
Math. Z. 195, 221-238 (1987) Mathematische 
Zeitschrift 

�9 Springer-Verlag 1987 

Complexity and Multiple Complexes 

David J. Benson 1 and Jon F. Carlson 2.  
a Department of Mathematics, Northwestern University, Evanston, Illinois 60201, USA 
2 Department of Mathematics, University of Georgia, Athens, Georgia 30602, USA 

1. Introduction 

Let G be a finite group and let R be a commutative ring with unit. One of 
the most basic problems in group cohomology is that of finding suitable projec- 
tive resolutions for RG-modules. Indeed, much machinery has been developed 
over the years in order to circumvent this seemingly impossible problem. The 
ideal situation is the one in which the group G is cyclic or abelian. It has 
long been known that for cyclic groups there exists a canonical periodic (even 
minimal) projective resolution for the trivial RG-module R. For  an abelian 
group, which is a direct product  of cyclic groups, a minimal projective resolution 
for R can be found by taking the tensor product  of the minimal resolutions 
over the cyclic factors. However, for noncommutative groups or for modules 
with nontrivial G-action, the problem is far more difficult. In most cases minimal 
projective resolutions cannot be written as product  of periodic complexes. 

The main result of this paper shows that if R = k is a field of characteristic 
p > 0, and if M is any finitely generated k G-module then there exists a projective 
resolution of M that is a tensor product of periodic complexes. The constructed 
resolutions are usually not minimal, but do have the same rate of growth (com- 
plexity) as the corresponding minimal resolutions. The Theorem (3.4) sheds some 
light on questions raised by Alperin in [1]. The principal ingredients in the 
construction are cohomology elements whose varieties are in a short of"general  
posit ion" with respect to each other and the variety of M. There is a lot of 
freedom in choosing these elements, so the constructed resolutions are by no 
means unique. The techniques are also used in Sect. 4 to obtain an integral 
version of the main theorem for RG-lattices. 

As an application of the results we present in Sect. 5 a new proof  of 
G. Carlsson's theorem [12] that a finite group acting freely on a product  of n 
spheres of dimension r must have p-rank at most n for all primes p. It seems 
likely that other problems of this type can be reduced to questions in modular  
representation theory. In Sect. 6 we discuss some of these questions and show 
that any k G-module can be resolved by a finite complex with otherwise c o m -  
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pletely reducible homology. Section 7 is devoted to a brief discussion of general 
multiple complexes and minimal projective resoltutions. An example of a mini- 
mal multiple-complex resolution over M 11 is given. 

Notation. Throughout  the paper G is a finite group and R is a commutative 
ring with unit. All RG-modules are assumed to be finitely generated left RG- 
modules. If M and N are RG-modules then M |  denotes the RG-module 
M |  R N with diagonal G-action, unless otherwise indicated. 

2. Complexity 

In [2] Jon Alperin introduced the term "complexity of a module"  to describe 
the polynomial rate of growth of the cohomology of a module (see also [-271). 
The use of this term was motivated by the observation that in many cases 
one can find a minimal projective resolution for a module that is the total 
complex of a bounded n-complex (see [-1]). Briefly an n-complex is an array 
of modules indexed by n-tuples of integers with boundary homomorphisms d j, 
j =  1, ..., n, running parallel to the axes. It is assumed that in any line parallel 
to an axis we have a complex, i.e. djodj=0,  and that dod=O where d = ~ d j  
is the total boundary operator. By a bounded n-complex we mean one such 
that the dimension or rank of each module is bounded. These ideas are discussed 
in detail in Sect. 7. Formal definitions of complexity can be given as follows. 

Definition 2.1. Let k be a field of characteristic p > 0, and let M be a k G-module. 
The complexity CkG(M) is the least integer s satisfying any one of the following 
equivalent conditions. 

(a) limo (Dimk Pm)/m ~= 0 where 

...---~p1--~po-.-,M--~O 

is a minimal projective resolution of M. 
(b) There exists a number 2 with Dimg(Pm)<2m S-1 for all m sufficiently 

large. 
(c) l i rn (Dimk Ext~G(M, M))/m s = O. 

The equivalence of the conditions is proved, for example, in [10]. For  R 
a commutative ring we use the following definition. 

Definition 2.2. Let R be a commutative ring with unit and let M be an RG- 
module. The complexity of M is 

CRG (M) = Max {C(R/~ ) ~ ( (R/~) |  R M)} 

where the maximum is taken over all maximal ideals ~ in R. 
Alperin and Evens have shown that for a k G-module the complexity is 

the maximum of the complexities of the restrictions to elementary abelian p- 
subgroups of G. Webb [29, 30] has proved an integral version of the Alperin- 
Evens theorem. In particular Webb showed that for ZG-lattices, Definition (2.2) 
is equivalent to conditions (a) or (b) of (2.1) with k replaced by Z. One conse- 
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quence of Theorem 4.4 is that the same is true for any integral domain R that 
satisfies the conditions of Remark 4.6. 

Let R be a commutative ring. A 1-complex (or simply a complex) of RG- 
modules is a pair (X, ~) where X = ~ Xi is a direct sum of RG-modules indexed 
by the integers and 0: X ~ X  is an RG-homomorphism such that 8(Xj)_~ Xj_a 
and ~ o 0 = 0. We say that (X, 0) is nonnegative if Xj = {0} whenever j < 0. 

Definition. A nonnegative 1-complex (X, 0) is said to be exact if the correspond- 
ing sequence ... ~ X 2 ~ X a  ~ X  o is exact; that is, if H~(X, 0)={0} for all i>0.  
We say that (X, ~) is periodic if for some positive integer s and all j > 0 there 
exists an isomorphism/tj:  X;+~ --. Xj such that Oj/~j = #j_ 1 ~j+~ for all j > 1. 

