STABLE RATIONALITY OF CERTAIN INVARIANT FIELDS

Esther Beneish
Eastern Washington University
Department of Mathematics
Cheney, WA 99004
email: ebeneish@mail.ewu.edu

Abstract

: Let F be a field. For a finite group G , let $\mathrm{F}(\mathrm{G})$ be the purely transcendental extension of F with transcendency basis $\left\{x_{g}: g \in G\right\}$. Let $F(G)^{G}$ denote the fixed field of $F(G)$ under the action of G. Let w be a primitive ($\mathrm{p}-1$)st root of 1 , and let I be the ideal ($\mathrm{p}, \mathrm{w}-\mathrm{a}$) in $\mathrm{Z}[\mathrm{w}]$ where a is a primitive $(p-1)$ st root of $1 \bmod p$. We show that if G be the semi-direct product of a cyclic group of order p by a cyclic group of order prime to p, if I is principal, and if F contains a primitive pth root of 1 , then $\mathrm{F}(\mathrm{G})^{\mathrm{G}}$ is stably rational over F . It is not known whether the set of primes p for which I is principal is finite or infinite. We also show that if p is an odd prime and G is a non abelian group of order p^{3}, then $F(G){ }^{G}$ is stably rational over F provided that F contains a primitive p^{2}-th root of $1 .{ }^{1}$

[^0]
Introduction:

Let F be a field, let G be a finite group G, and let $F(G)$ denote the purely transcendental extension of F with transcendency basis $\{x g: g \in G\}$. Let $F(G){ }^{G}$ denote the fixed field of $\mathrm{F}(\mathrm{G})$ under the action of G . The question asked by Emmy Noether was: For which F and G is $F(G)^{G}$ rational over F ? This question has been answered in various cases. If G is abelian of exponent n and F contains a primitive nth root of 1, then Fischer, [F], showed that $F(G)^{G}$ is rational over F. In [SR], Swan constructed the first example for which $\mathrm{F}(\mathrm{G})^{\mathrm{G}}$ is not rational over F , namely when G is the cyclic group of order 47 and F is the field of rational numbers. Endo, Miyata, Lenstra and Voskresenskii have classified the abelian groups G and fields F for which $F(G)^{G}$ is rational over F, [EM1], [L], [V]. In [SD], Saltman constructs p-groups G, such that $F(G)^{G}$ is not rational over F, where F is an algebraically closed field of characteristic prime to p. In [H], Hajja has shown that if F is an algebraically closed field of characteristic 0 , and if G has an abelian normal subgroup N such that G / N is cyclic of order n and the nth cyclotomic field has class number 0 , then $\mathrm{F}(\mathrm{G})^{\mathrm{G}}$ is rational over F .

Let p be a prime, and let F be a field. Let G be the semi-direct product of a cyclic group of order p by a cyclic group of order prime to p . Let w be a primitive ($\mathrm{p}-1$)st root of 1 , and let I be the ideal $(p, w-a)$ in $Z[w]$ where a is a primitive $(p-1)$ st root of $1 \bmod p$. We show that if I is principal, and if F contains a primitive pth root of 1 , then $F(G)^{G}$ is stably rational over F , Theorem 1.4. It is not known whether the set of primes p for which I is principal is finite or infinite, however it was proved in [L, Corollary 7.6] that it has Dirichlet density 0 . We also show that if p is an odd prime and G is a non abelian group of order p^{3}, then $F(G)^{G}$ is stably rational over F, provided that F contains a primitive p^{2}-th root of 1 , Theorem 2.3. Some of these groups arose in our study of the stable rationality of the center of the division ring of generic matrices.

Section 1:

Let G be a finite group and let M be a ZG-lattice. We will denote by $F(M)$ the quotient field of the group algebra, $\mathrm{F}[\mathrm{M}]$, of the abelian group M written multiplicatively. Under this notation $F(G)$ is $F(Z G)$.

Definition:

Let G be a finite group. A ZG-lattice M is said to be permutation if there exists a Z-basis for M which is permuted by G. A ZG-module is said to be invertible if it is a direct summand of a permutation module. A ZG-module M is said to be stably permutation, if there exist permutation modules P and P^{\prime} such that $\mathrm{M} \oplus \mathrm{P} \cong \mathrm{P}^{\prime}$.

Definition:

Let L and K be fields on which a finite group G acts. We say that L and K are isomorphic (stably isomorphic) as G-fields if they are isomorphic (stably isomorphic) and the isomorphism respect their G-actions.

