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Abstract:

Let F be a field, and let G be a finite group.  A rational extension of F on which G
acts purely monomially, is of the form F(M) for some ZG-lattice M, where F(M) is
the quotient field of the group algebra of the abelian group M.  It follows from
work of Endo-Miyata, Swan, and Lenstra, that G-faithful ZG-lattices are in the
same flasque class if and only if they have G-isomorphic corresponding fields. We
investigate the stable rationality of F(M)G over F, when G is Sp, the Symmetric
group on p letters and p is a prime.  Thus the study of flasque classes of ZSp-
lattices plays a fundamental role in this investigation. Let N be the normalizer of a
p-sylow sylow subgroup of Sp  We show that there are classes of ZSp-lattices for
which induction restriction from N to Sp, does not affect the flasque class.  We
also present sufficient conditions for the flasque class of a ZSp-lattice to be zero,
which implies that the corresponding fixed field is stably rational over F.  In
particular we study the flasque class of a specific lattice, Gp, which has the
property that F(Gp)

Sp is stably isomorphic to the center of the division ring of
generic matrices, [F]. Let ˆ M  denote the p-adic completion of a ZSp-lattice M.
We show that any ZSp-lattice M having the property that Mq ≅ (Gp)q as ZqG-
lattices for all primes q≠p, and that ˆ M ≅ ˆ G p  as ˆ Z N-lattices, is in the flasque class

of Gp.  For a finite group G, lattices in the same genus are not in general in the
same flasque class, however they are for G=Sn.  We extend this to a larger class of
ZSp-lattices containing the genus of Gp.
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Introduction:

This paper is in part a continuation of the investigation started in [B3], of the

stable rationality of the center of the ring of n×n generic matrices over the

complex numbers.  Let G be a finite group, and let K be a field on which G acts as

a group of automorphisms, possibly trivially. Let K(x1,…,xn) be a rational

extension of K.  A monomial action of G on K(x1,…,xn) is defined by

gxi=kix1
ai1…xn

ain, where g∈G, and the matrix (aij) is an invertible matrix with

integers entries, and ki∈K.  The action is said to be purely monomial if ki = 1 for

all i.  If a group G acts on K(x1,…,xn) purely monomially, and if we let M be the

ZG-lattice with Z-basis {m1,…,mn}, where g acts on xi as on mi, then K(x1,…,xn)

is isomorphic K(M), the quotient field of the group algebra K[M], and the

isomorphism respects the G-actions.   Conversely if M is a ZG-lattice, then K(M)

has a purely monomial G-action.

Let F be a field and let Cn denote the center of the division ring of n×n generic

matrices over F.  It was shown in [F], that Cn is stably isomorphic over F, to the

fixed field under the action of Sn of F(Gn), where Gn is a specific ZSn-lattice,

which we define below.  Thus the question of the stable rationality of Cn is a

special case of the problem of finding invariants of fields on which a group acts

purely monomially.  Let G = Sp, the symmetric group on p symbols where p is a

prime. In this paper we consider purely monomial actions on rational extensions

of F, that is fields of the form F(M), where M is a ZG-lattice and G acts trivially

on F.  It follows directly from work of Endo-Miyata [EM1], Lenstra [L], and

Swan [S], that for any finite group G and any G-faithful ZG-lattices M and M’,

F(M) and F(M’) are stably isomorphic as G-fields if and only if M and M’ are in

the same flasque class, Theorem 1.1.  Thus the study of flasque classes of ZG-

lattices is the starting point in this investigation.

We present our results on this question in section 1.  Let N be the normalizer of a

p-sylow subgroup of G.  Thus N is the semi-direct product of a group of order p

by a cyclic group of order p-1.  In Theorem 1.4, which is a generalization of [B3,
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Proposition 2.4], we describe a class of ZG-lattices M for which induction-

restriction from N to G preserves the flasque class; the flasque class of M will

depend on the localization of M at all primes q≠p.