If (X, 0) and (Y, 0') are two complexes then their tensor product is the 
complex (Z, 0")=(X, 0)| 0') where Z j = ~ X i |  Yj-i and 

i 

C3"(xi|174174 for xieXi ,  Yl~Yl. 

Note that the tensor is taken over R. The tensor product of complexes is associa- 
tive. 

One connection between complexity and n-complexes is reflected in the fol- 
lowing. 

Proposition 2.4. Let R be a commutative ring and let M be an RG-lattice (an 
RG-module that is projective as an R-module). Suppose that (X i, Oi), i= 1 . . . . .  t 
are exact periodic nonnegative 1-complexes of  finitely generated RG-modules such 
that the tensor complex (X 1, ~1)| ... |  t, or) is a projective resolution of M. 
Then CRa(M) <= t. 

Proof Let ()~, ~)=(X ~, 0a)| ... |  t, Or). By hypothesis H . ( X ) = H o ( X ) ~ M .  
That is 

�9 . . ~ X 1  ~ 'J~o ~ M ~ O  

is a projective resolution of M. Let g(al . . . .  , at) be the minimum of the cardinali- 
ties of the R-generating sets for X~,| X t �9 .. @ -c Note that this is a finite number. 
Hence because of the periodicity, the number B =  max {g(al . . . . .  at)} is also finite. 
If N ~ R is a maximal ideal then 

DimR/~ (R/~)  | R (XJ~ | X t ... | ,~)=<B, and D i m R / e ( ( R / ~ ) |  

[ n + t - - l ~  
where s, =~ t - 1  ) is the number of distinct t-triples (a~ . . . . .  at) of nonnegative 

integers with ~ ai = n. Since ((R/~)| 1 | is an (R/~)G-projective resolution 
of ( R / ~ ) |  and since s, is a polynomial of degree t - 1  in the variable n, 
we are done. 

Interestingly, Lewis has shown that if G has a series {0}=No ___ N1 
_~ ... ~ Nn = G of normal subgroups such that each N/N-~ has periodic Z- 
cohomology, then there exist periodic I-complexes (X ~, ~*) i=  1 . . . . .  n whose 
tensor product (JT, 0) is a projective resolution for Z (see Theorem 3.6 of [18]). 
This result extends easily to RG-lattices. For  example, if G is a group of order 
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p", R is a commutative ring in which p is not a unit, and M is an RG-lattice, 
then M has a projective resolution that is a tensor product of n periodic 1- 
complexes. One need only construct such a resolution ()~, 0) for Z and take 
the tensor product M| 0)= (M| 1| 

3. The Main Theorem 

Let K be an algebraically closed field for characteristic p > 0. For  a finite group 
G let H(G, K)=H*(G, K) if p = 2  and H(G, K)=  ~ HZ"(G, K) if p is an odd 

n > 0  

prime. It is well known that H(G, K) is a finitely generated commutative graded 
ring and we may consider its maximal ideal spectrum VG(K). This homogeneous 
affine variety was described by Quillen in [23] and [24]. If M is a KG-module 
the ring Ext*s(M, M) is a finitely generated module over H(G, K). Let J(M) 
denote the annihilator in H(G, K) of E x t ~ ( M ,  M). Then J(M) is a graded 
ideal and its associated variety VG(M) is called the variety of the module M. 
That is VG(M) is the collection of all maximal ideals of H(G, K) that contain 
J(M), and it is a closed homogeneous subvariety of V~(K). 

Before stating some properties of the varieties we need some further notation. 
Suppose that k is a field of characteristic p > 0. If M is a k G-module and P 
is a projective cover of M, then (2(M) is defined to be the kernel of the covering 
P ~ M. Inductively Y2"(M) = f2(f2"- 1 (M)) for n > 1. Similarly f2-1 (M) is the cok- 
ernel of an injection M ~ Q  where Q is an injective hull for M, and f2-"(M) 
=Y2-1(O-"+1(M)). Since kG is a self-injective ring, ~2"(M) has no projective 
(or injective) submodules. 

O 
Suppose that . . . 4  P1 ' Po , k ~ 0 is a minimal projective reolution 

of k. Then P, is the projective cover of f2"(k), and ~,(P,) _ Rad(P,_l). So any 
(~Ext~G(k, k)~-H"(G, k) is represented by a unique cocycle ('~HOmk~(P,, k) 
and by a unique homomorphism ~eHOmkG(g2"(k), k). For (~H"(G, k), (~0 ,  
we define L~ to be the kernel of C: YP (k)~  k. If ( =  0 then let Lr = g?" (k ) �9  f2 (k). 

Most of the following results are provided in [4, 10, 11], and [12]. We 
refer the reader to [5] for a comprehensive treatment. 

Proposition 3.1. Let M and N be KG-modules. 
i) VG(M)= {0} if and only if M is projective. 

ii) dim VG(M)=cKG(M). 
iii) VG(M @ N) -- Vo(M) ~ V~(N). 
iv) Va(M| =- Va(M) ~ Va(N). 
v) V6(O"(M))= V~(M) for all n. 

vi) For ~eH"(G, K), V~(Lr VG((~)). That is, Va(Lr is the hypersurface of 
V~(K) consisting of all maximal ideals that contain ~. 

vii) dim Va(K ) is the p-rank of G [23]. 