Notation:

Throughout this article we will use the following notation unless otherwise specified.

- F will be a field.
- $\mathrm{w}=$ primitive $(\mathrm{p}-1)$ st root of 1 .
- $\mathrm{a}=$ primitive $(\mathrm{p}-1)$ st root of $1 \bmod \mathrm{p}$.
- I = ideal ($p, w-a$) in $Z[w]$.
- $S=$ set of primes p for which I is principal.
- For any finite group G and any ZG-lattice M, \hat{M} will denote the p -adic completion of M , and for any prime $\mathrm{q}, \mathrm{M}_{\mathrm{q}}$ will denote the localization of M at q .
- $\mathrm{H}=$ cyclic group of order p .
- $\mathrm{C}=$ cyclic group of order prime to p .
- H will be generated by h and C by c .
- $\mathrm{G}=\mathrm{H} \succ \triangleleft \mathrm{C}$ will be the semi-direct product of H by C .

The following lemma has been proved in the literature in different forms, we include it for the reader's convenience.

Lemma 1.1:

Let G be a finite group, and let V be a finitely generated G-faithful FG-module. Let $\mathrm{F}_{+}(\mathrm{V})$ denote the function field of the symmetric algebra of V . Then for any G-faithful ZG-permutation lattice $\mathrm{P}, \mathrm{F}_{+}(\mathrm{V})$ and $\mathrm{F}(\mathrm{P})$ are stably isomorphic as G-fields.

Proof:

Let V_{1} be the vector space $\mathrm{FP}=\mathrm{F} \otimes_{\mathrm{Z}} \mathrm{P}$. Then $\mathrm{F}(\mathrm{P}) \cong \mathrm{F}_{+}\left(\mathrm{V}_{1}\right)$. Set $\mathrm{L}=\mathrm{F}_{+}(\mathrm{V})$ and $\mathrm{L}_{1}=$ $\mathrm{F}_{+}\left(\mathrm{V}_{1}\right)$. Then $\mathrm{F}_{+}\left(\mathrm{V} \oplus \mathrm{V}_{1}\right) \cong \mathrm{L}_{+}\left(\mathrm{LV}_{1}\right) \cong \mathrm{L}_{1+}\left(\mathrm{L}_{1} \mathrm{~V}\right)$. By Speizer's Lemma, see e.g. [W], $L V_{1}{ }^{G}$ contains an L-basis for $L V_{1}$, say $\left\{y_{1}, \ldots, y_{r}\right\}$, and $L_{1} V^{G}$ contains an L_{1}-basis for $L_{1} V$, say $\left\{\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{t}}\right\}$. Thus

$$
\mathrm{F}_{+}\left(\mathrm{V} \oplus \mathrm{~V}_{1}\right) \cong \mathrm{L}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{r}}\right) \cong \mathrm{L}_{1}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{t}}\right),
$$

hence

$$
F_{+}(V)\left(y_{1}, \ldots, y_{r}\right) \cong F(P)\left(z_{1}, \ldots, z_{t}\right)
$$

and so $\mathrm{F}(\mathrm{P})$ and $\mathrm{F}_{+}(\mathrm{V})$ are stably isomorphic.

Remark:

Let $\mathrm{G}=\mathrm{H} \succ \triangleleft \mathrm{C}$ be as defined above, and assume that $\mathrm{C}=\mathrm{Aut}(\mathrm{H})$ so its order is $\mathrm{p}-1$. Since $Z G / H \cong Z C \cong Z[x] /\left(x^{p-1}-1\right)$ as ZG-lattices, the decomposition of $\hat{Z} G / H$ into indecomposables is given by

$$
\hat{Z} \mathrm{G} / \mathrm{H} \cong \oplus_{\mathrm{k}=1, \ldots, \mathrm{p}-\mathrm{Z}} \mathrm{Z}[\mathrm{x}] /\left(\mathrm{x}-\theta^{\mathrm{k}}\right) \cong \oplus_{\mathrm{k}=1, \ldots, \mathrm{p}-\mathrm{Z}} \mathrm{Z}_{\mathrm{k}}
$$

where θ is a primitive $(\mathrm{p}-1)$ st root of 1 in \hat{Z} which is congruent to a $\bmod \mathrm{p}$, and Z_{k} is the trivial \hat{Z} G-module of \hat{Z}-rank 1 with trivial H action, and such that $\mathrm{c} 1=\theta^{\mathrm{k}}$. We set $\mathrm{X}_{\mathrm{k}}=\mathrm{Z}_{\mathrm{k}} / \mathrm{p} \mathrm{Z}_{\mathrm{k}}$, so $\mathrm{X}_{\mathrm{p}-1}=\mathrm{X}$ the trivial $\hat{Z} \mathrm{G}$-module of p elements.

