The center of the generic division ring and twisted multiplicative group actions

Esther Beneish
Department of Mathematics
Eastern Washington University
Cheney, WA 99004
email: ebeneish@mail.ewu.edu

Abstract

: The problem we study is whether the center C_{n}, of the division ring of $\mathrm{n} \times \mathrm{n}$ generic matrices is stably rational over the base field F .

Procesi and Formanek [F], have shown that C_{n} is stably isomorphic to the fixed field under the action of S_{n} of $F\left(G_{n}\right)$, the quotient field of the group algebraF[$\left.G_{n}\right]$ of a specific S_{n}-lattice denoted by G_{n}. In [B1] we showed that if p is a prime, C_{p} is stably isomorphic to $F\left(Z S_{p} \otimes_{Z N} G_{p}\right)^{S p}$, where N is the normalizer of a p-Sylow subgroup of S_{p}. In this article we further reduce the problem by reformulating it in terms of a lattice induced from a p-Sylow subgroup H of S_{p}. Let A be the root lattice, and let $L=F(Z G / H)$. We show that there exits an element $\alpha \in \operatorname{Ext}^{1}{ }_{S_{p}}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZH}} \mathrm{A}, \mathrm{L}^{*}\right)$ such that $\mathrm{L}_{\alpha}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZH}} \mathrm{A}\right)^{\mathrm{Sp}_{\mathrm{p}}}$ is stably isomorphic to the center of the division ring of $p \times p$ generic matrices over F. The extension α corresponds to an element of the relative Brauer group of L over $L^{H} .{ }^{1}$

[^0]
Introduction:

The problem we study is whether the center C_{n}, of the division ring of $\mathrm{n} \times \mathrm{n}$ generic matrices is stably rational over the base field F . This is a major open question with connections to important problems in other fields such as geometric invariant theory and Brauer groups.

Given a finite group G, a ZG-lattice M, and a field F, we let $F(M)$ denote the quotient field of the group algebra $\mathrm{F}[\mathrm{M}]$ of the abelian group M written multiplicatively. It was shown in [F] that C_{n} is stably isomorphic to $F\left(G_{n}\right)^{S n}$, the fixed field under the action of S_{n} of $F\left(G_{n}\right)$, where G_{n} is a specific ZS_{n}-lattice which we define below. If M and M^{\prime} are G-faithful ZG -lattices, their corresponding fields $\mathrm{F}(\mathrm{M})$ and $\mathrm{F}\left(\mathrm{M}^{\prime}\right)$ are stably isomorphic and the isomorphism respects the G-action, if and only if, M and M^{\prime} are in the same flasque class. Thus C_{n} is stably equivalent to $\mathrm{F}(\mathrm{M})^{\mathrm{Sn}}$ for any ZS_{n}-lattice in the flasque class of G_{n}; flasque classes of ZG -lattices are defined in section 1.

Let p be a prime and let N be the normalizer in S_{p} of a p -Sylow subgroup. In [B1] we showed that G_{p} and $Z S_{p} \otimes_{Z N} G_{p}$ are in the same flasque class, which implies that C_{p} is stably isomorphic to $\mathrm{F}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZN}} \mathrm{G}_{\mathrm{p}}\right)^{\mathrm{S}_{\mathrm{p}}}$. In [B2], we show that the flasque class of G_{p} depends mostly on the structure of \hat{G}_{p} as a \hat{Z} N-lattice, where \hat{Z} denotes the p -adic completion of Z , and $\hat{G}_{p}=\mathrm{G}_{\mathrm{p}} \otimes \hat{Z}$. These results together with the decomposition of \hat{G}_{p} into indecomposable $\hat{Z} \mathrm{~N}$ modules from [B2], are used to find a family of ZS_{p}-lattices whose corresponding fixed fields are stably isomorphic to C_{p}, the center of the division ring of $\mathrm{p} \times \mathrm{p}$ generic matrices, Theorem 1.5. This family is a subset of the flasque class of G_{n}.

Let G be a finite group, let M be a ZG -lattice, and let K be a field on which G acts as automorphisms. We denote by $\mathrm{K}(\mathrm{M})$ the quotient field of the group algebra $\mathrm{K}[\mathrm{M}]$. Given an element $\alpha \in \operatorname{Ext}^{1}{ }_{\mathrm{G}}\left(\mathrm{M}, \mathrm{K}^{*}\right)$, we have an α-twisted action of G on $\mathrm{K}(\mathrm{M})$ which will be denoted by $\mathrm{K}_{\alpha}(\mathrm{M}) . \alpha$-twisted action will be defined in section 2.

In Theorem 2.1, we further reduce the problem by reformulating it in terms of a lattice induced from a p-Sylow subgroup H of S_{p}. Let A be the root lattice. We find a field extension L of F, on which S_{p} acts faithfully as F-automorphisms, and an element α in $\operatorname{Ext}_{{ }_{\mathrm{Sp}}}^{1}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZH}} \mathrm{A}, \mathrm{L}^{*}\right)$, such that $\mathrm{L}_{\alpha}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZH}} \mathrm{A}\right)^{\mathrm{Sp}_{\mathrm{p}}}$ is stably isomorphic to the center of the division ring of $\mathrm{p} \times \mathrm{p}$ generic matrices over F . Moreover L^{Sp} is stably rational over F . The theorem says that if $L_{\alpha}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZH}} \mathrm{A}\right)^{\mathrm{Sp}}$ is stably rational over F , then so is C_{p}. Since E is quasi-permutation, $\mathrm{L}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZH}} \mathrm{A}\right)^{\mathrm{Sp}}$ is rational over L^{Sp}, however there are no known analogous results for $L_{\alpha}\left(\mathrm{ZS}_{\mathrm{p}} \otimes_{\mathrm{ZH}} \mathrm{A}\right)^{\mathrm{Sp}_{\mathrm{p}}}$.