Lemma 3.2. Let k be a field of characteristic p>O and let K be its algebraic 
closure. Suppose that ~ ~H2m(G, k), ~ =t = O. There exists an exact, periodic, nonnega- 
tire 1-complex (X, c?) such that Ho (X)= k and for all j, V~(K | X j) ~_ VG ((1 | 
the hypersurface defined by I | [ e K | H ( G, k)~- H ( G, K). 
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Proof Let (': 02m(k)~k represent (, and let (P, e) be a minimal projective 
resolution of k. Then we have the following diagram 

0 0 

L = L 

o , ~ " (k) 

0 , k 

;' P2 m - 1  

it 
~, B 

1 
0 

'P2,,-2 ' . - .  'Po ,k ,0 

v g 
;' P2m-  2 ~'... ~'Po ) k :,0 

(3.3) 

where L = Lc is the kernel of ~" and the bottom row is the pushout of the middle 
row along ~ In particular, B=f2 - I (L )  and K|174 

O- 1 (L1 |174 So V~(K| = Va((1 |  by Lemma 4.1 (v) and (vi). Also 
Va(K| Define the 1-complex (X, 9) by splicing the sequence (3.3) to 
itself an infinite number of times. That is, for all j > 0 Xz,,j + i = P~ if 0 < i < 2 m - 2, 
and Xzmj_I~-B for all j > l .  Here O2,,j=pe, ~ 2 m j _ l  = V  for j > 0 ,  and 0 2 n j + i = ~ i  

for j > 0 and 0 < i < 2 m -  2. Hence (X, 3) has the required properties. 
Before stating the main theorem, a note concerning change of field is in 

order. Suppose that K is the algebraic closure of k. As noted earlier H(G, K) 
~-K| k H(G, k) by universal coefficients. If M is a kG-module and Jk(M) is 
the annihilator in H(G, k) of ExtkG(M, M) then it can be seen that Jt~(K| 
=K|  ). Clearly K@Jk(M) ~ J~(K| On the other hand if (~JK(K| 
and the degree of ( is n, then ( is represented by a homomorphism ~': 
g| On(k) -~K, and ~'| K|174 - ~ K |  must factor through a pro- 
jective. Hence, ~ |  = ~ g fg -1  for some 

geG 

f ~  HomK (K | f2" (k) | M, K | M) ~ K | HOmk(fP (k) | M, M) 

(see [15]). But the operation f ~  ~ g fg -1  commutes with K|  k - and so by 
geG 

a standard basis argument (~K| 

Theorem 3.4. Let k be a field of characteristic p > O. Suppose M is a k G-module 
with complexity cka(M)=r. Then there exist exact, periodic, nonnegative 1-com- 
plexes (X i, Oi), i= 1 . . . . .  r, such that the tensor product complex (X, 0)=(X a, 01) 
| | (X', O r) is a projective resolution of M. 
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Proof. Let K be the algebraic closure of k. By Proposition 3.1(ii) the Krull 
dimension of H(G, K)/JK(K|174 k)/J~(M)) is exactly r=cka(m). 
By standard theorems on Krull dimension [20] there exist homogeneous ele- 
ments ~1, ..., (~eH(G, k) such that H(G, k)/Jk(M) is a finitely generated module 
over the ring generated by their images. Hence also H(G, K)/JK(K| is finitely 
generated as a module over the ring generated by 1| + JK(K| Therefore 

V~(M)c~ VG((1 |  c~ ... c~ VG((1 |  = {0}. (3.5) 

For each i=  1, ..., r, let (Z ~, Oi) be an exact, periodic, nonnegative 1-complex 
of kG-modules with Ho(Zi)-=k and VG(K| ~ V~((1 | for all j  (see Lemma 
3.2). Then (X 1, ~1)= (M|  1, 1 | is an exact, periodic, nonnegative 1-complex 
with H o (X ~) = M | H~ (Z 1) ~ M and 

V~(X)) = Va(M)~ Va(ZJ) _~ VG(M)c~ V a ( ( l |  

by Lemma (3.1)(iv). Consequently if we let (X i, Oi)=(Z i, c?i), i = 2  . . . . .  r, then 
the product complex (J~, 0) is a projective resolution by (3.5) with Ho(_~ ) = M. 

4. An Integral Version of the Main Result 

Let R be the ring of integers in an algebraic number field. In this section we 
extend Theorem 3.4 to obtain projective resolutions for RG-lattices as tensor 
products of exact periodic 1-complexes. In addition, if M is an RG-module 
that is free as an R-module then a free RG-resolution can be obtained by this 
method. Recall that we are considering only finitely generated RG-modules. 

Lemma 4.1. An RG-module M is projective if and only if the following two condi- 
tions are satisfied. 

i) M is projective as an R-module. 
ii) For each maximal ideal ~ ~ R with IG]e~, (R/~)|  is a projective 

(R/r ~) G-module. 

Proof. See Theorem 78.1 of [15]. 

Lemma 4.2. Suppose that ~ is a maximal ideal of R such that R / ~  has characteris- 
tic p. Assume that ]Gl=p~q and (p, q)=l .  I f  ~HZm(G, R/~), then (po+l is in 
the image of the natural homomorphism H (G, R)--* H (G, R/~). 

Proof. This is a straightforward generalization of Lemma 4.5 of [7]. 