In Theorem 1.6, we apply these results to the flasque class of Gp.  We let ˆ M 

denote the p-adic completion of a ZG-lattice M. We show that any ZG-lattice M

having the property that Mq ≅ (Gp)q as ZG-lattices, and that ˆ M ≅ ˆ G p  as ˆ Z N-

lattices, is in the flasque class of Gp. Thus F(M)G is stably isomorphic to Cp, the

center of the division ring of p×p generic matrices.  For a finite group G, lattices

in the same genus are not in general in the same flasque class, however they are if

G is the symmetric group.  Theorem 1.6 extends this to a larger class of ZG-

lattices containing the genus of Gp.  In Theorems 1.7 and 1.8, we present sufficient

conditions for flasque classes to be 0, which implies that the corresponding fixed

fields are stably rational over F.

Section 2 is devoted to finding the decomposition of ˆ G p  into indecomposables -

ˆ Z N-modules.  The main result, Theorem 2.3, gives a characterization of all

invertible ZG-lattices in the flasque class of Gp up to stable isomorphism, that is

isomorphism up to permutation modules.

Section 1:

Let G be a finite group.  Flasque classes of ZG-lattices play an important role in

this problem; they are defined as follows. The ZG-lattices M and M’ are said to be

equivalent if there exist permutation modules P and P’ such that M ⊕ P ≅ M’⊕ P’.

This defines an equivalence relation on the category of ZG-lattices.  The

equivalence class of a ZG-lattice M will be denoted by [M].  The set of

equivalence classes of ZG-lattices forms an abelian monoid under the direct sum.

Lattices equivalent to 0 are said to be stably permutation.  These are lattices M

for which there exist permutation modules P and R such that M⊕P ≅ R.
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For all n∈Z, Hn(G, M) will denote the nth Tate cohomology group of G with

coefficients in M.  A ZG-lattice M is flasque H-1(H,M)=0 for all subgroups H of

G.  A flasque resolution of a ZG-lattice M is an exact sequence

0 → M → P → E → 0

with P permutation and E flasque.  It follows directly from [EM1, Lemma 1.1],

that for any ZG-lattice M, there exist such a flasque resolution.  The flasque class

of M is defined to be [E].  Lattices whose flasque class is 0 are said to be quasi-

permutation.  These are lattices for which there exists a ZG-exact sequence

0 → M → P → R → 0

with P and R permutation.

Throughout the rest of this paper we adopt the following notation unless

otherwise specified.

• G = Sp , where p is prime.

• H = p-sylow subgroup of G, so H is cyclic  of order p.

• a = primitive (p-1)st root of 1 mod p.

• N = NG(H) will be the normalizer of H in G, so N = H f<C, where C is cyclic

of order p-1.

• H will be generated by h, C by c, and we have chc-1 = ha.

• For any finite group G, and for any ZG-lattice M, we will denote by φ(M) or

φG(M) the flasque class of M.

• For any finite group G and any ZG-lattice M, ˆ M  will denote the p-adic

completion of M, and for any prime q, Mq will denote the localization of M at

q.

 

 

 Definition:

 Let Q be the field of rational numbers.  Let G be a finite group, and let M be a

ZG-lattice.  The Q-class of M is the set of ZG-lattices M’ such that QM = QM’.
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 Definition:

 Let L and K be fields and let G be a finite subgroup of their automorphisms

groups. L and K are said to be isomorphic (stably isomorphic) as G-fields if they

are isomorphic (stably isomorphic) and the isomorphism respects their G-actions.

 

 Theorem 1.1:

 Let G be a finite group and let M and M’ be G-faithful ZG-lattices.  Then F(M)

and F(M’) are stably isomorphic as G-fields if and only if M and M’ are in the

same flasque class.

 

 Proof:

 By [B3, Lemma 2.1], φ(M) = φ(M’) implies that F(M) and F(M’) are stably

isomorphic as G-fields. To prove the converse, assume that F(M) and F(M’) are

stably isomorphic as G-fields.  Then so are F(ZG ⊕ M) and F(ZG ⊕ M’).  Let L =

F(ZG).  The following is an adaptation of the proof of [L, Theorem 1.7].