Section 1:

Let G be a finite group. An equivalence relation is defined in the category L_{G} of $Z G-$ lattices as follows. The ZG -lattices M and M ' are said to be equivalent if there exists permutation modules P and P^{\prime}, such that $\mathrm{M} \oplus \mathrm{P} \cong \mathrm{M}^{\prime} \oplus \mathrm{P}^{\prime}$. The set of equivalence classes forms an abelian monoid under the direct sum. Lattices equivalent to 0 are said to be stably permutation. The equivalence class of a lattice M will be denoted by [M].

For any integer $n, H^{n}(G, M)$ will denote the n-th Tate cohomology group of G with coefficients in M. A ZG-lattices M is flasque if $H^{-1}(H, M)=0$ for all subgroups H of G. A flasque resolution of a ZG -lattice M is a ZG -exact sequence

$$
0 \rightarrow \mathrm{M} \rightarrow \mathrm{P} \rightarrow \mathrm{E} \rightarrow 0
$$

with P permutation, and E flasque. It follows directly form [EM, Lemma 1.1], that any ZGlattice M has a flasque resolution. The flasque class of M is [$E]$, and will be denoted by $\phi(M)$. By [CTS, Lemma 5, section 1], $\phi(\mathrm{M})$ is independent of the flasque resolution of M. Lattices whose flasque class is 0 are said to be quasi-permutation. For more on flasque classes see [CTS, section 1].

We now define the ZS_{n}-lattice G_{n} mentioned in the introduction. Let U be the ZS_{n}-lattice with Z-basis $\left\{\mathrm{u}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ with S_{n}-action given by $\mathrm{gu} \mathrm{u}_{\mathrm{i}}=\mathrm{u}_{\mathrm{g}(\mathrm{i})}$ for all $\mathrm{g} \in \mathrm{S}_{\mathrm{n}}$. Let A be the root lattice, equivalently defined by the exact sequence

$$
\begin{aligned}
0 \rightarrow \mathrm{~A} \rightarrow \mathrm{U} & \rightarrow \mathrm{Z} \rightarrow 0 \\
\mathrm{u}_{\mathrm{i}} & \rightarrow 1
\end{aligned}
$$

Then $\mathrm{G}_{\mathrm{n}}=\mathrm{A} \otimes_{\mathrm{Z}} \mathrm{A},[\mathrm{F}$, Theorem 3].

Throughout the rest of these notes we will adopt the following notation unless otherwise specified.

- $G=S_{p}$, where p is a prime.
- $\mathrm{H}=\mathrm{p}$-Sylow subgroup of G . Thus H is cyclic of order p .
- a will denote a primitive $(p-1)$ st root of $1 \bmod p$.
- $\mathrm{N}=$ Normalizer of H in G . Thus $\mathrm{N}=\mathrm{Hf}<\mathrm{C}$, is the semi-direct product of H by a cyclic group C , of order $\mathrm{p}-1 . \mathrm{H}$ will be generated by h, C by c , and we have $\mathrm{chc}^{-1}=\mathrm{h}^{\mathrm{a}}$.
- $\quad \hat{Z}=p$-adic completion of Z.
- For any finite group G and any ZG-lattice M, \hat{M} will denote the p-adic completion of M, and for any prime $\mathrm{q}, \mathrm{M}_{\mathrm{q}}$ will denote the localization of M at q .

Since $\mathrm{ZN} / \mathrm{H} \cong \mathrm{ZC} \cong \mathrm{Z}[\mathrm{x}] /\left(\mathrm{x}^{\mathrm{p}-1}-1\right)$ as ZN -lattices, the decomposition of $\hat{Z} \mathrm{~N} / \mathrm{H}$ into indecomposables is given by

$$
\hat{Z} \mathrm{~N} / \mathrm{H} \cong \underset{k=0}{p-2} \mathrm{Z}[\mathrm{x}] /\left(\mathrm{x}-\vartheta^{\mathrm{k}}\right) \cong \stackrel{p-2}{\oplus} \mathrm{C}_{k=0} \mathrm{Z}_{\mathrm{k}}
$$

