

as the multiplicative group of nonzero elements.

Many p-groups, however, have no automorphism of order prime

to p. In this case, one may resort to extending the group

algebra to an algebra which is not a group algebra. We

illustrate this technique by the example of the semi-dihedral

group of order 2n over a field K of characteristic 2.

The semi-dihedral group SD(2
n

) of order 2
n

is given

by generators and relations as follows:

2n- 1 2 1 2n-2_ 1G • <g,hlg • h • 1 ,hgh- • g >

Let a s gh + 1 , b • h + 1 ~ KG Then

2 m 2KG ; K<a,b>/<b , (ba) b - a >

where
n-2m s 2 - 1 (see (1. 5) 0 f [IS j) . In fact our method

works for any value of m 2 1. From this presentation it can be
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seen that the projective module KG is a representation of the

diagram (15.1). The case shown is that of

G • SD(16), m • 3. The general case is similar.

chosen a basis for the Ext group so that

In fact, none of the calculations depend on the

the case m· 3. In the diagram all of the vertices

has dimension 2 we have

So we shall continue to draw onlyvalue of 11

are labeled with the unique simple KG-module K.

1
ExtKG(K,K)Because

2
II KG/<a ,b> , 2

II KG/<a,b >

In some sense the single bond corresponds to multiplication by a

while the double represents multiplication by b.

We extend the algebra in such a way that the Ext 1 groups

become one dimensional. That is, we construct an algebra of

dimension 31GI with 3 simple modules A, B, and C whose

projective covers are representations of the diagram. in (15.2).

Such an algebra can be easily created by taking a vector space

whose basis consists of the diagram endomorphisms of the disjoint

union of the above diagrams, with nonempty connected images. An

arbitrary diagram endomorphism is identified with the appropriate

sum of basis elements and multiplication is defined by bilinear

extension of composition of diagram endomorphism.. In the

present case it is easier to write down the algebra by

inspection. We assume that K contains a primitive cube root of
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A

/ '"B C
r I
A A
I I
B C
I I
A A
I I
B C
I I
A A
I I
B C

" /A

B

/ "C A

I I
B B
I I
C A
I I
B B
I I
C A
I I
B B
I I
C A

" /B

C

/ "-
A B
I I
C C
I I
A B
I I
C C
I I
A B
I I
C C
I I
A B

" /C

unity, ~. Then the algebra can be given as follows

2 m 232 2 2
R - K<a,b,c>/<b , (ba) b - a , c -1 , cac - ~a, cbc - ~ b> •

In the representations A, Band C , the element c acts

by multiplication by 1, and 2 respectively.~, ~ ,

The following may be proved by the same methods used in the

examples of sections 11 and 12.

Theorem 15.3. Every representable string diagram for R

has a D-unique representation. The modules Qi(A) , i-I, ... , 6

are the unique representation of the diagrams in (15.4). Here

edges which are not incident to the bottom vertex of a cycle are

assumed to be normalized.

Restricting back to KG provides diagrams for the modules

iQ (K) , i-I, ... , 6. We have given names in circles to the
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(15.4)

Ql(A) Q2(A) Q3(A) Q4(A)

Q Q Q) 0 G) Q) G 0
B C C B C A B c

AI \
I I I / I / I
A B C A B C A

1\ I I I I I I I
B C C B C A B C

I I I I I I I I
A A B C A B C A

I I I I I I I I
B C C B C A B C

I I I I I I
G

I I
A A B C A B C A

I / I I I I I I
B C C A B C A A B C

\ / \ / \ / / \ / /
A B C B C A

Q5(A) Q6(A)

Q 6) 00 Q) ~/~z~ 00
B C A B C B C A

/ / /1 I / / ; / I
A A B C B C A B

I I I I I I I I
B C A B C B C A

I I I I I I I I
A A B C B C A B

I I I I I I I I
B C A B C B C A

I I I I I I I I
A A B C B C A B

I I I I I I I I
B C A B C A B C A

"- / / / "- / '" / / /
A B C B C A B
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cohomology elements displayed by the resulting diagram. For

example the element x ~ Ext~G(K,K) is represented by the

cocyle x: Q1(K) ~ K which takes the top constituent marked B

in Q1(A) to K by the identity map. Of course the restriction

of A, Band C to KG are all isomorphic to K The

computation of the cup products is performed as in sections 11

and 12.

It can be checked from the diagrams that

and

L ; L • L
wy w y

YG(w) n YG(y) » jO}

Therefore y generates the periodicity of Lw By Theorem 9.3,

we have a short exact sequence

for all j ~ O. Applying Theorem 9.5 we obtain

P
L

K(t). 2/(1-t) , and hence
w'

Now using the usual methods (see Theorem 12.10) we may show

that the cohomology ring is as given in [11]. Note that Evens and

Priddy call the elements x, y, z and w by the names x, x + y,

p and respectively.

Theorem 15.5. If G is a semi-dihedral group of order

2
n

, n ~ 4 and K is a field of characteristic 2, then
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where deg x • deg y • 1 , deg z • 3 , deg w • 4 .

Remark 15.6. In some sense this cohomology ring narrowly

misses being noncommutative. In analogy with (12.15), the

minimal projective resolution of K is the total complex, of an

almost periodic double complex, in which 2-deg(x)· (0,1)

2-deg(y) • (1,0)+ , 2-deg(z) • (2,1)+ , and 2-deg(w) • (2,2)+

It is only because multiplication by x annihilates almost

everything that x can afford to reverse the orientation on the

double complex.
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