 There exist G-trivial indeterminates yi, which are algebraically independent over

L(M) and G-trivial intederminates zi, which are algebraically independent over

L(M’), such that

 L(M)(y1,...,yt) ≅ L(M’)(z1,....,zr).

 Let R1 = L[M][y1,...,yt] and R2 = L[M’][z1,...,zr].  By [S, Lemma 8], there exists

elements a1 ∈ R1
G and a2 ∈ R2

G such that R1[a1
-1] and R2[a2

-1] are isomorphic as

L-algebras.  By [S, Lemma 7], we have ZG-exact sequences

 0 → R1
* → R1[a1

-1]* → P → 0

 0 → R2
* → R2[a2

-1]* → S → 0

 where P and S are ZG- permutation.  Thus we obtain ZG-exact sequences

 0 → R1
*/ L*  → R1[a1

-1] */L* → P → 0

 0 → R2
* / L* → R2[a2

-1] */L* → S → 0

 Since R1
*/ L*≅ M and R2

*/ L* ≅ M’, we have that φ(M) = φ(M’) by [CTS, Lemma

8, section 1].
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 We now define the lattice Gp mentioned in the introduction.  Let U be the ZG-

lattice with Z-basis {ui : 1,....,p} with G-action given by gui = ug(i) for g in G.  Let

A be the kernel of the map U → Z which sends the ui to 1. Then Gp is defined to

be A⊗ZA and by [F,  Theorem 3], F(Gp)G is stably isomorphic to the center of the

ring of p×p generic matrices.

 

 Corollary 1.2:

 The classes [Gp] and [ZG⊗ZNGp] of the ZG-lattices Gp and ZG⊗ZNGp are equal.

In particular Gp and ZG⊗ZNGp are in the same flasque class.

 

 Proof:

 By [B3, Theorem 2.6], F(Gp) and F(ZG⊗ZNGp)   are isomorphic as G-fields.  By

Theorem 1.1 this implies that the flasque classes of Gp and ZG⊗ZNGp are equal.

By [CTS, Lemma 8, section 1] this is equivalent to the existence of ZG-exact

sequences

 0→ Gp →  E → P →0

 and

 0→ ZG⊗ZNGp →  E → R →0.

 with P and R permutation.  By [BL, Proposition 3, section 3.1] Gp is invertible,

and hence so is ZG⊗ZNGp.   Therefore these sequences split by [CTS, Lemma 9,

section 1], and we have

 E ≅ Gp⊕ P ≅ ZG⊗ZNGp  ⊕ R.

 Hence  [Gp] = [ZG⊗ZNGp].

 

 

 

 Lemma 1.3:
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 Let M and M’ be ZG-lattices in the same Q-class. If there exists a ZG-exact

sequence

 0→ M →  M’ → L →0.

 where L is cohomlogically trivial, then [M] = [M’].  Consequently φ(M) = φ(M’).

 

 Proof:

 There exists a ZG-exact sequence

 0→ Pr →  Fr → L →0

 with Fr free. Since both Fr and L are cohomlogically trivial, so is Pr. By [BK,

Theorem 8.10, Chapter VI], Pr is ZG-projective. We now form the commutative

diagram

                                                              0       0
                                                              ↑       ↑
                                               0→ M → M’ → L  →0
                                                      ↑       ↑       ↑
                                              0→  M →  E  → Fr →0
                                                               ↑       ↑
                                                               Pr→  Pr
                                                               ↑       ↑
                                                               0       0
 where E is the pullback of the maps M’→L and Fr→L. Since Pr and Fr are

projective, and since projectives are injectives in the category of ZG-lattices, we

get M ⊕ Fr ≅ M’ ⊕ Pr .  Now by [EM2, Theorem 3.3] Fr and Pr are stably

permutation since G=Sp, thus M and M’ are in the same class, and a fortiori in the

same flasque class.

 

 The following theorem is a generalization of [B3, proposition 2.4]. It describes a

class of lattices for which induction-restriction from N to G preserves the flasque

class.

 

 

 Remark:
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• Note that since G=Sp, every ZG-lattice is in the Q-class of a stably

permutation lattice.