We also have $\mathrm{ZG} / \mathrm{C} \cong \mathrm{ZH}$ where the H -action on ZH is the obvious one and the C -action is given by $\mathrm{ch}=\mathrm{h}^{\mathrm{a}}$. We will denote by A and A^{\prime} the ZG -lattices $\mathrm{ZH}(\mathrm{h}-1)$ and $\mathrm{ZH}(\mathrm{h}-1)^{2}$ respectively.

Proposition 1.2:

Let $\mathrm{G}=\mathrm{H} \succ \triangleleft \mathrm{C}$ be the semi-direct product of a group H of order p by a cyclic group C equal to $\operatorname{Aut}(\mathrm{H})$. The $Z G$-lattice A is $Z C$-free, and if $p \in S$, then the $Z G$-lattice A^{\prime} is stably permutation as a ZC-lattice.

Proof:

As above we let h generate H and c generate C. A Z-basis for $A=Z H(h-1)$ is $\left\{h^{i}-1\right.$: $\mathrm{i}=1, \ldots, \mathrm{p}-1\}$, and we have $\mathrm{c}\left(\mathrm{h}^{\mathrm{i}}-1\right)=\mathrm{h}^{\text {ai }}-1$. Thus C permutes the basis elements, and there is a ZC-isomorphism from A to ZC given by $(\mathrm{h}-1) \rightarrow \mathrm{c}$. Now there exists a ZG-exact sequence

$$
0 \rightarrow \mathrm{~A}^{\prime} \rightarrow \mathrm{A} \rightarrow \mathrm{X}_{1} \rightarrow 0
$$

with the map $\mathrm{A}=\mathrm{ZH}(\mathrm{h}-1) \rightarrow \mathrm{X}_{1}$ given by $\mathrm{h}^{\mathrm{i}}(\mathrm{h}-1) \rightarrow 1$.
Since X_{1} is of order p, its localization of at any prime $q \neq p$ is 0 , thus $A^{\prime}{ }_{q} \cong A_{q}$. Therefore A' is ZC-cohomologically trivial. By [BK, Theorem 8.10, Chapter VI], this implies that A^{\prime} is ZC -projective.

Let I be the ideal ($\mathrm{p}, \mathrm{w}-\mathrm{a}$) in $\mathrm{Z}[\mathrm{w}]$, as defined. Since $\mathrm{Z}[\mathrm{w}] \cong \mathrm{Z}[\mathrm{x}] /(\phi(\mathrm{x})$) where $\phi(\mathrm{x})$ is the (p-1)st cyclotomic polynomial, there exist a ring map $\mathrm{ZC} \rightarrow \mathrm{Z}[\mathrm{w}]$ given by $1_{\mathrm{ZC}} \rightarrow 1_{\mathrm{Z}[\mathrm{w}]}$. Thus $\mathrm{Z}[\mathrm{w}]$ is a ZC -module where c acts by multiplication by w. Futhermore the map of ZC-modules $\mathrm{Z}[\mathrm{w}] \rightarrow \mathrm{X}_{1}$ has kernel I. We have the following commutative diagram of ZC-modules.

$$
\begin{aligned}
& 0 \rightarrow \underset{\uparrow}{\mathrm{~A}^{\prime}} \rightarrow \underset{\uparrow}{\stackrel{0}{\uparrow}} \stackrel{0}{\uparrow} \underset{\uparrow}{\mathrm{~A}}{ }_{\mathrm{X}} \mathrm{X} \rightarrow 0 \\
& 0 \rightarrow \mathrm{~A}^{\prime} \rightarrow \underset{\uparrow}{\mathrm{M}} \rightarrow \underset{\uparrow}{\mathrm{Z}}[\mathrm{w}] \rightarrow 0 \\
& \uparrow \quad \begin{array}{ll}
\text { I } \\
\uparrow
\end{array} \\
& 0 \quad 0
\end{aligned}
$$

where M is the pullback of the maps $\mathrm{A} \rightarrow \mathrm{X}_{1}$ and $\mathrm{Z}[\mathrm{w}] \rightarrow \mathrm{X}_{1}$.

