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Abstract:

    The problem we study is whether the center Cn, of the division ring of n×n generic matrices

is stably rational  over the base field F.

     Procesi and Formanek [F],  have shown that Cn is stably isomorphic to the fixed field under

the action of Sn of F(Gn), the quotient field of the group algebraF[Gn] of a specific Sn-lattice

denoted by Gn.  In [B1] we showed that if p is a prime, Cp is stably isomorphic to

F(ZSp⊗ ZNGp)
Sp, where N is the normalizer of a p-Sylow subgroup of Sp. In this article we

further reduce the problem by reformulating it in terms of a lattice induced from a p-Sylow

subgroup H of Sp.  Let A be the root lattice, and let L=F(ZG/H).  We show that there exits an

element α ∈ Ext1
Sp(ZSp⊗ ZHA,L*) such that Lα(ZSp⊗ ZHA)Sp is stably isomorphic to the center of

the division ring of p×p generic matrices over F.   The extension α  corresponds to an element

of the relative Brauer group of L over LH. 1

                                                
1 2000 Mathematics Subject Classification: 13A50, 16K20, 16R30, 20C10.
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Introduction:

    The problem we study is whether the center Cn, of the division ring of n×n generic matrices is

stably rational over the base field F.  This is a major open question with connections to

important problems in other fields such as geometric invariant theory and Brauer groups.

     Given a finite group G, a ZG-lattice M, and a field F, we let F(M) denote the quotient field of

the group algebra F[M] of the abelian group M written multiplicatively.  It was shown in [F]

that Cn is stably isomorphic to F(Gn)
Sn, the fixed field under the action of Sn of F(Gn), where Gn

is a specific ZSn-lattice which we define below. If M and M’ are G-faithful ZG-lattices, their

corresponding fields F(M) and F(M’) are stably isomorphic and the isomorphism respects the

G-action, if and only if, M and M’ are in the same flasque class. Thus Cn is stably equivalent to

F(M)Sn for any ZSn-lattice in the flasque class of Gn; flasque classes of ZG-lattices are defined

in section 1.

    Let p be a prime and let N be the normalizer in Sp of a p-Sylow subgroup. In [B1] we

showed that Gp and ZSp⊗ ZNGp are in the same flasque class, which implies that Cp is stably

isomorphic to F(ZSp⊗ ZNGp)
Sp

.  In [B2], we show that the flasque class of Gp depends mostly

on the structure of Ĝp  as a Ẑ N-lattice, where Ẑ  denotes the p-adic completion of Z, and

Ĝp=Gp⊗ Ẑ .  These results together with the decomposition of Ĝp  into indecomposable Ẑ N-

modules from [B2],  are used  to find a family of ZSp-lattices whose corresponding fixed fields

are stably isomorphic to Cp, the center of the division ring of p×p generic matrices, Theorem

1.5.  This family is a subset of the flasque class of Gn.

Let G be a finite group, let M be a ZG-lattice, and let K be a field on which G acts as

automorphisms.  We denote by K(M) the quotient field of the group algebra K[M].  Given an

element α  ∈  Ext1
G(M,K*), we have an α-twisted action of G on K(M) which will be denoted

by K α(M).  α-twisted action will be defined in section 2.

In Theorem 2.1, we further reduce the problem by reformulating it in terms of a lattice

induced from a p-Sylow subgroup H of Sp.  Let A be the root lattice.  We find a field extension

L of F, on which Sp acts faithfully as F-automorphisms, and an element α  in

Ext1
Sp(ZSp⊗ ZHA,L*), such that Lα(ZSp⊗ ZHA)Sp is stably isomorphic to the center of the division

ring of p×p generic matrices over F.  Moreover LSp is stably rational over F.  The theorem says

that if Lα( ZSp⊗ ZHA)Sp is stably rational over F, then so is Cp.  Since E is quasi-permutation,

L(ZSp⊗ ZHA)Sp is rational over LSp, however there are no known analogous results for

Lα(ZSp⊗ ZHA)Sp.   
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Section 1:

Let G be a finite group.  An equivalence relation is defined in the category LG of ZG-

lattices as follows.  The ZG-lattices M and M’ are said to be equivalent if there exists

permutation modules P and P’, such that M ⊕  P ≅  M’ ⊕  P’.  The set of equivalence classes

forms an abelian monoid under the direct sum.  Lattices equivalent to 0 are said to be stably

permutation.  The equivalence class of a lattice M will be denoted by [M].