• Let G be any finite group, and let H be a subgroup of G. Let R be a ring, and

let M be a RG-module.  Let {gi :i,…,[G:H]} be a transversal for H in G.  The

map

 RG/H⊗RM → RG⊗RHResG
H M

  Σi,jaij g i
⊗mj    → Σi,jaijgi⊗gi

-1mj

     for aij∈Z and mj∈M, is an isomorphism of RG-modules.

 

 Theorem 1.4:

 Let N=H f<C be the normalizer of a p-Sylow subgroup H of G.  Let M be a ZG-

lattice and let R be a stably permutation ZG-lattice in the Q-class of M.  If for

each prime q≠p, the q-primary component of  R/M is cohomologically  trivial then

 φ(Μ) = φ(ZG⊗ZNM).

 Consequently F(M) and F(ZG⊗ZNM) are stably isomorphic as G-fields.

 

 Proof:

 Since QM = QR for some stably permutation ZG-lattice R, we have a ZG-exact

sequence

 0→ M → R → L → 0,       (1)

 with R/M = L finite.  Since L is a finite abelian group, it is isomorphic to the

direct sum of its primary components.  So L = ⊕q primeLq. Let L’ = (⊕q prime,q≠p Lq).

Now consider the diagram

                0        0 

                                                        ↑        ↑
                   Lp →  Lp

                                                        ↑        ↑
 0→ M  → R →  L→0
                              ↑      ↑        ↑
 0→ M  → M’→  L’ →0
                                                         ↑       ↑
                                                         0        0



9

 

 Here M’ is the pullback of the maps R  → L and L’ → L. Since the q-primary

component of L is cohomologically trivial for each prime q≠p, L’ is

cohomologically trivial by [BK, Corollary 10.2, and Theorem 10.3, Chapter III]

and by Lemma 1.3, φG(Μ) = φG(Μ').  Thus it suffices to assume that L = Lp.  Let S

= Z/prZ where pr is the exponent of L. Tensoring sequence (1) by ZG over ZN we

obtain

 

 0→ ZG⊗ZNM →  ZG⊗ZNR → SG⊗SNL →0.    (2)

 

 Now let IG/N be the kernel of the augmentation map ZpG/N → Zp,  and let I =

IG/N/prIG/N.  Since [G:N] is prime to p we have that

 

 ZpG/N = Zp⊕ IG/N,  and   SG/N = S ⊕ I,

 

 By Mackey’s subgroup theorem [CR, Theorem10.13], ResG
HZG/N = Z ⊕ ZHm for

some positive integer m, hence IG/N≅ ZpH
m as a ZpH-lattice by [CR, Theorem

36.1]. Therefore I ≅ SHm as an SH-module and hence as a ZH-module, where the

ZH-action is via the ring map

 ZH→SH.

 Now I⊗L ≅ SHm⊗L ≅ (SH⊗SL)m and by the remark preceding the theorem,

SH⊗SL ≅ SH⊗SResH
{1}L as SH-modules.  Now as an abelian group, L ≅

⊕i=1,…,r(Z/p
iZ)

ai.  Therefore I⊗L ≅ (SH⊗L)m ≅ ⊕i=1,…,r ((Z/p
iZ)H)

mai as a SH-module

and hence as a ZH-module.  For each i=1,…,r, there exists a ZH-exact sequence

 0→ ZH → ZH →((Z/p
iZ)H) →0

 where the map ZH → ZH is multiplication by pi.  Thus we get a ZH-exact sequence

 0→ ZHk → ZHk →I⊗L →0,

 where k = mΣiai.
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 Taking its cohomology, we see that I⊗L is cohomologically trivial as a ZH-lattice.

For any integer n and any subgroup K of G, Hn(K,I⊗L) injects into Hn(H,I⊗L)

since I⊗L is of p-power-order by [BK, Corollary 10.2, and  Theorem 10.3,

Chapter III].  Since Hn(H,I⊗L)=0, I⊗L is ZG- cohomologically trivial.