where ϑ is a primitive ($\mathrm{p}-1$ st root of 1 in \hat{Z} which is congruent to a $\bmod \mathrm{p}$, and Z_{k} is the $\hat{Z} \mathrm{~N}$ module of \hat{Z}-rank 1 on which H acts trivially, and such that $\mathrm{c} 1=\vartheta^{\mathrm{k}}$.
The restriction from G to N of U is isomorphic to $Z H$, and the isomorphism being $u_{i} \rightarrow h^{i}$, with $\mathrm{c} . \mathrm{h}=\mathrm{h}^{\mathrm{a}} . \hat{U}$ is an $\hat{Z} \mathrm{~N}$-indecomposable module by [CR, Theorem 19.22].
For $\mathrm{k}=0, \ldots, \mathrm{p}-2$, we set $\mathrm{U}_{\mathrm{k}}=\hat{U} \otimes \mathrm{Z}_{\mathrm{k}}$. Since $\hat{Z} \mathrm{~N} \cong \hat{Z} \mathrm{~N} \otimes \hat{Z}_{\mathrm{H}} \hat{Z} \mathrm{H} \cong \hat{Z} \mathrm{~N} / \mathrm{H} \otimes \hat{U}$, we have

$$
\hat{Z} \mathrm{~N} \cong \underset{k=0}{\oplus-2} \mathrm{U}_{\mathrm{k}}
$$

For $\mathrm{k}=0, \ldots, \mathrm{p}-2, \mathrm{~A}_{\mathrm{k}}$ will denote the $\hat{Z} \mathrm{~N}$-lattice $\hat{Z} \mathrm{H}(\mathrm{h}-1)^{\mathrm{k}}$. Under this notation $\mathrm{A}_{1}=\hat{\mathrm{A}}$, by $[\mathrm{B} 1$, Theorem 3.2]. We also set $X_{k}=Z_{k} / p Z_{k}$.

Lemma 1.1:

There exists a ZN -exact sequence

$$
0 \rightarrow \mathrm{U} \rightarrow \mathrm{Z} \oplus \mathrm{~A}^{*} \rightarrow \mathrm{~L} \rightarrow 0
$$

where $\mathrm{L}=\mathrm{Z} / \mathrm{p} \mathrm{r}$ for all integers $\mathrm{r} \geq 1$.

Proof:

Dualizing the defining sequence of the ZG-lattice A , we get

$$
0 \rightarrow \mathrm{Z} \rightarrow \mathrm{U} \rightarrow \mathrm{~A}^{*} \rightarrow 0
$$

since U is permutation, and hence isomorphic to its dual. The map $U \rightarrow A^{*}$ is the composition of restriction with the isomorphism from U to U^{*}. We denote it by Res. The map $U \rightarrow Z \oplus$ A* is given by $u_{i} \rightarrow p^{r-1}+\operatorname{Res} u_{i}$. The result follows directly.

Theorem 1.2:

There exists a $\hat{Z} N$-exact sequence

$$
0 \rightarrow \hat{\mathrm{Z}} \mathrm{~N} \rightarrow \hat{G}_{p} \oplus \hat{\mathrm{~A}} \rightarrow \mathrm{Z}_{1} / \mathrm{p}^{\mathrm{r}} \mathrm{Z}_{1} \rightarrow 0
$$

Proof:

In [B2, Theorem 2.5], we show that the decomposition of \hat{G}_{p} into indecomposable $\hat{Z} \mathrm{~N}$ modules is

$$
\hat{G}_{p} \cong \oplus_{k=0}^{p-2}{ }_{\mathrm{k} \neq 1} \mathrm{U}_{\mathrm{k}} \oplus \mathrm{Z}_{1} .
$$

By [B1, Theorem 3.2] $\hat{G}_{p} \cong \hat{\mathrm{~A}}^{*} \otimes \mathrm{Z}_{1}$. Thus tensoring the sequence of Lemma 1.1 by Z_{1} we obtain

$$
0 \rightarrow \mathrm{U}_{1} \rightarrow \mathrm{Z}_{1} \oplus \mathrm{~A}_{1} \rightarrow \mathrm{Z}_{1} / \mathrm{p}^{\mathrm{r}} \mathrm{Z}_{1} \rightarrow 0
$$

Adding $\underset{k=0}{\oplus-2} \mathrm{E}_{\mathrm{k} \neq 1} \mathrm{U}_{\mathrm{k}}$ to the first two terms of the sequence we get

$$
0 \rightarrow \underset{k=0}{p-2} \oplus_{\mathrm{k} \neq 1} \mathrm{U}_{\mathrm{k}} \oplus \mathrm{U}_{1} \rightarrow \underset{k=0}{p-2} \oplus_{\mathrm{k} \neq 1} \mathrm{U}_{\mathrm{k}} \oplus \mathrm{Z}_{1} \oplus \mathrm{~A}_{1} \rightarrow \mathrm{Z}_{1} / \mathrm{p}^{\mathrm{r}} \mathrm{Z}_{1} \rightarrow 0
$$

But $\hat{Z} \mathrm{~N} \cong \underset{k=0}{\oplus-2} \mathrm{U}_{\mathrm{k}}$ which proves the result.

Lemma 1.3:

Let a be a primitive $(\mathrm{p}-1)$ st root of $1 \bmod \mathrm{p}$. The map

$$
\begin{aligned}
\mathrm{i}: \mathrm{ZC} & \rightarrow \mathrm{ZC} \\
1 & \rightarrow \mathrm{c}-\mathrm{a}
\end{aligned}
$$

is an injection of ZN -modules whose cokernel is $\mathrm{L}_{1} \oplus \mathrm{~L}_{2}$, where $\mathrm{L}_{1}=\mathrm{Z}_{1} / \mathrm{p}^{\mathrm{r}} \mathrm{Z}_{1}$ for some $\mathrm{r} \geq 1$, and L_{2} is a finite cohomologically trivial ZN -module of order prime to p .