For a ZC-lattice E, let $\mathrm{E}^{*}=\operatorname{Hom}_{\mathrm{Z}}(\mathrm{E}, \mathrm{Z})$ be its dual. Since A^{\prime} is ZC -projective, so is A^{*}, therefore $\mathrm{M}^{*} \cong \mathrm{~A}^{\prime} * \oplus \mathrm{Z}[\mathrm{w}]^{*}$, and we have

$$
\mathrm{M} \cong \mathrm{~A}^{\prime} \oplus \mathrm{Z}[\mathrm{w}] \cong \mathrm{A} \oplus \mathrm{I} \cong \mathrm{ZC} \oplus \mathrm{I} .
$$

If $\mathrm{p} \in \mathrm{S}$, I is principal, and therefore it is isomorphic to $\mathrm{Z}[\mathrm{w}]$ as a ZC -module. By [EM3, Theorem 4.2], this implies that A^{\prime} is stably permutation as a ZC-lattice.

Theorem 1.3:

Let p be a prime in S . Let $\mathrm{G}=\mathrm{H} \succ \triangleleft \mathrm{C}^{\prime}$ be the semi-direct product of a group H of order p by a cyclic group C^{\prime} contained in $\operatorname{Aut}(\mathrm{H})$. Then $\mathrm{F}(\mathrm{G})^{\mathrm{G}}$ is stably rational over F provided that F contains a primitive pth root of 1 .

Proof:

Let $\mathrm{C}=\operatorname{Aut}(\mathrm{H})$, so C is of order $\mathrm{p}-1$. Consider the ZC-exact sequence of Proposition 1.2, namely

$$
0 \rightarrow \mathrm{~A}^{\prime} \rightarrow \mathrm{A} \rightarrow \mathrm{X}_{1} \rightarrow 0
$$

Restricting to C , and using the fact that $\mathrm{A} \cong \mathrm{ZC}$ by Proposition 1.2 , we get the ZC sequence

$$
0 \rightarrow \mathrm{~A}^{\prime} \rightarrow \mathrm{ZC} \rightarrow \mathrm{X}_{1} \rightarrow 0
$$

Let F^{*} be the multiplicatice group of F , and let $\mathrm{Y}=\operatorname{Hom}\left(\mathrm{X}_{1}, \mathrm{~F}^{*}\right)$ be the character group of X_{1}. By Galois theory there is a linear action of $\mathrm{Y} \succ \triangleleft \mathrm{C}$ on $\mathrm{F}(\mathrm{ZC})$ such that

$$
\mathrm{F}(\mathrm{ZC})^{\mathrm{Y}} \succ \triangleleft \mathrm{C} \cong \mathrm{~F}\left(\mathrm{~A}^{\prime}\right)^{\mathrm{C}}
$$

and for any subgroup K of C

$$
\mathrm{F}(\mathrm{ZC})^{\mathrm{Y}} \succ \triangleleft \mathrm{~K} \cong \mathrm{~F}\left(\mathrm{~A}^{\prime}\right)^{\mathrm{K}}
$$

In particular

$$
\mathrm{F}(\mathrm{ZC})^{\mathrm{Y}} \succ \triangleleft \mathrm{C}^{\prime} \cong \mathrm{F}\left(\mathrm{~A}^{\prime}\right)^{\mathrm{C}^{\prime}}
$$

Now as a group $\mathrm{G} \cong \mathrm{Y} \succ \triangleleft \mathrm{C}^{\prime}$. Let V the FG -module with F-basis $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}-1}\right\}$ where G acts on x_{i} as on c^{i} for $\mathrm{i}=1, \ldots, \mathrm{p}-1$. Then V is G -faithful and $\mathrm{F}(\mathrm{ZC}) \cong \mathrm{F}_{+}(\mathrm{V})$. By Lemma 1.1, $\mathrm{F}(\mathrm{G})$ is G-stably isomorphic to $\mathrm{F}(\mathrm{ZC})$, hence $\mathrm{F}(\mathrm{G})^{\mathrm{G}}$ is stably isomorphic to $\mathrm{F}\left(\mathrm{A}^{\prime}\right)^{\mathrm{C}^{\prime}}$. Since A^{\prime} is ZC^{\prime}-stably permutation by Proposition $1.2, \mathrm{~F}\left(\mathrm{~A}^{\prime}\right)$ is stably isomorphic to $F(Z C)$ as a C^{\prime}-field by [B, Lemma 2.1]. The result now follows by $[F]$ since C^{\prime} is abelian.