For any integer n, Hn(G,M) will denote the n-th Tate cohomology group of G with

coefficients in M. A ZG-lattices M is flasque if H-1(H,M)=0 for all subgroups H of G.  A

flasque resolution of a ZG-lattice M is a ZG-exact sequence

0 → M → P → E → 0

with P permutation, and E flasque.  It follows directly form [EM, Lemma 1.1], that any ZG-

lattice M has a flasque resolution.  The flasque class of M is [E], and will be denoted by φ(M).

By [CTS, Lemma 5, section 1], φ(M) is independent of the flasque resolution of M.  Lattices

whose flasque class is 0 are said to be quasi-permutation.  For more on flasque classes see

[CTS, section 1].

We now define the ZSn-lattice Gn mentioned in the introduction.  Let U be the ZSn-lattice with

Z-basis {ui : 1≤ i ≤ n} with Sn-action given by gui = ug(i)  for all g∈  Sn.  Let A be the root lattice,

equivalently defined by the exact sequence

0 → A → U → Z → 0

      ui → 1

Then Gn = A⊗ ZA, [F, Theorem 3].

Throughout the rest of these notes we will adopt the following notation unless otherwise

specified.

•  G = Sp, where p is a prime.

•  H = p-Sylow subgroup of G.  Thus H is cyclic of order p.

•  a will denote a primitive (p-1)st root of 1 mod p.

•  N = Normalizer of H in G.  Thus N = H  f<C,  is the semi-direct product of H by a cyclic

group C, of order p-1.  H will be generated by h, C by c, and we have chc-1 = ha.

•  Ẑ = p-adic completion of  Z.
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•  For any finite group G and any ZG-lattice M, M̂  will denote the p-adic completion of M,

and for any prime q, Mq will denote the localization of M at q.

Since  ZN/H ≅  ZC ≅  Z[x]/(xp-1 - 1) as ZN-lattices, the decomposition of Ẑ N/H into

indecomposables is given by

Ẑ N/H ≅  ⊕
=

−

k

p

0

2

 Z[x]/(x- ϑ k) ≅  ⊕
=

−

k

p

0

2

 Zk

where ϑ is a primitive (p-1st root of 1 in Ẑ  which is congruent  to a mod p, and Zk is the Ẑ N-

module  of Ẑ -rank 1 on which H acts trivially, and such that  c1=ϑk.

The restriction from G to N of U is isomorphic to ZH, and the isomorphism being ui → hi, with

c.h=ha.  Û  is an Ẑ N-indecomposable module by [CR, Theorem 19.22].  

For k=0,…,p-2, we set Uk = Û ⊗ Zk.  Since Ẑ N ≅ Ẑ N⊗ Ẑ H Ẑ H ≅  Ẑ N/H⊗ Û , we have

Ẑ N ≅  ⊕
=

−

k

p

0

2

 Uk

For k=0,…,p-2, Ak will denote the Ẑ N-lattice Ẑ H(h-1)k. Under this notation A1= Â, by [B1,

Theorem 3.2].  We also set Xk = Zk/pZk.

Lemma 1.1:

There exists a ZN-exact sequence

0 → U → Z ⊕  A* → L → 0

where L = Z/prZ for all integers r ≥ 1.

Proof:

Dualizing the defining sequence of the ZG-lattice A, we get

0 → Z → U → A* → 0

since U is permutation, and hence isomorphic to its dual. The map U → A* is the composition

of  restriction with the isomorphism from U to U*.  We denote it by Res.  The map U → Z ⊕
A* is given by ui → pr-1 + Res ui.  The result follows directly.

Theorem 1.2:

There exists a Ẑ N-exact sequence  

0 → Ẑ N → Ĝp ⊕  Â→ Z1/p
rZ1 → 0.
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Proof:

In [B2, Theorem 2.5], we show that the decomposition of Ĝp  into indecomposable Ẑ N-

modules is

Ĝp  ≅  ⊕
=

−

k

p

0

2

 k≠1 Uk ⊕  Z1.