Proof:

The map i is injective since $\mathrm{c}-\mathrm{a}$ is not a zero divisor, so its cokernel is finite. A computation shows that coker(i) is cyclic of order $\mathrm{a}^{\mathrm{p}-1}-1$. Since a is a primitive $(\mathrm{p}-1)$ st root of $1 \bmod \mathrm{p}, \mathrm{a}^{\mathrm{p}-1}-$ 1 is divisible by p , and the p -primary component of $\operatorname{coker}(\mathrm{i})$ is L_{1}.
For primes $\mathrm{q} \neq \mathrm{p}$ we have

$$
0 \rightarrow \mathrm{Z}_{\mathrm{q}} \mathrm{C} \xrightarrow{\mathrm{i}} \mathrm{Z}_{\mathrm{q}} \mathrm{C} \rightarrow\left(\mathrm{~L}_{2}\right)_{\mathrm{q}} \rightarrow 0
$$

Let C_{q} be any subgroup of N of q-power order. We may assume that C_{q} is contained in C . Thus $\mathrm{H}^{\mathrm{m}}\left(\mathrm{C}_{\mathrm{q}},\left(\mathrm{L}_{2}\right)_{\mathrm{q}}\right)=0$ for all integers m , which proves the result.

Lemma 1.4:

Let G be a finite group, and R a Dedekind domain of characteristic 0 . Suppose there exits RGexact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathrm{~V} \rightarrow \mathrm{E} \rightarrow \mathrm{~L} \rightarrow 0 \\
& 0 \rightarrow \mathrm{~V}^{\prime} \rightarrow \mathrm{E}^{\prime} \rightarrow \mathrm{L} \rightarrow 0
\end{aligned}
$$

where E and E^{\prime} are RG-lattices, and V and V^{\prime} are RG-projectives. Then

$$
\mathrm{E} \oplus \mathrm{~V}^{\prime} \cong \mathrm{E}^{\prime} \oplus \mathrm{V}
$$

Furthermore if $\mathrm{G}=\mathrm{S}_{\mathrm{n}}$, then E and E ' are in the same flasque class.

Proof:

Consider the commutative diagram

Since projectives are injectives in the category of RG-lattices, and since E and E' are RGlattices, the middle sequences split and we have

$$
\mathrm{V} \oplus \mathrm{E}^{\prime} \cong \mathrm{V}^{\prime} \oplus \mathrm{E} .
$$

Since $G=S_{n}$ and since V and V^{\prime} are RG-projective, they are stably permutation by [EM, Theorem 3.3], therefore E and E^{\prime} are in the same flasque class.

Theorem 1.5:

Let p be a prime, let r be a positive integer and let $\mathrm{S}=\mathrm{ZG}_{\mathrm{ZN}}\left(\mathrm{Z}_{1} / \mathrm{p}^{\mathrm{r}} \mathrm{Z}_{1}\right)$. Let

$$
0 \rightarrow \mathrm{ZG} \rightarrow \mathrm{M} \rightarrow \mathrm{~S} \rightarrow 0
$$

be any extension of S by $Z G$. Then the center of the division ring of $\mathrm{p} \times \mathrm{p}$ generic matrices over an F is stably isomorphic to $\mathrm{F}(\mathrm{M})^{\mathrm{G}}$.

Proof:

As above we let $\mathrm{G}=\mathrm{S}_{\mathrm{p}}$, and let H be a p-Sylow subgroup of G . Let i_{2} be the injection of ZG / H into $\mathrm{ZG} \cong \mathrm{ZG} \otimes_{\mathrm{ZH}} \mathrm{ZH}$, defined by $\mathrm{i}_{2}\left(\overline{\mathrm{~g}}_{\mathrm{i}}\right)=\sum_{j=1}^{p} g_{i} \otimes h^{j}$ where $\left\{\mathrm{g}_{\mathrm{i}}\right\}$ is a transversal for H in G . Let i_{1} be any injective endomorphism of ZG / H with the property that the p-primary component of its cokernel is isomorphic to S .
Form the commutative diagram.

$$
0 \quad 0
$$

$$
\begin{align*}
& \downarrow \mathrm{i}_{2} \quad \downarrow \\
& 0 \rightarrow \underset{\mathrm{i}_{1} \downarrow}{\mathrm{ZG} / \mathrm{H}} \rightarrow \underset{\downarrow}{\mathrm{ZG}} \rightarrow \mathrm{ZG} / \mathrm{H} \otimes \mathrm{~A} \rightarrow 0 \tag{*}\\
& 0 \rightarrow \underset{\downarrow}{\mathrm{ZG} / \mathrm{H}} \rightarrow \underset{\downarrow}{\mathrm{E}} \rightarrow \mathrm{ZG} / \mathrm{H} \otimes \mathrm{~A} \rightarrow 0 \\
& \underset{\downarrow}{\operatorname{coker}\left(\mathrm{i}_{1}\right)} \rightarrow \underset{\downarrow}{\text { coker }(\mathrm{i})} \\
& 0 \\
& 0
\end{align*}
$$

The vertical middle sequence becomes

$$
\begin{equation*}
0 \rightarrow \mathrm{ZG} \rightarrow \mathrm{E} \rightarrow \mathrm{~S} \oplus \mathrm{~S}^{\prime} \rightarrow 0 \tag{1}
\end{equation*}
$$

where S^{\prime} is finite of order prime to p .