Theorem 1.4:

Let G be the semi-direct product of a group H of order p , by a group C of order prime to p. Let w be a primitive ($\mathrm{p}-1$) st root of 1 , and let I be the ideal ($\mathrm{p}, \mathrm{w}-\mathrm{a}$) in $\mathrm{Z}[\mathrm{w}]$, where a is a primitive $(p-1)$ st root of $1 \bmod p$. If I is principal then $F(G)^{G}$ is stably rational over F provided that F contains a primitive pth root of 1 .

Proof:

Let $\mathrm{G}=\mathrm{H} \succ \triangleleft \mathrm{C}$. Let $\mathrm{C}^{\prime}=\operatorname{Ker}(\mathrm{C} \rightarrow \operatorname{Aut}(\mathrm{H}))$, then C^{\prime} is normal in G. By Lemma 1.1, $\mathrm{F}(\mathrm{G})$ is stably isomorphic as a G-field to $\mathrm{F}_{+}(\mathrm{V})$ for any faithful FG-lattice V . Let

$$
\mathrm{V}=\mathrm{F} \otimes_{\mathrm{z}} \mathrm{ZG} / \mathrm{C} \oplus \mathrm{~W}
$$

where W is a one dimensional faithful representation of C , with trivial H -action. Then

$$
\mathrm{F}_{+}(\mathrm{V})^{\mathrm{G}}=\left(\left(\mathrm{F}_{+}(\mathrm{V})^{\mathrm{C}^{\prime}}\right)^{\mathrm{G} / \mathrm{C}^{\prime}} .\right.
$$

It is immediate that $F_{+}(V)^{C^{\prime}}$ is stably isomorphic to $F(Z G / C)$ as a G / C^{\prime}-field. Thus $F(G){ }^{G}$ is stably isomorphic to $\mathrm{F}(\mathrm{ZG} / \mathrm{C})^{\mathrm{G} / \mathrm{C}^{\prime}}$. But $\mathrm{G} / \mathrm{C}^{\prime} \cong \mathrm{H} \succ \triangleleft \mathrm{K}$, where $\mathrm{K}=\mathrm{C} / \mathrm{C}^{\prime}$ is a subgroup of $\operatorname{Aut}(\mathrm{H})$. The result then follows by Theorem 1.3.

Section 2:

Let p be an odd prime. In this section we show that if G is a non-abelian group of order p^{3}, then $F(G)^{G}$ is stably rational over F. By [G, Theorem 5.1, Chapter 5] there exists, up to isomorphism, two groups satisfying these conditions. They are the semi-direct products of a group of order p^{2} by a group of order p . The group of order p^{2} is cyclic in one case and p-elementary in the other.

Proposition 2.1:

Let H be a cyclic group of order p , with generator h . There exists an exact sequence

$$
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1)^{2} \oplus \mathrm{Z} \rightarrow \mathrm{ZH} \rightarrow \mathrm{D} \rightarrow 0
$$

where D is a ZH -module of order p^{2} and exponent p .

Proof:

Let X denote the trivial ZH -module Z / pZ. We have the following exact sequence of ZH modules

$$
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1) \oplus \mathrm{Z} \rightarrow \mathrm{ZH} \rightarrow \mathrm{X} \rightarrow 0
$$

where the map $\mathrm{ZH}(\mathrm{h}-1) \oplus \mathrm{Z} \rightarrow \mathrm{ZH}$ is inclusion of $\mathrm{ZH}(\mathrm{h}-1)$ and sends 1_{Z} to the norm of H , and

$$
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1)^{2} \rightarrow \mathrm{ZH}(\mathrm{~h}-1) \rightarrow \mathrm{X} \rightarrow 0
$$

where the map $\mathrm{ZH}(\mathrm{h}-1)^{2} \rightarrow \mathrm{ZH}(\mathrm{h}-1)$ is inclusion.
Combining these 2 sequences we get

$$
\begin{equation*}
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1)^{2} \oplus \mathrm{Z} \rightarrow \mathrm{ZH} \rightarrow \mathrm{D} \rightarrow 0 \tag{3}
\end{equation*}
$$

where D is given by the extension

$$
0 \rightarrow \mathrm{X} \rightarrow \mathrm{D} \rightarrow \mathrm{X} \rightarrow 0
$$