 We now write sequence (2) as

 

 0→ ZG⊗ZNM →  ZG⊗ZNR → L ⊕ I⊗L →0.    (2)

 

 and consider the exact sequence

 

 0→M’→M”→I⊗L →0 with M” free.   (3)

 

 Since M” and L⊗I are cohomologically-trivial so is M’, thus M’ is ZG-projective

by [BK, Theorem 8.10, Chapter VI], and by [EM2, Theorem 3.3] it is stably

permutation. We add the sequences (1), (3) and form a commutative diagram with

(2),

                                           0                 0
                                           ↑                 ↑
 0→ ZG⊗ZNM  → ZG⊗ZNR →    L ⊕ I⊗L→   0
                       ↑                  ↑                  ↑
 0→ ZG⊗ZNM  →    M3    →     R  ⊕ M”  →0

                                     ↑                  ↑
                 M’ ⊕ M→    M  ⊕ M' →0
                                           ↑                  ↑
      0             0
 

 where M3 is the pullback of the maps ZG⊗ZNR →L⊕ I⊗L and R⊕M”→L ⊕I⊗L.

 Since M” and, R and consequently ZG⊗ZNR, are stably permutation, we have by

[CTS, Lemma 8, section 1]

 φ(Μ) ⊕ φ(Μ’) = φ(ZG⊗ZNM).

 Since M’ is stably permutation, φ(Μ’) = 0, hence φ(Μ) = φ(ZG⊗ZNM).  The last

statement follows by Theorem 1.1.
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 Theorem 1.5:

 Let M, M’ and R be ZG-lattices and assume that R is stably permutation. Suppose

that Mq ≅ Mq’ ≅ Rq for all primes q≠p. If  ˆ M ≅ ˆ M ' as ˆ Z N-lattices, then φG(M) =

φG(M’).

 

 Proof:

 Let J= {q∈Z+ : q prime, q divides |G| and q≠p}.  By [CR, Lemma 31.4] there

exists a  ZG-exact sequence

 0→ M →  R → L →0

 with L finite of order prime to each element of J, since Mq ≅ Rq for all primes q∈J.

Let L = Lp ⊕ L’, where Lp is the p-primary component of L.  Then L’ has order

prime to the order of G, and hence L’ is cohomologically trivial by [BK, Corollary

10.2, Chapter III].  By Theorem 1.4, we have φG(M)= φG(ZG⊗ZNM) and by a

similar argument φG(M’)= φG(ZG⊗ZNM’).

 By [CR, Theorem 30.17]  Mp ≅ Mp’ as ZpN-lattices, hence M and M’ are in the

same genus as ZN-lattices, and thus ZG⊗ZNM and ZG⊗ZNM’ are in the same

genus as ZG-lattices.  By [BL, Proposition 2, section 2.3], [ZG⊗ZNM]=

[ZG⊗ZNM’], therefore φG(ZG⊗ZNM)= φG(ZG⊗ZNM’), and φG(M) = φG(M’).

 

 We now apply these results to the flasque class of the ZG-lattice Gp.

 

 Theorem 1.6:

 Let M be a ZG-lattice such that Mq ≅ (Gp)q for all primes q≠p, and such that

ˆ G p ≅ ˆ M  as ˆ Z N-lattices.  Then the flasque classes of M and Gp are equal.

 

 Proof:
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 By Theorem 1.5, it suffices to show that there exist a stably permutation ZG-

lattice R such that (Gp)q≅≅  Rq for all primes q≠p.  Recall that Gp = A⊗ZA, where

the defining sequence of the ZG-lattice A is

 0 → A → U → Z → 0

       ui →1

 For all primes q≠ p, this sequence splits, with splitting map 1 → (1/p)Σui.  Thus

 Uq ≅ Aq ⊕ Zq

 and

 Uq⊗Aq ≅ Aq⊗Aq ⊕ Aq

 Since Gp = A⊗A, we have

 Uq⊗Aq ≅ (Gp)q ⊕ Aq

 Thus

 Uq⊗Aq⊕ Zq ≅ (Gp)q ⊕ Uq

 From the definition of U, one sees directly that U ≅ZG/Sn-1 and that as an Sn-1-

module A is permutation. Thus U⊗A is ZG-permutation.