Step 1:

We show that $\hat{Z} \mathrm{G}^{\otimes} \hat{Z}_{\mathrm{N}} \hat{G}_{p} \oplus \hat{Z} \mathrm{G}^{\otimes} \hat{Z}_{\mathrm{N}} \hat{\mathrm{A}} \cong \hat{E}$.
Tensoring the sequence

$$
0 \rightarrow \hat{Z} \mathrm{~N} \rightarrow \hat{G}_{p} \oplus \mathrm{~A}_{1} \rightarrow \mathrm{Z}_{1} / \mathrm{p}^{\mathrm{r}} \mathrm{Z}_{1} \rightarrow 0
$$

of Theorem 1.2, by $\hat{Z} G$ over $\hat{Z} N$, we get

$$
\begin{equation*}
0 \rightarrow \hat{Z} \mathrm{G} \rightarrow \hat{Z} \mathrm{G}^{\otimes} \hat{Z}_{\mathrm{N}} \hat{G}_{p} \oplus \hat{Z} \mathrm{G} \otimes \hat{Z}_{\mathrm{N}} \hat{\mathrm{~A}} \rightarrow \mathrm{~S} \rightarrow 0 \tag{2}
\end{equation*}
$$

Tensoring sequence (1) by \hat{Z}, and applying Lemma 1.4 to sequences (1) and (2) we get

$$
\hat{Z} \mathrm{G} \otimes \hat{Z}_{\mathrm{N}} \hat{G}_{p} \oplus \hat{Z} \mathrm{G} \otimes \hat{Z}_{\mathrm{N}} \hat{\mathrm{~A}} \oplus \hat{Z} \mathrm{G} \cong \hat{E} \oplus \hat{Z} \mathrm{G} .
$$

By the Krull-Schmit-Azumaya theorem, we have

$$
\hat{Z} \mathrm{G}^{\otimes} \hat{Z}_{\mathrm{N}} \hat{G}_{p} \oplus \hat{Z} \mathrm{G}^{\otimes} \hat{Z}_{\mathrm{N}} \hat{\mathrm{~A}} \cong \hat{E}
$$

Step 2:

We show that G_{p} and E are in the same flasque class.
The defining sequence of the ZG-lattice A is

$$
\begin{aligned}
0 \rightarrow \mathrm{~A} \rightarrow \mathrm{U} & \rightarrow \mathrm{Z} \rightarrow 0 \\
\mathrm{u}_{\mathrm{i}} & \rightarrow 1
\end{aligned}
$$

For all primes $\mathrm{q} \neq \mathrm{p}$, this sequence splits, with splitting map $1 \rightarrow(1 / \mathrm{p}) \sum \mathrm{u}_{\mathrm{i}}$. Thus

$$
\mathrm{U}_{\mathrm{q}} \cong \mathrm{~A}_{\mathrm{q}} \oplus \mathrm{Z}_{\mathrm{q}}
$$

and

$$
\mathrm{U}_{\mathrm{q}} \otimes \mathrm{~A}_{\mathrm{q}} \cong \mathrm{~A}_{\mathrm{q}} \otimes \mathrm{~A}_{\mathrm{q}} \oplus \mathrm{~A}_{\mathrm{q}}
$$

Since $G_{p}=A \otimes A$, we have

$$
\mathrm{U}_{\mathrm{q}} \otimes \mathrm{~A}_{\mathrm{q}} \cong\left(\mathrm{G}_{\mathrm{p}}\right)_{\mathrm{q}} \oplus \mathrm{~A}_{\mathrm{q}}
$$

As ZN -modules, $\mathrm{U} \cong \mathrm{ZH} \cong \mathrm{ZN} / \mathrm{C}$, and $\mathrm{A} \cong \mathrm{ZH}(\mathrm{h}-1)$. We also have an isomorphism of ZC modules $\mathrm{A} \cong \mathrm{ZC}$ given by $\mathrm{h}^{\mathrm{i}}(\mathrm{h}-1) \rightarrow \mathrm{c}^{\mathrm{i}}$ for $\mathrm{i}=1, \ldots, \mathrm{p}-1$. Therefore

$$
\mathrm{Z}_{\mathrm{q}} \mathrm{~N} / \mathrm{C} \otimes \mathrm{Z}_{\mathrm{q}} \mathrm{C} \cong\left(\mathrm{G}_{\mathrm{p}}\right)_{\mathrm{q}} \oplus \mathrm{~A}_{\mathrm{q}}
$$

which implies

$$
\mathrm{Z}_{\mathrm{q}} \mathrm{~N} \cong\left(\mathrm{G}_{\mathrm{p}}\right)_{\mathrm{q}} \oplus \mathrm{~A}_{\mathrm{q}}
$$

and

$$
\mathrm{Z}_{\mathrm{q}} \mathrm{G} \cong \mathrm{Z}_{\mathrm{q}} \mathrm{G} \otimes_{\mathrm{ZN}}\left(\mathrm{G}_{\mathrm{p}} \oplus \mathrm{~A}\right)
$$