So D is of order p^{2}. We will prove that D has exponent p .
The map $\mathrm{ZH}(\mathrm{h}-1)^{2} \oplus \mathrm{Z} \rightarrow \mathrm{ZH}$ in sequence (3) is inclusion on $\mathrm{ZH}(\mathrm{h}-1)^{2}$ and sends 1_{Z} to the norm of H . The ZH -module $\mathrm{D} \cong \mathrm{ZH} /\left(\mathrm{ZH}(\mathrm{h}-1)^{2} \oplus \mathrm{Z}\right)$ is generated by the classes of $\overline{1}$ and \bar{h} of 1 and h , with $\bar{h}^{2}=2 \bar{h}-\overline{1}$. Let N be the norm of H . Then

$$
\begin{aligned}
& \sum_{i=1}^{p-1} i h^{i}(h-1)+N=\sum_{i=1}^{p-1} i h^{i+1}-\sum_{i=1}^{p-1} i h^{i}+\sum_{i=1}^{p} h^{i}= \\
& \sum_{j=2}^{p}(j-1) h^{j}-\sum_{j=1}^{p-1} j h^{j}+\sum_{j=1}^{p} h^{j}= \\
& \sum_{j=2}^{p-1}\left[(j-1) h^{j}-j h^{j}+h^{j}\right]+(p-1) 1_{H}-h+h+1_{H}=p
\end{aligned}
$$

and we have $p(h-1)=\sum_{i=1}^{p-1} i h_{i}(h-1)^{2}$. Therefore $p \overline{1}=p \bar{h}$, and since $\bar{N}=0$, we get $p^{2} \overline{1}=p^{2} \bar{h}=0$. So the exponent of D is either p or p^{2}. It follows directly from $\bar{h}^{2}=2 \bar{h}-\overline{1}$, that for $\mathrm{k}=1, \ldots, \mathrm{p}-1, \bar{h}^{k}=k \bar{h}-(k-1) \overline{1}$. Therefore we have

$$
0=\bar{N}=\sum_{k=1}^{p-1}(k \bar{h}-(k-1) \overline{1})+\overline{1}
$$

equivalently

$$
\begin{aligned}
& \left(\sum_{k=1}^{p-1} k\right) \bar{h}=\sum_{k=1}^{p-1} k \overline{1}-\left(\sum_{k=1}^{p-1} \overline{1}\right)-\overline{1} \\
& (1 / 2) \mathrm{p}(\mathrm{p}-1) \bar{h}=(1 / 2) \mathrm{p}(\mathrm{p}-1) \overline{1}-\mathrm{p} \overline{1} \\
& (1 / 2) \mathrm{p}(\mathrm{p}-1) \bar{h}={ }^{2} \mathrm{p}(\mathrm{p}-3) \overline{1}
\end{aligned}
$$

Since $p \overline{1}=p \bar{h}$ and $p^{2} \overline{1}=p^{2} \bar{h}=0$, we get $2 \mathrm{p} \bar{h}=0$ thus $\mathrm{p} \bar{h}=\mathrm{p} \overline{1}=0$. Thus D is generated by
$\overline{1}$ and \bar{h} with $\mathrm{p} \overline{1}=\mathrm{p} \bar{h}=0$, and hence it is of exponent p . Clearly the H-action on D is not trivial.

Notation:

For all n in Z, for any finite group G and $Z G-$ module $M, H^{n}(G, M)$ will denote the nth Tate cohomology group of G with coefficients in M.

Proposition 2.2:

Let G be a group of order p^{3} having a cyclic subgroup K^{\prime} of index p. Let $H=G / K^{\prime}$, and let $\mathrm{K}=\operatorname{Hom}\left(\mathrm{K}^{\prime}, \mathrm{F}^{*}\right)$. Then there exists a ZH -exact sequence

$$
0 \rightarrow \mathrm{ZH} \rightarrow \mathrm{ZH} \rightarrow \mathrm{~K} \rightarrow 0
$$

Proof:

By [G, Theorem 5.1, Chapter 5] there exists, up to isomorphism, a unique group of order p^{3} having a cyclic subgroup of index p . It is the semi-direct product of this cyclic group of order p^{2} by a group of order p. Therefore $K \cong K^{\prime}$ as $Z H$-modules, and $G \cong K^{\prime} \succ \triangleleft H$. Let X be the trivial ZH -module with p elements. There is a ZH -exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{ZH} \rightarrow \mathrm{ZH}(\mathrm{~h}-1) \oplus \mathrm{Z} \rightarrow \mathrm{X} \rightarrow 0 \tag{1}
\end{equation*}
$$