By [B1, Theorem 3.2] Ĝp  ≅  Â*⊗ Z1.   Thus tensoring the sequence of Lemma 1.1 by Z1 we

obtain

0 → U1 → Z1 ⊕  A1 → Z1/p
rZ1 → 0

Adding  ⊕
=

−

k

p

0

2

 k≠1 Uk  to the first two terms of the sequence we get

0 → ⊕
=

−

k

p

0

2

 k≠1Uk  ⊕  U1 → ⊕
=

−

k

p

0

2

 k≠1Uk  ⊕  Z1 ⊕  A1 → Z1/p
rZ1 → 0

But Ẑ N ≅  ⊕
=

−

k

p

0

2

Uk which proves the result.

Lemma 1.3:

Let a be a primitive (p-1)st root of 1 mod p.  The map

i: ZC → ZC

    1  → c - a

is an injection of ZN-modules whose cokernel is L1 ⊕  L2, where L1 = Z1/p
rZ1 for some r ≥ 1,

and L2 is a finite cohomologically trivial ZN-module of order prime to p.

Proof:

The map i is injective since c-a is not a zero divisor, so its cokernel is finite.  A computation

shows that coker(i) is cyclic of order ap-1 -1.  Since a is a primitive (p-1)st root of 1 mod p, ap-1 -

1 is divisible by p, and the p-primary component of  coker(i) is L1.  

For primes q ≠ p we have

    i
0 → ZqC → ZqC → (L2)q → 0

Let Cq be any subgroup of N of q-power order.  We may assume that Cq is contained in C.

Thus Hm(Cq, (L2)q )= 0 for all integers m, which proves the result.

Lemma 1.4:

Let G be a finite group, and R a Dedekind domain of characteristic 0.  Suppose there exits RG-

exact sequences
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0 →V → E → L → 0

0 →V' → E’→ L → 0

where E and E’ are RG-lattices, and V and V' are RG-projectives.  Then

E  ⊕  V' ≅  E' ⊕  V.

Furthermore if G=Sn, then E and E’ are in the same flasque class.

Proof:

Consider the commutative diagram

                                                         0        0
         ↑        ↑

    0 → V →  E   → L → 0
                                                ↑        ↑        ↑
                                        0 →V →  M →  E’ → 0
                                                         ↑        ↑

                    V'→   V'
                                                         ↑        ↑

                     0       0
Since projectives are injectives in the category of RG-lattices, and since E and E’ are RG-

lattices, the middle sequences split  and we have

V ⊕  E’ ≅  V'⊕  E.

Since G=Sn and since V and V' are RG-projective, they are stably permutation by [EM,

Theorem 3.3], therefore E and E' are in the same flasque class.

Theorem 1.5:

Let p be a prime, let r be a positive integer and let  S= ZG⊗ ZN(Z1/p
rZ1).  Let

0 → ZG → M → S→ 0

be any extension of S by ZG.  Then the center of the division ring of p×p generic matrices over

an F is stably isomorphic to F(M)G.

Proof:

As above we let G=Sp, and let H be a p-Sylow subgroup of G. Let i2 be the injection of ZG/H

into ZG ≅  ZG⊗ ZHZH , defined by i2(g
_
 i ) = ∑

=

⊗
p

j

j
i hg

1

where {gi} is a transversal for H in G .

Let i1 be any injective endomorphism of ZG/H with the property that the p-primary component

of its cokernel is isomorphic to S.

Form the commutative diagram.

                                      0           0
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                                      ↓     i2     ↓
   0 → ZG/H → ZG → ZG/H⊗ A → 0              (*)

                                  i1  ↓            ↓
                           0 → ZG/H →  E → ZG/H⊗ A  → 0
                                     ↓             ↓
                             coker(i1) → coker(i)
                                     ↓             ↓
                                     0             0

The vertical middle sequence becomes

0 → ZG → E → S ⊕  S’→ 0    (1)

where S’ is finite of order prime to p.

Step 1:

We show that Ẑ G⊗ Ẑ N Ĝp ⊕  Ẑ G⊗ Ẑ N Â ≅  Ê .

Tensoring the sequence

0 → Ẑ N → Ĝp ⊕  A1  → Z1/p
rZ1 → 0

of Theorem 1.2, by Ẑ G over Ẑ N, we get

0 → Ẑ G → Ẑ G⊗ Ẑ N Ĝp ⊕  Ẑ G⊗ Ẑ N Â→ S→ 0         (2)

Tensoring sequence (1) by Ẑ , and applying Lemma 1.4 to sequences (1) and (2) we get

Ẑ G⊗ Ẑ N Ĝp ⊕  Ẑ G⊗ Ẑ N Â ⊕  Ẑ G ≅  Ê  ⊕  Ẑ G.