On the other hand, since H is of order p, A_{q} is $Z_{q} H$-projective for all primes $q \neq p$, the horizontal sequences in $\left(^{*}\right)$ split when localized at the primes q, therefore $Z_{q} G \cong E_{q}$. Thus we have $E_{q} \cong$ $\mathrm{Z}_{\mathrm{q}} \mathrm{G} \otimes_{\mathrm{ZN}}\left(\mathrm{G}_{\mathrm{p}} \oplus \mathrm{A}\right)$ for all primes $\mathrm{q} \neq \mathrm{p}$.
From Step 1, we have $\hat{Z} \mathrm{G}^{\otimes} \hat{Z}_{\mathrm{N}} \hat{G}_{p} \oplus \hat{Z} \mathrm{G}^{\otimes} \hat{Z}_{\mathrm{N}} \hat{A} \cong \hat{E}$ which implies that

$$
\mathrm{E}_{\mathrm{p}} \cong \mathrm{Z}_{\mathrm{p}} \mathrm{G} \otimes_{\mathrm{ZN}}\left(\mathrm{G}_{\mathrm{p}} \oplus \mathrm{~A}\right)
$$

by [CR, Proposition 30.17]. Thus E and $\mathrm{ZG}_{\mathrm{ZN}}\left(\mathrm{G}_{\mathrm{p}} \oplus \mathrm{A}\right)$ are in the same genus. By [BL, Proposition 2.2] they are in the same flasque class, since $G=S_{p}$. Since A is quasi-permutation, this implies that E and $\mathrm{ZG}_{\mathrm{ZN}} \mathrm{G}_{\mathrm{p}}$ are in the same flasque class. By [B2, Corollary 1.2] G_{p} and $Z G \otimes_{Z N} G_{p}$ are in the same flasque class , thus so are E and G_{p}.

Step 3:

We show that G_{p} and M are in the same flasque class.
Since the horizontal sequences in diagram $\left(^{*}\right)$ split, S^{\prime} is cohomologically trivial. Hence there exits a ZG-exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{Pr} \rightarrow \mathrm{Fr} \rightarrow \mathrm{~S}^{\prime} \rightarrow 0 \tag{3}
\end{equation*}
$$

with Fr free, Pr cohomologically trivial. By [Br, Theorem 8.10] Pr is ZG-projective, and by [EM, Theorem 3.3], it is stably permutation. Adding sequences (3) and the sequence from the hypothesis of the theorem, namely

$$
0 \rightarrow \mathrm{ZG} \rightarrow \mathrm{M} \rightarrow \mathrm{~S} \rightarrow 0
$$

we get

$$
\begin{equation*}
0 \rightarrow \operatorname{Pr} \oplus \mathrm{ZG} \rightarrow \mathrm{Fr} \oplus \mathrm{M} \rightarrow \mathrm{~S}^{\prime} \oplus \mathrm{S} \rightarrow 0 \tag{4}
\end{equation*}
$$

Applying Lemma 1.4 to (1) and (4), we get that $\mathrm{Fr} \oplus \mathrm{M}$ and E are in the same flasque class which implies that so are M and E, since $F r$ is free. Hence G_{p} and M are in the same flasque class.

By $\left[B 2\right.$, Theorem 1.1] this implies that $F\left(G_{p}\right)^{G}$ and $F(M)^{G}$ are stably isomorphic. The result follows by [F, Theorem 3] .

Section 2:

Given a finite group G , and a ZG-lattice M , and a field L on which G acts as automorphisms, we may form the field $L(M)$, and this field has a G-action induced from the action of G on M. However there exist other G-actions on $L(M)$. These actions were found by Saltman, [S], and called α-twisted actions. They are defined as follows.
Let $\alpha \in \operatorname{Ext}^{1}{ }_{\mathrm{G}}\left(\mathrm{M}, \mathrm{L}^{*}\right)$, where L^{*} is the multiplicative group of L . Let the equivalence class of

$$
0 \rightarrow \mathrm{~L}^{*} \rightarrow \mathrm{M}^{\prime} \rightarrow \mathrm{M} \rightarrow 0
$$

in $\operatorname{Ext}_{G}\left(M, L^{*}\right)$ be α. Writing M and M^{\prime} as multiplicative abelian groups, we have,

$$
M^{\prime}=\left\{x . m: x \in L^{*}, m \in M\right\}
$$

and the G-action on M^{\prime} is given by $g * x \cdot m=g(x) d_{g}(m) . g m$, where $d: G \rightarrow \operatorname{Hom}_{z}\left(M, L^{*}\right)$ is the derivation corresponding to α. In particular, for $\mathrm{x}=1$, we have

$$
\mathrm{g} * \mathrm{~m}=\mathrm{d}_{\mathrm{g}}(\mathrm{~m}) . \mathrm{gm},
$$

Thus we obtain an α-twisted action on $L(M)$. Denote by $L_{\alpha}(M)$ the field $L(M)$ with the corresponding G-action.

Definition:

Let L and K be fields and let G be a finite subgroup of their automorphisms groups. Then L and K are said to be isomorphic (stably isomorphic) as G-fields if they are isomorphic (stably isomorphic) and the isomorphism respects their G-actions.

The following remark is needed in the proof of Theorem 2.1.