where the map $\mathrm{ZH} \rightarrow \mathrm{ZH}(\mathrm{h}-1) \oplus \mathrm{Z}$ sends 1 to $(\mathrm{h}-1)+1_{\mathrm{Z}}$. It is easily checked that the the map is injective and that its cokernel is X .
Now consider the ZH-exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1) \oplus \mathrm{Z} \rightarrow \mathrm{ZH} \rightarrow \mathrm{X} \rightarrow 0 \tag{2}
\end{equation*}
$$

where the map $\mathrm{ZH}(\mathrm{h}-1) \oplus \mathrm{Z} \rightarrow \mathrm{ZH}$ is inclusion on $\mathrm{ZH}(\mathrm{h}-1)$ and sends 1_{Z} to the norm of H which we denote by N . Combining these two sequences we get

$$
\begin{equation*}
0 \rightarrow \mathrm{ZH} \rightarrow \mathrm{ZH} \rightarrow \mathrm{~T} \rightarrow 0 \tag{3}
\end{equation*}
$$

where T is given by the following ZH -exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{X} \rightarrow \mathrm{~T} \rightarrow \mathrm{X} \rightarrow 0 \tag{4}
\end{equation*}
$$

We will show that $\mathrm{T} \cong \mathrm{K}$ as ZH -modules.
We know that T is of order p^{2}, and that there is a map from H to $\operatorname{Aut}(\mathrm{T})$. Again, by [G, Theorem 5.1, Chapter 5], there exists, up to isomorphism, two non abelian groups of order p^{3}, one of which is of exponent p . Therefore there exists, up to isomorphism, two non-trivial ZH -modules of order p^{2}, one of which is the group D of Proposition 2.1. So it suffices to show that the map form H to $\operatorname{Aut}(\mathrm{T})$ is non trivial, and that T is not isomorphic to K.
We first show that $\mathrm{T}^{\mathrm{H}} \neq \mathrm{T}$ which will imply that the map $\mathrm{H} \rightarrow \operatorname{Aut}(\mathrm{T})$ is not trivial.
From the ZH -sequence

$$
0 \longrightarrow Z \xrightarrow{p} Z \longrightarrow X \longrightarrow 0
$$

we get that $\mathrm{H}^{1}(\mathrm{H}, \mathrm{X})=\mathrm{Z} / \mathrm{pZ}$. From sequence (4) we get

$$
0 \rightarrow \mathrm{X} \rightarrow \mathrm{~T}^{\mathrm{H}} \rightarrow \mathrm{X} \rightarrow \mathrm{H}^{1}(\mathrm{H}, \mathrm{X}) \rightarrow \mathrm{H}^{1}(\mathrm{H}, \mathrm{~T}) \rightarrow \ldots
$$

Now T is cohomologically trivial by sequence (3), so $\mathrm{T}^{\mathrm{H}}=\mathrm{X} \neq \mathrm{T}$.
Consider the ZH -sequence of Proposition 2.1, namely

$$
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1)^{2} \oplus \mathrm{Z} \rightarrow \mathrm{ZH} \rightarrow \mathrm{D} \rightarrow 0
$$

We have $H^{-1}(H, D)=H^{0}\left(Z H(h-1)^{2} \oplus Z\right)=Z / p Z$. Therefore D is not cohomologically trivial and hence cannot be isomorphic to K . Thus $\mathrm{T} \cong \mathrm{K}$, which proves the result.

Theorem 2.3:

Let p be an odd prime. Let G be an abelian group of order p^{3}, and let F be a field containing a primitive p^{2}-th root of 1 . Then $\mathrm{F}(\mathrm{G})^{\mathrm{G}}$ is stably rational over F .

Proof:

Let H, K and D be as in Propositions 2.1 and 2.2. Let $\mathrm{K}^{\prime}=\operatorname{Hom}\left(\mathrm{K}, \mathrm{F}^{*}\right)$ and $\mathrm{D}^{\prime}=$ $\operatorname{Hom}\left(\mathrm{D}, \mathrm{F}^{*}\right)$ be the character groups of S and D respectively. By [G, Theorem 5.1, Chapter 5] G is isomorphic to either $\mathrm{K}^{\prime} \succ \triangleleft \mathrm{H}$ or to $\mathrm{D}^{\prime} \succ \triangleleft \mathrm{H}$.