By the Krull-Schmit-Azumaya theorem , we have

Ẑ G⊗ Ẑ N Ĝp ⊕  Ẑ G⊗ Ẑ N Â ≅  Ê

Step 2:

We show that Gp and E are in the same flasque class.

The defining sequence of the ZG-lattice A is

0 → A → U → Z → 0

      ui →1

For all primes q≠ p, this sequence splits, with splitting map 1 → (1/p)Σui.  Thus

Uq ≅  Aq ⊕  Zq

and

Uq⊗ Aq ≅  Aq⊗ Aq ⊕  Aq

Since Gp = A⊗ A, we have

Uq⊗ Aq ≅  (Gp)q ⊕  Aq



8

As ZN-modules, U ≅  ZH ≅  ZN/C, and A≅  ZH(h-1).  We also have an isomorphism of ZC-

modules  A≅ ZC  given by hi(h-1) → ci for i=1,…,p-1.   Therefore

ZqN/C⊗ ZqC ≅   (Gp)q ⊕  Aq

which implies

ZqN ≅  (Gp)q ⊕  Aq

and

ZqG ≅   ZqG⊗ ZN(Gp ⊕  A).

On the other hand, since H is of order p, Aq is ZqH-projective for all primes q ≠ p, the horizontal

sequences in (*) split when localized at the primes q, therefore ZqG ≅  Eq.  Thus we have Eq ≅
ZqG⊗ ZN(Gp ⊕  A) for all primes q ≠ p.

From Step 1, we have Ẑ G⊗ Ẑ N Ĝp ⊕  Ẑ G⊗ Ẑ N Â ≅  Ê  which implies that

Ep ≅  ZpG⊗ ZN(Gp ⊕  A)

by [CR, Proposition 30.17].  Thus E and ZG⊗ ZN(Gp ⊕  A) are in the same genus.  By [BL,

Proposition 2.2] they are in the same flasque class, since G=Sp.  Since A is quasi-permutation,

this implies that E and ZG⊗ ZNGp  are in the same flasque class.  By [B2, Corollary 1.2] Gp and

ZG⊗ ZNGp  are in the same flasque class , thus so are E and Gp.

Step 3:

We show that Gp and M are in the same flasque class.

Since the horizontal sequences in diagram (*) split, S’ is cohomologically  trivial.  Hence there

exits a ZG-exact sequence

0 → Pr → Fr → S’ → 0            (3)

with Fr free, Pr cohomologically trivial.  By [Br, Theorem 8.10] Pr is ZG-projective, and by

[EM, Theorem 3.3], it is stably permutation.  Adding sequences (3) and the sequence from the

hypothesis of the theorem, namely

0 → ZG → M → S → 0

we get

0 → Pr ⊕  ZG → Fr ⊕  M → S’ ⊕  S → 0   (4)

Applying Lemma 1.4 to (1) and (4), we get that Fr ⊕  M and E are in the same flasque class

which implies that so are M and E, since Fr is free.  Hence Gp and M are in the same flasque

class.

By [B2, Theorem 1.1] this implies that F(Gp)
G and F(M)G  are stably isomorphic.  The result

follows by [F, Theorem 3] .
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Section 2:

Given a finite group G, and a ZG-lattice M, and a field L on which G acts as automorphisms, we

may form the field L(M), and this field has a G-action induced from the action of G on M.

However there exist other G-actions on L(M). These actions were found by Saltman, [S], and

called α-twisted actions.  They are defined as follows.

Let α ∈ Ext1
G(M, L*), where L* is the multiplicative group of L.  Let the equivalence class of

0 → L* → M’ → M → 0

in ExtG(M, L*) be α.  Writing M and M’ as multiplicative abelian groups, we have,

 M’ = { x.m: x∈ L*, m∈ M}

and the G-action on M’ is given by g∗ x.m = g(x)dg(m).gm, where d : G→HomZ(M,L*) is the

derivation corresponding to α.  In particular, for x=1, we have

g∗ m = dg(m).gm,

Thus we obtain an α-twisted action on L(M).  Denote by Lα(M) the field L(M) with the

corresponding G-action.

Definition:

Let L and K be fields and let G be a finite subgroup of their automorphisms groups.   Then L

and K are said to be isomorphic (stably isomorphic) as G-fields if they are isomorphic (stably

isomorphic) and the isomorphism respects their G-actions.

The following remark is needed in the proof of Theorem 2.1.