Remark:

Recall that N is the normalizer of a p-Sylow subgroup H of G . Thus $\mathrm{N}=\mathrm{Hf}<\mathrm{C}$, is the semidirect product of H by a cyclic group C , of order $\mathrm{p}-1$. H is generated by h, C by c , and we have $\mathrm{chc}^{-1}=\mathrm{h}^{\mathrm{a}}$, where a is a primitive $(\mathrm{p}-1)$ st root of $1 \bmod \mathrm{p}$.
Let $\mathrm{n}_{\mathrm{h}}=\Sigma_{\mathrm{i}} \mathrm{h}^{\mathrm{i}}$ be the norm of H . The kernel of the ZH -map $\mathrm{ZH} \rightarrow \mathrm{ZH}(\mathrm{h}-1)$, multiplication by $\mathrm{h}-$ 1 , is $n_{h} Z H$. Thus $\mathrm{A} \cong \mathrm{ZH}(\mathrm{h}-1) \cong \mathrm{ZH} / \mathrm{n}_{\mathrm{h}} \mathrm{ZH}$ as ZH -modules.

Theorem 2.1:

Let $\mathrm{L}=\mathrm{F}(\mathrm{ZG} / \mathrm{H})$. There exists an α-twisted action of G on $\mathrm{L}(\mathrm{ZG} / \mathrm{H} \otimes \mathrm{A})$ such that $L_{\alpha}(Z G / H \otimes A)^{G}$ is stably isomorphic to C_{p}. The extension α corresponds to an element of the relative Brauer group $\operatorname{Br}\left(L^{\prime} / L^{H}\right)$. If $L_{\alpha}(Z G / H \otimes A)^{G}$ is stably rational over F, then C_{p} is stably rational over F .

Proof:

Let i_{1} be the map

$$
\begin{gathered}
\mathrm{ZG} / \mathrm{H} \rightarrow \mathrm{ZG} / \mathrm{H} \\
\overline{1} \rightarrow \bar{c}-\bar{a}
\end{gathered}
$$

Since $\mathrm{ZG} / \mathrm{H} \cong \mathrm{ZG} \otimes_{\mathrm{ZN}} \mathrm{ZC}$, the map i_{1} is the map i of Lemma 1.3 induced up to G, and thus it is injective. As in Theorem 1.5, we consider the diagram

Let $\left\{\mathrm{g}_{\mathrm{i}}\right\}$ be a transversal for H in G. Set $\mathrm{b}_{\mathrm{i}}=\mathrm{i}_{1}\left(\bar{g}_{i}\right)$, and as in Theorem $1.5 \mathrm{i}_{2}\left(\bar{g}_{i}\right)=$ $\sum_{j=1}^{p} g_{i} \otimes h^{j}$. Thus

$$
\mathrm{M} \cong \mathrm{ZG} / \mathrm{H} \oplus \mathrm{ZG} /\left\{\left(\mathrm{b}_{\mathrm{i}},-\sum_{j=1}^{p} g_{i} \otimes h^{j}\right): \mathrm{i}=1, \ldots(\mathrm{p}-1)!, \mathrm{j}=1, \ldots, \mathrm{p}-1\right\}
$$

From this isomorphism we obtain a G-surjection of rings

$$
\mathrm{F}[\mathrm{ZG} / \mathrm{H} \oplus \mathrm{ZG}] \rightarrow \mathrm{F}[\mathrm{M}] .
$$

We let y_{i} and $x_{i j}$ denote the elements of the Z-basis of $Z G / H \oplus Z G$, corresponding to and $g_{i} \otimes h^{j}$ respectively, when $Z G / H \oplus Z G$ is viewed as a multiplicative abelian groups. Thus the y_{i} and $x_{i j}$ are independent commuting indeterminates over F. Let m_{i} be the monomial in the y_{i},
corresponding to b_{i}. Then $\mathrm{F}[\mathrm{ZG} / \mathrm{H} \oplus \mathrm{ZG}]=\mathrm{F}\left[\mathrm{y}_{\mathrm{i}}{ }^{ \pm 1}, \mathrm{x}_{\mathrm{ij}}^{ \pm 1}\right]$, and the kernel of the above surjection is

$$
\mathrm{I}=\left\langle\mathrm{m}_{\mathrm{i}} \prod_{j=1}^{p} x_{i j}^{-1} \quad-1: \mathrm{i}=1, \ldots(\mathrm{p}-1)!\right\rangle
$$

by $\left[\mathrm{P}\right.$, Lemma 1.8]. Thus $\mathrm{F}[\mathrm{M}] \cong \mathrm{F}\left[\mathrm{y}_{\mathrm{i}}^{ \pm 1}, \mathrm{x}_{\mathrm{ij}}{ }^{ \pm 1}\right] / \mathrm{I}$. Let

$$
\begin{aligned}
& \quad \bar{y}_{i}=\mathrm{y}_{\mathrm{i}} \bmod \mathrm{I} \\
& \bar{x}_{i j}=\mathrm{x}_{\mathrm{ij}} \bmod \mathrm{I} \text { for } \mathrm{j}=1, \ldots, \mathrm{p}-1 .
\end{aligned}
$$