 Now for any ZG-lattice M let M*=HomZ(M,Z) be its dual.  If M is permutation

then M* is isomorphic to M by [CR, Corollary 10.29]. Therefore

 Uq ≅ Aq ⊕ Zq ≅ Aq* ⊕ Zq

 and hence Âq ≅ Âq* for all primes q≠p.  By [CR, Proposition 30.17] this implies

tha Aq ≅ Aq* for all primes q≠p.

 Now by [B3, Proposition 1.1], the lattice B=A*⊗A has the property that

 U⊗A ⊕ Z ≅ B ⊕ U

 and hence it is stably permutation.  Furthermore Bq ≅ (Gp)q for all primes q≠p, and

the result is proved by taking B=R.

 

 .

 The following result gives a sufficient condition for an invertible lattice to be

stably permutation.  The point of interest is that this is a condition on the

restriction to N of the Q-class of the lattice, and on its localization at primes q≠p.
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 Theorem 1.7:

 Let M be an invertible ZG-lattice.  If ResN
GM is in the Q-class of a projective ZN-

lattice, then φG(ZG⊗ZNM)=0, that is ZG⊗ZNM is stably permutation.  If also, for

all primes q≠p, the q-primary component of R/M is cohomologically trivial, where

R is a stably permutation ZG-lattice in the Q-class of M, then φG(M)=0.  Thus

F(M)G is stably rational over F.

 

 Proof:

 We have a ZN-exact sequence

 0→ M →  Pr → L →0

 with Pr projective and L finite.  We will now show that L is cohomologically

trivial. Let q be a prime.  By Swan's theorem [CR, Theorem 32.11], QPr  ≅  QNm

for some positive integer m.  So QM is QS-free for any q-Sylow subgroup S of N.

Since M is invertible and N is metacyclic, M is in the genus of a free ZS-lattice for

each S, by [B2, Theorem 1.1]. Hence M is ZN-cohomologically trivial by [BK,

Corollary 10.2 and Theorem 10.3, Chapter III].  By [BK, Theorem 8.10, Chapter

VI] M is ZN-projective.  Therefore ZG⊗ΖΝM is ZG-projective, and by [EM2,

Theorem 3.3] it is stably permutation, so φ(ZG⊗ΖΝM) = 0. If also, for all primes

q≠p, the q-primary component of R/M is cohomologically  trivial, where R is a

stably permutation ZG-lattice in the Q-class of M, then φG(M)= φG(ZG⊗ΖΝM) by

Theorem 1.4.  Thus φG(M) = 0.  The last statement follows from [B3, Lemma

2.1].

 

 Theorem 1.8:

 If M is a ZN-lattice such that MH = M then φ(ZG⊗ΖΝM) = 0.

 

 Proof:

 The structure of M as a ZN-lattice is given by its structure as a ZC-lattice, since

ZC ≅ ZN/H.  A ZC-flasque resolution for M, is also a ZN-flasque resolution.  Let
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 0→ M →  P → E →0

 

 be this resolution.  So P is ZC-permutation, and since E is flasque and C is cyclic,

E is ZC-invertible by [EM2, Theorem 1.5].  Hence there exist an invertible

module E’ and a permutation module R, such that E ⊕ E’ = R.  Adding E’ to the

last two terms of the sequence we get

 

 0→ M →  E’ ⊕ P → R →0

 

 By [CTS, Lemma 7, section 1], φ(M) =  φ(E').  By [EM1, Proposition 3.1 and

Theorem 3.3] there exist ZC-permutation modules V and V’ and a projective ideal

I in ZC such that

 

 E’ ⊕ V ≅ V’ ⊕ I.

 

 So φ(E’) = φ(I).   By Swan's theorem [CR1, Theorem 32.11] we have Iq ≅ ZqC ≅

ZqN/H for all primes q.  This implies that ZG⊗ΖΝ(E’⊕V) is in the genus of a ZG-

permutation module and by [BL, Proposition 2, section 2.3]

[ZG⊗ΖΝE’]=0, therefore φ(ZG⊗ΖΝM) = 0.