If M is an RG-module, let 

... -~ F I ~ Fo ~ M-+ O 

be a resolution of M by free RG-modules, and denote by ~ ' ( M )  the m ~h kernel 
of this resolution. By the extended Schanuel Lemma (see (1.4) of [28]) if ~(M) 
and ~ t  (M) are defined using different free solutions, then there exist free modules 
F, F' such that (2(M)OF = [21 (M)OF'. We may choose a large enough resolution 
for R so that 

~m (M) | ~" (R) --~ ~ "  + "(M) O (free). 
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We now introduce modules L| analogous the modules L~ of the last section. 
Let ~ eH2m(G, R). Let 

... ~ r ~  --,Fo ~ R - - ,  0 

be a free RG-resolution of R. Then ~ is represented by a homomorphism ~: 
~2rn(R)-+ R. By making the resolution targe enough, that is by adding extra 
free modules if necessary, we may assume that ~ is surjective even when ~ = 0. 
Let L| denote the kernel of ~. Let N be a prime ideal in R and let K be 
the algebraic closure of R/N. If the image of ~ is ~ under the natural homomor- 
phism from HZm(G, R) to H2m(G, K), then K|162 

Lemma 4.3. (el [10]). Suppose that ~eHZm(G, R) and zEHZn(G, R). Then there 
exists a short exact sequence 

where F~ and F 2 are free RG-modules. 

Proof Tensor the short exact sequence 0 ~ T, z ~ ~ 2  n (R) * , R ~ 0 with ~2,, (R). 
We obtain the middle row of the diagram 

0 

B 

, O2m+Zn(R)@F2 

R 

0 

, L| , 0  

1| - !( 
,Q2 R) '0 

R 

0 0 

Here 7=~'(1| is cohomologous to ~Z and hence its kernel B is isomorphic 
to L~| 

We may now prove the main result of the section. 

Theorem 4.4. Let M be an RG-lattice, that is, an RG-module that is projective 
as an R-module. Let n = CRy(M) (see Definition 2.2). Then there exist exact, period- 
ic, nonnegative 1-complexes (X i, Oi), i= 1, ..., n, such that the product (X 1, 81) 
| ... | (X", 8") is a projective resolution for M. Moreover if M is free as an 
R-module, then we can find such complexes so that the product is a free resolution of M. 
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Proof If N is a maximal ideal in R then let R/N denote the algebraic closure 
of R/N. There are only a finite number of maximal ideals N _  R with [Glen 
and for each we may choose elements (1 (N) . . . . .  ~,(N)cH(G, R/N), all homoge- 
neous with even degrees, so that 

V~((R/N)| c~ V6((~(N))  ) c~ ... n VG((~.(N)) ) = {0}. 

If for a particular N, c(R/e)G((R/N)| is less than n, then we allow some 
of the elements ~I(N), ..., ~n(N) to be zero. This does not affect the argument 
except that we must consider each such as the zero element in some positive 
even degree. Now replace each (i(N) (if necessary) by a suitable power so that 
for each i=  1, ..., n the elements (i(N) have the same degree for all maximal 
ideals ~ _ R  with ]GleN. By the same process and Lemma 4.2 we may also 
ensure that every ~i(N) lifts to an element of H*(G, R). Moreover since 
H"(G, R), m>0,  is the direct sum of its N-primary components, for each 
i=  1 . . . .  , n, there exists an element ~eH"'(G, R) such that the image of ~ in 
H "~(G, R/N) is ~i(N) for all N containing [G[. In particular 
R/ N | L~, ~L~,(~)G(proj). 

We now follow the recipe of the last section. As in Lemma 3.2, we obtain 
for each i, a periodic 1-complex (X ~, 0 ~) with the property that for every N 

containing I GI, FG((R/N)| is contained in Va(((i(N))) for all m. Also every 
i ~., X~ is free as an R-module. In this case, Xj",+k=Fk, O<k<mi--1, and 

X~,_~Fm,_I/L~. As in the proof of Theorem 3.4, take the tensor product 
(32, 8 ) = M |  ~, 01)| ... |  n, 0n). Each 32,. is projective by Lemma 4.1 and 
the hypothesis. This proves the first statement. 

Now suppose that M is free as an R-module. In the complex constructed 
above all modules are free except possibly for those isomorphic to 

which we only know to be projective. Let Ko(RG) denote the reduced Grothen- 
dieck group of projective RG-modules. This is a finite abelian group (see Prop. 9.1 
of [251). Suppose that IN] has order t in _Ko(RG). We claim that if we replace 
~ by ~] then I-N] becomes zero in Ko(RG). First observe that if an element 
of/~o (RG) is represented by a tensor product of modules, then we may replace 
any of the tensor multiplicands by its translate under OJ without affecting the 
resulting element of/~0 (RG). Thus 

By Lemma 4.3 and induction 

[M| |162 for all r >  1. 

This proves the claim. That  is if (a is replaced by ~] then D~m] = 0  in Ko(RG) 
for all m. It is still not certain that we have a free resolution. That  is, the 
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module N may be only stably free. However by adding suitable free modules 
to one of the 1-complexes (X i, 8 i) we can make it free. 

Corollary 4.5. Let n be the maximum value of the p-rank of G for all primes 
p. Then there exist n nonnegative periodic 1-complexes whose tensor product is 
a free resolution for the trivial RG-module R. 

Proof This is a direct consequence of Proposition 3.1 (ii) and (vii) and the above 
theorem. 

Remark 4.6. The properties of R used in the proof of Theorem 4.4 are the follow- 
ing. 

a) Lemma 4.1 holds for RG-modules. 
b) There are only finitely many maximal ideals ~ ___ R with I G I ~ .  
c) Ko(RG) is a finite group (Only necessary for the last statement). 
Other rings such as localizations and completions of algebraic number rings 

also satisfy these properties and hence the theorem is also true for these rings. 