Remark:

Recall that N is the normalizer of a p-Sylow subgroup H of G.  Thus N = H  f<C,  is the semi-

direct product of H by a cyclic group C, of order p-1.  H is generated by h, C by c, and we have

chc-1 = ha, where a is a primitive (p-1)st root of 1 mod p.

Let nh = Σih
i be the norm of H.   The kernel of the ZH-map ZH→ ZH(h-1), multiplication by h-

1, is nhZH.  Thus A ≅  ZH(h-1) ≅  ZH/nhZH as ZH-modules.

Theorem 2.1:
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Let L = F(ZG/H). There exists an α-twisted action of G on L(ZG/H⊗ A) such that

Lα(ZG/H⊗ A)G is stably isomorphic to Cp.  The extension α  corresponds to an element of the

relative Brauer group Br(L/LH).  If  Lα(ZG/H⊗ A)G is stably rational over F, then Cp is stably

rational over F.

Proof:

 Let i1 be the map

ZG/H → ZG/H

   1 → −c a

Since ZG/H ≅  ZG⊗ ZNZC, the map i1 is the map i of Lemma 1.3 induced up to G, and thus it is

injective.  As in  Theorem 1.5, we consider the diagram  

                                      0           0
                                      ↓     i2     ↓

   0 → ZG/H → ZG → ZG/H⊗ A → 0              
                                  i1  ↓            ↓
                           0 → ZG/H →  M → ZG/H⊗ A  → 0
                                     ↓             ↓
                             coker(i1) → coker(i)
                                     ↓             ↓
                                     0             0

Let {gi} be a transversal for H in G.   Set bi = i1( gi), and as in Theorem 1.5 i2( gi) =

∑
=

⊗
p

j

j
i hg

1

.  Thus

                 M    ≅    ZG/H ⊕  ZG /{(bi , - ∑
=

⊗
p

j

j
i hg

1

)  : i=1,...(p-1)! , j= 1,…,p-1}.

From this isomorphism we obtain a G-surjection of rings

                                          F[ZG/H ⊕  ZG] → F[M].

We let yi and xij denote the elements of the Z-basis of ZG/H ⊕  ZG, corresponding to and gi⊗ hj

respectively, when ZG/H ⊕  ZG is viewed as a multiplicative abelian groups. Thus the yi and xij

are independent commuting indeterminates over F. Let mi be the monomial in the yi,
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corresponding to bi.  Then F[ZG/H ⊕  ZG]  = F[yi
±1, xij

±1], and the kernel of the above

surjection is

I = < mi∏
=

−
p

j
ijx

1

1
 -1 :  i=1,...(p-1)!>

by [P, Lemma 1.8].  Thus F[M] ≅  F[yi
±1, xij

±1]/I .  Let

yi  = yi mod I

         xij  = xij mod I for j =1,..., p - 1.

Then x m xip i ij
j

= ∏  and gy gyi i= .  The set { yi , xij  : i=1,...,(p-1)!, j=1,...,p-1} is algebraically

independent over F, since its cardinality, p!, is equal to the Krull dimension of F[M]. Thus

F(M) = F( yi , xij  ): i=1,...,(p-1)!, j=1,...,p-1).  We have a G-isomorphism

F[yi] → F[ yi ] ⊆  F[M]

  yi   → yi

Set L = F( yi ), then L ≅  F(ZG/H) and F(M) ≅  L( xij  ).

Let M* be the subgroup of F(M)* generated by L* and M. By the  remark preceding the

theorem A ≅  ZH/nhZH as a ZH-module,  hence M*/L* ≅  ZG/H⊗ A.  We have an G-exact

sequence

α: 0 →  L* → M* → ZG/H⊗ A → 0.

Clearly F(M) ≅  F(M*) = Lα(ZG/H⊗ A)as G-fields, where by F(M*) we mean the smallest

subfield of F(M) generated by F and M*.

For the next statement, α∈  Ext1
G(ZG/H⊗ A, L*) ≅  Ext1

H(A, L*) by Shapiro’s Lemma.

Taking the cohomlogy of the ZH-sequence

0 → A → ZH → Z→ 0

we have Ext1
H( A, L*) ≅  Ext2

H(Z, L*) ≅  H2(H,L*) = Br(L/LH).  

By e.g. [B1, Lemma 2.1] LG is stably rational over F since ZG/H is G-faithful permutation, and

the last statement  follows.
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