 

 Corollary 1.9:

 If M is any ZN-lattice then φ(ZG⊗ZCM) = 0.

 

 Proof:

 The same arguments as in the proof of Theorem 1.8 hold since we are inducing

from C which is cyclic, up to G.

 

 

 Section 2:
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 We will use the same notation as in section 1.  So G is Sp, the symmetric group on

p letters, and p is a prime.  N is the normalizer of a p-Sylow subgroup H of G,

thus N is the semi-direct product of H by a cyclic group C of order p-1. H is

generated by h, C by c, and we have chc-1 = ha, where a was defined to be a

primitive (p-1)st root of 1 mod p.

 

 In section 1 we defined the ZG-lattice A by the exact sequence

 0 → A → U → Z →0

 Let A* = Hom(A,Z) be its dual. It is immediate from its definition that U≅ZG/Sp-1,

and that ResG
NU ≅ ZH.  This isomorphism is given by

 U →ZH

 ui →hi    for i=1,…,p

 where H acts in the natural way and c.hi =hai.  It follows that A≅ZH(h-1) as a ZN-

module.  Moreover  as a ZH-module A is the augmentation ideal of the group ring

ZH, and since H is cyclic Ap ≅ Ap* as ZpH-modules.  Thus ZpN⊗ZpHAp ≅

ZpN⊗ZpHAp*.  For each k=1,..,p-1 we have

 A≅ZH(h-1)≅ZH(h-1)k as ZH-modules

       hi(h-1) → hi(h-1)k.

 

 Since ZN/H ≅ ZC ≅ Z[x]/(xp-1-1) as ZN-lattices, the decomposition of ˆ Z N/H into

indecomposables is given by

 ˆ Z N/H ≅ ⊕k=1,…,p-1
ˆ Z [x]/(x-θk) ≅⊕k=1,…,p-1Zk

 where θ is a primitive (p-1)st root of 1 in ˆ Z  which is congruent to a mod p, and

Zk is the trivial ˆ Z N-module of ˆ Z  rank 1 with trivial H action, and such that

c1=θk.

 

 

 Notation:

• For k=1,...,p-1, we set Ak = ˆ Z H(h-1)k.
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• For k=1,...,p-1, we set Gk = Â*⊗ ˆ Z H(h-1)k.

• For k=1,…,p-1, we set Xk = Zk/pZk.

Theorem 2.1:

For each k=1,...,p-1 we have Â*⊗Zk ≅ Ak and Gk ≅ Â*⊗Ak.

Proof:

By [B3, Lemma 1.2] there exits a ZN-exact sequence

0→ A→ A*→X→ 0       (1)

Tensoring by Zk, and using the fact that for each k, the sequence

0→ ZH(h-1)k+1→ ZH(h-1)k →Xk → 0

is exact, with the map ZH(h-1)k →Xk given by (h-1)k →1, we get the following

commutative diagram

                                                0            0
                                                ↑            ↑
                          0→ Â⊗Zk → Â*⊗Zk → Xk →0
                                    ↑         ↑            ↑
                         0→ Â⊗Zk →  M → ˆ Z H(h-1)k →0
                                               ↑             ↑
                                   ˆ Z H(h-1)k+1 →  ˆ Z H(h-1)k+1

                                               ↑             ↑
                                               0             0
where M is the pullback of the maps Â*⊗Zk → Xk and ˆ Z H(h-1)k →Xk. We now

show that Ext1
H(A,A)= 0 which will imply that Ext1

H(Â,Â) since H is of order p,

and hence that Ext1
H(Â⊗Zk, ˆ Z H(h-1)k+1) = 0. Consider the ZH-sequence

0 → A → ZH → Z → 0

We have

            …→ Ext1
H(ZH,A) →Ext1

H(A,A) → Ext2
H(Z,A) → Ext2

H(ZH,A) → …

Since ZH is ZH-free this becomes

0 →Ext1
H(A,A) → Ext2

H(Z,A) → 0.