5. Group Actions on Products of Spheres 

Using the methods developed in the previous section we give a proof  of 
G. Carlsson's theorem [13] concerning group actions on products of spheres. 
In some sense our proof  is equivalent to Carlsson's but has been made more 
conceptual by using the language of varieties for modules. W. Browder also 
has a very short proof  using the method of exponents in spectral sequences. 

Theorem 5.1 [13]. Suppose that G acts freely on a finite CW-complex X with 
the homotopy type of a product (S~) n of n spheres of the same dimension r, with 
trivial action on homology. Then for any prime p the p-rank of G is at most 
n. Moreover the complex of cellular chains on X is G-chain homotopic to tensor 
product of n complexes, the homology of each of which is the homology of a 
sphere. 

Proof Denote by C,  the complex 

0s 01 
O~C~ ~C~_t ~ ... > Co --, 0 

of cellular chains on X, and choose a diagonal approximation C ,  ~ C , |  
The truncaton Cr ~ Cr - 1 ---' .-- ~ Co ~ 0 is a complex of free ZG-modules whose 
homology is Z in degree zero and which is exact elsewhere. Also ker 8r/Im 8~+ 
is a direct sum of n copies of Z (with trivial G-action) corresponding to the 
n spheres. These summands correspond to elements 41 . . . . .  ~ ,~H ~+I(G, Z). These 
elements are, in fact, the transgressions of the fundamental classes of the spheres 
in the Serre spectral sequence H*(BG, H*(X))=~H*(X/G) of the fibration X 
~ X x ~ E G ~ B G ,  as pointed out in [13], but we do not need to know this. 
For  each sphere we have a surjection ~'i: ker 8 ~ Z  whose kernel we denote 
by Le~. In this way we obtain for each i = 1 . . . . .  n a map #~ of chain complexes 
as in the diagram 
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0-----* C~ >... >C~+ 1 

0 

l 
l 

C r 

l 
, c~/L~ 

l 
0 

~C~-1 ' . . .  ~C0 ~0 

>C~-1 ~... ~C0 >0 

Let C(~ ) denote the bottom row. Note that the homology of C~ ) is the homolo- 
gy of S r. Iterating the diagonal approximation n - 1  times we obtain a map 

n 

of complexes #: C,  --, @ C~ ~ as the composition 
i = l  

C , - - , C , |  ... |  "~|174176 , @ C ~  ~. 

Since, for both complexes we know the comultiplication on the homology, we 
easily see that /~ is a homology isomorphism. This proves the last statement 
of the Theorem. The modules appearing in @ C ~  ) are all free except possibly 

n 

for the nr  th term which is L =  @(Cr/Le). We claim that L is also projective. 
i = 1  

Add a finite, exact, free chain complex F, to C,  to make the map C , G F ,  ~ @ C ~  ) 
surjective. The long exact sequence of homology shows that the kernel is a 
finite exact chain complex all of whose terms, except possibly the n r th term 
is projective. This implies that the nr  'h term and hence also L are cohomologi- 
cally trivial. Because L is Z-free it must be projective. 

For  a prime p let K be the algebraic closure of the prime field of characteristic 
p. Let ( I e H ' + I ( G , K )  be the image of ~i under mod-p reduction. Then 

K |  The construction given above implies that + ~ - I ( L ~ , )  is 
i = 1  

a projective module. By Proposition 3.1 its variety is Va(((1))n ... c~ VG((~,)) 
={0}. Hence the dimension of V~(K), which is equal to the p-rank of G, is 
at most n. 

It has been conjectured that Theorem 5.1 still holds without the restriction 
that the spheres have the same dimension. This seems to be difficult to prove 
by the above method. The problem is that we have no obvious way of knowing 
that the fundamental classes of the spheres get as far as transgressing in the 
Serre spectral sequence so that the maps C ,  ~ C~ ) exist. On the other hand 
it seems possible that the p-rank condition is sufficient as well as necessary, 
in the following sense. 
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Conjecture 5.2. The following conditions on a finite group G are equivalent. 

a) G has a free action on a finite CW-complex X with the homotopy  type 
of a product  of n spheres with trivial action on homology. 

b) For  all primes p, the p-rank of G is at most n. 

Remarks 5.3. (1) The case n =  1 in the above conjecture is known to be true 
[26]. It is also known that we cannot demand that X be homeomorphic  to 
a sphere. For  example if G = $3, the symmetric group on 3 letters, then it follows 
from Milnor [21] that G has no free action on a sphere of any dimension. 

(2) Oliver [22] has shown that we cannot demand that the spheres have 
the same dimension. Hence the converse to Theorem 5.1 is not true. His example 
is the alternating group G =  A 4, which he shows has no free action on a CW- 
complex homotopic  to a product  of any number of spheres of the same dimen- 
sion, with trivial action on homology. However, he also shows that A 4 does 
act freely on S 2 x S 3. 

(3) We might try to prove that (b) implies (a) in (5.2) using Corollary 4.5 
with R = Z, or, more precisely, using an integral analog of the proof  of Lemma 6.2 
(to follow) with M = R. This gives a finite multiple complex whose total complex 
has the homology of a product  of n spheres. The problem would be to find 
a CW-complex realization of the total complex. Oliver's example demonstrates 
that the elements 41, ..-, ~,eH(G, Z) must be chosen very carefully. The first 
obstruction to realizing the complex comes from the Steenrod algebra. It seems 
we would need that, for each j > 0 and each p dividing J G I, the ideal generated 
by the images of those ~i's lying in degrees at most j is invariant under the 
action of the Steenrod algebra. Higher obstruction probably also exist. 

(4) In the next section we obtain another proof  [17] that (a) implies (b) 
in (5.2) whenever n < 3. 