Case 1: $\mathrm{G} \cong \mathrm{K}^{\prime} \succ \triangleleft \mathrm{H}$.
By Proposition 2.2, we have a ZH -exact sequence

$$
0 \rightarrow \mathrm{ZH} \rightarrow \mathrm{ZH} \rightarrow \mathrm{~K} \rightarrow 0
$$

By Galois theory $\mathrm{F}(\mathrm{ZH})^{\mathrm{G}} \cong \mathrm{F}(\mathrm{ZH})^{\mathrm{H}}$, which is rational over F , by $[\mathrm{F}]$. Therefore $\mathrm{F}(\mathrm{ZH})^{\mathrm{G}}$ is stably rational over F. By Lemma $1.1, F(G)^{G}$ is stably isomorphic to $F(Z H)^{G}$ which proves the result.

Case 2: $\mathrm{G} \cong \mathrm{D}^{\prime} \succ \triangleleft \mathrm{H}$.
By Proposition 2.1 there exists a ZH -exact sequence

$$
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1)^{2} \oplus \mathrm{Z} \rightarrow \mathrm{ZH} \rightarrow \mathrm{D} \rightarrow 0
$$

By Galois theory $\mathrm{F}\left(\mathrm{ZH}(\mathrm{h}-1)^{2} \oplus \mathrm{Z}\right)^{\mathrm{H}} \cong \mathrm{F}(\mathrm{ZH})^{\mathrm{G}}$. Now $\mathrm{ZH}(\mathrm{h}-1)$ and $\mathrm{ZH}(\mathrm{h}-1)^{2}$ are isomorphic as ZH -modules and the isomorphism is given by

$$
h^{\mathrm{i}}(\mathrm{~h}-1) \rightarrow \mathrm{h}^{\mathrm{i}}(\mathrm{~h}-1)^{2} .
$$

Thus $\mathrm{F}\left(\mathrm{ZH}(\mathrm{h}-1)^{2} \oplus \mathrm{Z}\right)^{\mathrm{H}} \cong \mathrm{F}(\mathrm{ZH}(\mathrm{h}-1) \oplus \mathrm{Z})^{\mathrm{H}}$. We have a ZH -exact sequence

$$
0 \rightarrow \mathrm{ZH}(\mathrm{~h}-1) \rightarrow \mathrm{ZH} \rightarrow \mathrm{Z} \rightarrow 0
$$

and by $[\mathrm{B}$, Lemma 1.2] $\mathrm{F}(\mathrm{ZH}(\mathrm{h}-1) \oplus \mathrm{Z})$ and $\mathrm{F}(\mathrm{ZH})$ are isomorphic as H-fields. Therefore $\mathrm{F}(\mathrm{ZH})^{\mathrm{G}}$ and $\mathrm{F}(\mathrm{ZH})^{\mathrm{H}}$ are stably isomorphic and the argument now is the same as in Case 1.

References

[B] E. Beneish, Induction theorems on the center of the ring of generic matrices, Trans. of the AMS, 350(1998), no. 9, 3571-3585.
[BK] K Brown, Cohomology of groups, Springer-Verlag, New York,1982.
[CR] Curtis and Reiner, Methods of Representation Theory, vol 1, Wiley, New York, 1981.
[EM1] S. Endo and T. Miyata, Invariants of finite abelian groups. J. Math. Soc. Japan 25, (1973), 7-26.
[EM2] S. Endo and T. Miyata, On the classification of the function fields of algebraic tori, Nagoya Math. J. 56 (1974), 85-104.
[EM3] S. Endo and T. Miyata, Quasi-permutation modules over finite groups II, J. Math. Soc. Japan 26, (1974), 698-713.
[F] E. Fischer, Die Isomorphie der Invariantenkorper der endlichen Abel'schen Gruppen linearen Transformationen. Nachr. Konigl. Ges. Wiss. Gottingen (1915), pp 77-80.
[G] D. Gorenstein, Finite Groups, Harper \& Row, 1968.
[H] M. Hajja, Rational invariants of meta-abelian groups of linear automorphisms, J. of Algebra 80, (1983), 295-305.
[L] H. W. Lenstra, Rational functions invariant under a finite abelian group, Inventiones Mathematica 25 (1974), 299-325.
[SD] D. Saltman, Noether's problem over an algebraically closed field, Invent. Math. 77, (1984) 71-84.
[SR] R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148-158.
[V] V.E. Voskresensskii, Rationality of certain algebraic tori (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 35, 1037-1046 (1971). English translation: Math USSR-Izv. 5, (1971), 1049-1056.
[W] D.J. Winter, The structure of fields, Springer-Verlag, 1974.

[^0]: ${ }^{1} 1991$ Mathematics Subject Classification. Primary 13A50, 20 C 10.