Then $\bar{x}_{i p}=\bar{m}_{i} \prod_{j} \bar{x}_{i j}$ and $g \bar{y}_{i}=\overline{g y}_{i}$. The set $\left\{\bar{y}_{i}, \bar{x}_{i j}: \mathrm{i}=1, \ldots,(\mathrm{p}-1)!, \mathrm{j}=1, \ldots, \mathrm{p}-1\right\}$ is algebraically independent over F , since its cardinality, p !, is equal to the Krull dimension of $\mathrm{F}[\mathrm{M}]$. Thus $\left.\mathrm{F}(\mathrm{M})=\mathrm{F}\left(\bar{y}_{i}, \bar{x}_{i j}\right): \mathrm{i}=1, \ldots,(\mathrm{p}-1)!, \mathrm{j}=1, \ldots, \mathrm{p}-1\right)$. We have a G-isomorphism

$$
\begin{aligned}
\mathrm{F}\left[\mathrm{y}_{\mathrm{i}}\right] & \rightarrow \mathrm{F}\left[\bar{y}_{i}\right] \subseteq \mathrm{F}[\mathrm{M}] \\
\mathrm{y}_{\mathrm{i}} & \rightarrow \bar{y}_{i}
\end{aligned}
$$

Set $\mathrm{L}=\mathrm{F}\left(\bar{y}_{i}\right)$, then $\mathrm{L} \cong \mathrm{F}(\mathrm{ZG} / \mathrm{H})$ and $\mathrm{F}(\mathrm{M}) \cong \mathrm{L}\left(\bar{x}_{i j}\right)$.
Let M^{*} be the subgroup of $\mathrm{F}(\mathrm{M})^{*}$ generated by L^{*} and M . By the remark preceding the theorem $\mathrm{A} \cong \mathrm{ZH} / \mathrm{n}_{\mathrm{h}} \mathrm{ZH}$ as a ZH -module, hence $\mathrm{M}^{*} / \mathrm{L}^{*} \cong \mathrm{ZG} / \mathrm{H} \otimes \mathrm{A}$. We have an G-exact sequence

$$
\alpha: \quad 0 \rightarrow \mathrm{~L}^{*} \rightarrow \mathrm{M}^{*} \rightarrow \mathrm{ZG} / \mathrm{H} \otimes \mathrm{~A} \rightarrow 0 .
$$

Clearly $\mathrm{F}(\mathrm{M}) \cong \mathrm{F}\left(\mathrm{M}^{*}\right)=\mathrm{L}_{\alpha}(\mathrm{ZG} / \mathrm{H} \otimes \mathrm{A})$ as G-fields, where by $\mathrm{F}\left(\mathrm{M}^{*}\right)$ we mean the smallest subfield of $F(M)$ generated by F and M^{*}.
For the next statement, $\alpha \in \operatorname{Ext}^{1}{ }_{G}\left(Z G / H \otimes A, L^{*}\right) \cong \operatorname{Ext}^{1}{ }_{H}\left(A, L^{*}\right)$ by Shapiro's Lemma.
Taking the cohomlogy of the ZH -sequence

$$
0 \rightarrow \mathrm{~A} \rightarrow \mathrm{ZH} \rightarrow \mathrm{Z} \rightarrow 0
$$

we have $\operatorname{Ext}^{1}{ }_{H}\left(\mathrm{~A}, \mathrm{~L}^{*}\right) \cong \operatorname{Ext}^{2}\left(\mathrm{Z}, \mathrm{L}^{*}\right) \cong \mathrm{H}^{2}\left(\mathrm{H}, \mathrm{L}^{*}\right)=\mathrm{Br}\left(\mathrm{L} / \mathrm{L}^{\mathrm{H}}\right)$.
By e.g. [B1, Lemma 2.1] L^{G} is stably rational over F since $Z G / H$ is G-faithful permutation, and the last statement follows.

References

[BL] C. Bessenrodt and L. Lebruyn, Stable rationality of cetain $\mathrm{PGL}_{\mathrm{n}}$ - quotients, Inventiones Mathematica 104 (1991), 179-199.
[B1] E. Beneish, Induction Theorems on the center of the ring of generic matrices, Transactions of the AMS, 350(1998), no. 9, 3571-3585.
[B2] E. Beneish, Monomial actions of the symmetric group, preprint.
[Br] K Brown, Cohomology of groups, Springer-Verlag, New York, 1982.
[CR] Curtis and Reiner, Methods of Representation Theory, vol 1, Wiley, New York, 1981.
[CTS] J-L Colliot-Thelene et J-P Sansuc, La R-equivalence sur les Tores, Ann. Sci. Ecole Normale Sup. (4) 10 (1977). 175-230.
[EM] S. Endo and T. Miyata, On the projective class group of finite groups, Osaka J. Math, 13 (1976), 109-122.
[F] E. Formanek, The Center of the ring of 3×3 generic matrices, Linear Multilinear Algebra 7, (1979), 203-212.
[P] D. Passman, The Algebraic Structure of Rings, Wiley, New York, 1977.
[S] D. Saltman, Twisted multiplicative invariants, Noether's problem and Galois extensions, J. of Algebra, 131, (1990), Vol 2, 535-558.

[^0]: ${ }^{1} 2000$ Mathematics Subject Classification: 13A50, 16K20, 16R30, 20 C 10.