(5) The problem of free actions of finite groups on products of spheres is 
discussed also in the papers by Browder [9], Conner [14], Heller [16, 17] and 
Lewis [19]. 

6. Completely Reducible Homology Complexes 

In this section K is a field of characteristic p > 0 and G is a finite group. We 
wish to consider the purely algebraic question of when a module can be resolved 
by a finite complex whose positive homology groups are all completely reducible 
KG-modules. 

Definition 6.1. A complex C = (C i, 0) is a CRH-complex if it is finite and satisfies 
the following. 

(1) Each Ci is a finitely generated projective KG-module. 
(2) Ci = 0 if i < 0 and 
(3) H i (C) is a completely reducible KG-module for all i>  0. 

Lemma 6.2. Let M be a simple KG-module and let B be any positive integer. 
There exists a CRH-complex C=(Ci, t?) with Ho(C)~-M and Hi(C)= {0} /f 1 < i  
<--B. 
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Proof Let n be the p-rank of G. As in the proof of Theorem 4.3, choose homoge- 
neous elements ~i, ..., ~.~H(G, K) so that VG(~I)c~ ... c~ VG({,)= {0}. As in the 
proof of Lemma 4.2 we have for each i an exact sequence 

0~K-~Y2--I(L~)-~P2m,_2 ~ ... ~ P o ~ K ~ O  

where 2mi is the degree of ~i. Let X (i) =(X} ~ ~(i)) be the finite complex 

0 ~f2-1(Lr ~ ...--~P1--~Po--~0. 

So H o (X (~ = K = H2,,, - 1 (X(~ Hj (X (i)) = 0 if j + 0, 2 m i - 1. Let C = X (1) |  | 
X(")| M. Then 

Hi(C) = ~ H~, (X ~) | | H~~174 

the sum being over all indices such that i~ + ... +i ,=j .  So Hi(C) is a direct 
sum of copies of M and is completely reducible. Moreover H o (C)= K |  ~ M. 

Let s=min{deg(~ i ) - l } .  Then H i (C)=0  for 0 < j < s .  If s<=B then replace 
each (i by ( ' i=~  ~ for some ri such that deg(~)=rideg(~i )>B+ 1. In the same 
way form the complex C' beginning with the ~'s. In this case we have that 
Hi(C) = 0 for 1 < j  < S. 

Theorem 6.3. Let M be any KG-module and let B be any positive integer. There 
exists a CRH-complex C such that Ho (C)'~ M and Hi (C)= {0} for 0 <i<= B. 

Proof We proceed by induction on the composition length of M. Let N be 
a simple submodule of M. Then we have an exact sequence 0-* N--~ M 
M / N  ~O. Choose CRH-complexes C'=(C'i, c3), C"=(C'i' , c3") such that Ho(C" ) 
= M / N ,  Hj(C")={0} for O<j<B,  Ho(C' )=N,  and Hj(C')={0} for 0 < j < s + 2  
where s is the largest integer such that C~'+{0}. Let Ci=C'~GC'{ for all i. We 
shall show that there exist boundary maps d~: C~---, C~_ 1 such that the complex 
C=(Ci,  c~) is a CRH-complex satisfying the conditions of the Theorem. Let 
#~: C ' ~  Ci, v,: C~ ~ C'{ be the injection and projection homomorphisms /~(c') 
=(c', 0), vi(c', c")=c", c'sC'i, c"eC'{. Then we have the following diagram with 
exact rows and columns 

v t !  

0 ,Cb ,o 'Co ' Co ,0 

1 ~ ~' E" 

0 ' N ~M ~M/N ~0 

l l l 
0 0 0 

Since C~ is projective there exists f :  C~ ~ M with f i f  = e". So define e: Co ~ M 
by 

e,(c', c")= ee'(c') + f(c"). 

Because e', e" are onto, so is e. Moreover the diagram, with 8 filled in, is commuta- 
tive. 
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Suppose that by induction we have defined ~?i: C i ~  Ci-~ for i=  1, .. . ,  t such 
that vi- 1 Oi = 0}' vi and Oi/~i = #i -  a O'i. Then we have the following diagram 

0 

0 

t ]/ v tt 
) C t +  1 ) C t +  1 ) C t +  1 ) 0  

( l 
# v 

, c ;  , c t  , c',' , 0  

t # v tt >0 >Ct-a >Ct-1 ' Ct-1 

which is commutat ive with exact rows and columns. Note  that if t > s  then 
Cf'={O}=C~'+ 1 and we can let ~t+l=~'~+l.  So we may assume that t<s in 
which case the left hand column is exact. Now define 0:C'{+1 ~ Cf-1 by 0(c")= 
#-1~?~(0, O"(c")). Here, of course, v0(0, O"(c"))=a"O"(c")=O and hence 0 is well 
defined. Also ~'0(c")=0. So by the exactness of the left column there exists 
a homomorph i sm ~" C't'+l ~C't such that ~'~=0. Now define 0~+1: Cr ~ C t  
by #t+l (c', c")=(#'(c')-O(c'), O" c"). Then 

0~ ~ + 1 (c', c") = ~ (~' c' - ~, (c"), ~" c") = 0~ (0' c' - 0 (c"), o) + ~ (0, 9" c") 

= - (~' O (c"), o) + (o (c"), o) 

~---0. 

The fact that ~t+a makes the appropriate  diagram commute  is obvious. So 
we have that C=(Ci, ~) is a complex and that there exists an exact sequence 
of chain maps 

O-- 'C '  u >C v , C " ~ O .  

Therefore we have a long exact sequence in homology 

... --+ H~ (C") ~ H o (C') ~ Ho (C) ~ H o (C") ~ 0 

... ~ H,+ ~(C")~ H,(C')~ H, (C)~  H,(C")--* H,_I(C' ) --+ .... 

Hence H0 (C)_-__ M as desired and 

H,(C)=H,(C") for l <n<_s 

H,(C)=H,(C') for n>s. 

This proves the Theorem. 

Remarks 6.4. In the proof  of Lemma 6.2 the degrees of the cohomology classes 
fi could have been chosen so that all of the homology modules H;(C), j > 0 ,  
were simple KG-modules.  Likewise the induction step in the proof  of Theo- 
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rein 6.3 can be altered to obtain a CRH-complex with Ho(C)=M and Hi(C) 
simple for all j > 0. 

Definition 6.5. Let C be a CRH-complex. Let d(C)= ~ Dim Hi(C ). If M is 
o q  

i = l  

a KG-module let h(M)=min{d(C)} where C runs through the collection of 
all CRH-complexes with Ho (C)= M. 

Let s be the p-rank of G. By the proof of Lemma 6.2 we know that h (K)<2  s 
- 1 .  The proof that (a) implies (b) in Conjecture 5.2 would follow easily from 
the following. 

Conjecture 6.6. h(K)= 2 s -  1 where s is the p-rank of G. 

In fact the weaker conjecture h(K)> 2 ~- 1 suffices for this purpose. We may 
verify this conjecture in a few special cases. In essence the proof is very similar 
to that in [17], but the change in point of view, i.e. using projective resolutions, 
may ultimately prove useful. 

Proposition 6.7. Let G be an elementary abelian p-group of order p'. I f  n= 1 
or 2 then h ( K ) = 2 " -  1. I f  n=3 then h(K)_>_4. 

The case n = l  is obvious because any CRH-complex C with Ho(C)=K 
and d(C)= 0 would necessarily be exact in positive degrees, and hence not finite. 
To deal with the cases n = 2, 3 we need the following. 

Lemma 6.8. Let M be a KG-module and let C=(Ci, ~) be a CRH-complex with 
Ho (C)~-M. Suppose that p(i)= (pff), e~) is a minimal projective resolution of Hi (C) 
for i> 0. Then there exists a projective resolution F = (Fj, e) of M and an injective 
chain map #: C--+ F such that F,= ~ P~(~ 1@C ~. 

i > 0  

Proof. Let r be the greatest integer such that Cr4= {0}. To construct F we find 
a sequence of complexes X (r), X (r- 1), ..., X(1)= F with the following properties. 

(a) There exist injective chain maps 

C v~+~,X(r)  v~ >X(r_I)_,..._~XO)~ F 

(b) S j ( X  (~ = 0 i f j  >= i. 
(c) For each i, X~ i) = ~ pU),_j_ lw~ C~. 

j>_-i 

We may consider that C = X  (~+ 1). Assume by induction that X (t) has been 
constructed with the above properties. Then X m is exact in degree t and all 
larger degrees. Moreover X~')= Cs for s<  t because P/J)= {0} whenever l<0.  
So we have the following diagram 

0 

l 
y(,) , vm X7 ) , ~?,(C,) ,0 "'" ) ~ t + 2  "~" t + 1 ) 

1 
Ker ~3,_ 1 

... )p(~-l) ,p(,-1) ,p(~-a) ,Ht_I (M ) -  ,0 

l 
0 
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Here the two rows and the column are exact. Using standard techniques we 
may fill in the middle row with a complex j~(t-1) where Y{~-l)=Y(t)c~P(t-1) 
This is, in fact, a projective resolution of Ker  0t-1- The complex X {~- 1) is the 
splice of ~{t-  1) with the first t -  1 terms of C, at the module Ker  ? t -  ~- Then 
X(~)= F has all of the desired properties. 

Proof of Proposition 6.7. Let C be a CRH-complex  with H o ( C ) = K  and d(C) 
=h(K).  Let r be the least index such that C~# {0}. Because KG is a self-injective 
algebra we may assume that H~(C)=~{0}, since otherwise we may replace C 
by C' where C'~ = 0, C'~_ 1 = C~_ 1/~ Cr, Cj = Cj for j 4: r, r - -  1. Note  that for each 
i, H~(C) is either zero or a direct sum of copies of K. Choose a basis a0, ..., a~ 
for H.(C) so that deg(a0)=0,  deg(ai)=d~, d~=r and s=d(C). It  is possible that 
d~=dj if i#j, but the number  of elements in the set {i[di=t } is DimHt(C) .  
By Lemma 6.8, C can be embedded in a projective resolution (F, e') of K in 

such a way that F~ = P~- d~- 1 �9 C~ where (P, ~) is a minimal projective resolu- 

tion of K. Now recall that 

Dim P,, = Dim Ext~:~ (K, K). I G 

[re+n- 1\ . 

=~ n - 1  )'P 

since G is elementary abelian of order p". Since (P, ~) is minimal projective 
resolution of K, there is a surjective chain map  (F, e ' ) ~  (P, ~). In particular 
Dim Fj > Dim Pj for all j. Setting j = r + 1 we have that 

s - - 1  

(Dim F~+ a)/p" = ~ (Dim Pr-e)/P"+ 1 
i = 1  

> (Dim P~ + 1)/P". (6.9) 

Suppose that n = 2, s = 2 and dl = a. Then (6.9) says that 

1 + (Dim P~_ a)/p n = 1 + > 

or r + 2 - a  > r + 2. Since this is impossible we conclude that s ~ 3. This proves 
the case n = 2. 

Now suppose that n = 3, and s = 3. Let dl = a, d2 = b. Then (6.9) implies that  

1+~  2 [ r - a + 2 \ ) + ~ [ r - b 2 + 2 ) > ( r 2 3  ) 

or that f ( r )=2+(r-a+2)(r -a+l)+(r -b+2)(r -b+l) - ( r+3)(r+2)>O.  
Note that f(r) is a quadratic polynomial  with positive leading coefficient. It  
can be seen that f(a+b)<O and, if a>b, f ( a ) < 0 .  Since r>a we must  have 
that r > a + b. This leads to a contradiction. For  if C were a complex satisfying 
all of these conditions, then the dual complex C* =(C' ,  0") with C~= C*-i would 
also be a CRH-complex  with Ho(C*)=K. But for C*, d'~ =r--a, d ~ = r - b  and 
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d~ = r. But now d'l + d~ = ( r -  a) + ( r -  b) > r since r > a + b. Therefore s > 4 as 
required. 

7. Multiple Complexes and Minimal Resolutions 

Let Z+ denote the set of non-negative integers. In Z~ let e~=(0, ..., 1 . . . .  ,0) 
denote the vector with 1 in the ith position and zeros elsewhere. Let K be 
a field of characteristic p>0 .  Following [-1], we define an n-complex of KG- 
modules to be a pair (X, {d j}) consisting of a KG-module X =  ~ Xb and a 

b~Z n 

collection of boundary homomorphisms, d j : X - ~  X, j - -1 ,  ..., n. We assume that 

(1) dj(Xo) ~_ Xb-ej  for all b~Z"; 
(2) d~odj=O for all j;  and 
(3) dl o d~ + dj o di-- 0 for all i, j. 

This implies that if Yb,j----~ Xb+,~e~ then (Yb,j, dj) is a complex. For b 
m~Z 

=(b j, ..., b,)~Z ~, let Ibl= ~ bj. Conditions (2) and (3) guarantee that (J~, d) 
j = l  

is complex, where )~m---- ~ Xb and d-- ~ dj. We call this the total complex 
[bl=m j = l  

of (X, {dj}). In general we shall restrict ourselves to nonnegative n-complexes, 
meaning those for which X b = {0} whenever b~Z"+. 

A 1-complex (X, dl) is said to be almost periodic if there exists a positive 
integer s such that, for all but a finite number of integers i, there exist isomor- 
phisms ~i, ~Oi+ 1 such that 

dl 
X i + s +  l > X i + s  

[ 

~i + 1 [ Oi 

dl 
X i +  1 ) X i 

commutes. It is almost exact if the sequence X~+~ a~ a~ Xi , X i -  ~ is exact 
for all but a finite number of integer i. An n-complex (X, {d j}) is almost periodic 
or almost exact if for every b~Z", j - -1  . . . .  , n, the 1-subcomplex (Yb,j, dj) is 
respectively almost periodic or almost exact. An n-complex (X, {d j}) has finite 
type if there are only a finite number of isomorphism classes of modules X b 
and maps dj, b: Xb ~ Xb-~j. Finally a module M is said to have almost periodic, 
almost exact or finite n-complex type if there exists an n-complex having the 
prescribed property and whose total complex is a minimal projective resolution 
of M. 

In r l ]  Alperin asked such questions as for what groups do modules have 
bounded (dimensions of Xb'S) n-complex type. Were it not for the minimality 
requirement, Theorem 3.4 would imply that any KG-module M with cr~(M ) <__ n 
had bounded, almost periodic, almost exact, finite n-complex type. Unfortunately 
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Pl o + . - ~  Pl o ,r 

i [ 

t910 ~ 

l 
l 

P4,, ~ 

i 
P44 ~ 

PlO+----PlO ~ 

i l 
Plo' P4~.' P44' 

l l [ 
P~4, P44.---- P, *- 

i i [ 
1 I l 

Pa ' Pa4 ~ - - - -  P44 *'--'---- P1 ' 

Rio ( ~ o  < 

1 1 
1"1 , P ~ ,  , 

l 1 
1 1 
i l 
P~ , I'44 , 

+ [ 
P4.4' P~4 ' 

[ i 
1 1 

P44 ~ 

Fig. 1 

the resolutions constructed in the proof of (3.4) are seldom minimal. For example, 
if p > 2  and r = e ~ ( M ) > 2  then J ~ o ~ - M | 1 7 4  . . .  |  is the tensor product 
of M with projective covers for K. Hence J7 o is too large to be a projective 
cover for M. Consequently, the questions asked by Alperin remain, at least 
technically, unanswered. 

Using diagrammatic methods [-6], the authors have succeeded in making 
some progress on these questions for very restrictive classes of groups and mod- 
ules. We end this paper with one example in which K has characteristic 2, 
G = M l l  (the Mathieu group on 11 letters) and M =  K the trivial KG-module. 
The display in Fig. l gives the first few stages of a minimal projective resolution 
for K in the form of an almost periodic, almost exact 2-complex of finite type. 
Here the symbol P~ denotes the projective cover for the simple module of dimen- 
sion i. The 2-complex has the additional desirable feature that all of the modules 
(Xb's) are indecomposable. Such a situation is impossible to achieve in general; 
we need only consider the minimal resolution of the trivial module of the quater- 
nion group in characteristic 2 for a counterexample. Moreover each row of 
the complex is exact except at or near the end.' Away from the end each row 
is part of the minimal projective resolution of the nonsplit extension of the 
44-dimensional simple module by itself. As can be seen this module is periodic 
of period 3. The details of the calculation can be derived from [6]. 
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