17

But Ext2
H(Z,A) = H2(H, A).  Since H is cyclic H2(H, A) = H0(H,A), and

H0(H,A)=0, since AH=0.  The middle vertical sequence splits since

Ext1
N(Â⊗Zk, ˆ Z H(h-1)k+1) injects into Ext1

H(Â⊗Zk, ˆ Z H(h-1)k+1) ≅ Ext1
H(Â,Â)=0.

Similarily Ext1
N( ˆ Z H(h-1)k+1, Â⊗Zk)=0, so

Â⊗Zk ⊕ ˆ Z H(h-1)k≅ Â*⊗Zk ⊕ ˆ Z H(h-1)k+1.

It is clear that Â⊗Zk and Â⊗Zk+1 are not isomorphic as ˆ Z N-lattices.  Since all

these modules are indecomposable the Krull-Schmidt-Azumaya implies that  

ˆ Z H(h-1)k ≅ Â*⊗Zk.  Thus Ak ≅ Â*⊗Zk. Tensoring by Â*, we get Gk =

Â*⊗ ˆ Z H(h-1)k ≅ Â*⊗Âk.

Remark:

Under the above notation we have Â ≅ ˆ Z H(h-1) ≅ Â*⊗Z1.  Recall that Gp, the

ZG-lattice defined in section 1, having the property that the center Cp is stably

isomorphic to F(Gp)
G, is equal to A⊗A.  Therefore ˆ G p ≅ Â*⊗Z1⊗Â*⊗Z1 ≅

Â*⊗Â*⊗Z2 ≅ Â*⊗A2 ≅ G2.

We will denote the ZN-lattice ZH(h-1)2 by A’.

Theorem 2.2:

1)Set J = A*⊗A’.  Then J and Gp are in the same genus as ZN-modules.

Furthermore the fields F(J ⊕ A’) and F(ZN) are isomorphic as N-fields.

2)The field F(ZG⊗ZN(Gp ⊕ A’))G
   is stably rational over F.

3)φG(ZG⊗ZNA’) = [Gp].

Proof:

From the ZN-exact sequence

0→ ZH(h-1)k+1 → ZH(h-1)k→Xk → 0
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we have that Aq’ ≅ ZqH(h-1)2 ≅ Aq for all primes q different from p, since Xk is of

order p.  Dualizing the defining sequence for A, we get ZN-sequence

0 → Z → U → A* → 0

Tensoring by A’ over Z we get

0 → A’→ ZN → J→ 0   (1)

We have Jq ≅ A*q⊗Aq ≅ Aq⊗Aq ≅ A*q⊗A’q ≅ (Gp)q for all primes q different from

p, and by Thereom 2.1  ˆ G p
≅ ˆ J , therefore J and Gp are in the same genus.  This

implies that J is invertible by [B1, Theorem A]. By applying [B3, Lemma 2.1] to

sequence (1) we get F(J ⊕ A’) and F(ZN) are isomorphic as N-fields. This proves

1).

Tensoring (1) by ZG over ZN we obtain

0 → ZG⊗ZNA’ → ZG  → ZG⊗ZNJ → 0.      (2)

By [B3, Lemma 2.1], F(ZG) and F(ZG⊗ZN(J⊕A’)) are stably isomorphic as G-

fields.  Since J and Gp are in the same genus as ZN-lattices, ZG⊗ZNJ and

ZG⊗ZNGp are in the same class, by [BL, Propostion 2, section 2.3].   Therefore

F(ZG) and F(ZG⊗ZN(Gp⊕A’)) are stably isomorphic as  G-fields. Again by [B3,

Lemma 2.1] F(ZG⊗ZN(Gp⊕A’))G is stably rational over F.  This proves 2).

Finally from sequence (2) we have φ(ZG⊗ZNA’)=[ZG⊗ZNJ] = [ZG⊗ZNGp] =[Gp].

Notation:

For k=1,...,p-1, let Uk = ˆ U ⊗ Z k
.  Under this notation ˆ U =Up-1.

Theorem 2.3:

The decomposition of  ˆ G p  into indecomposable  ˆ Z N-modules is given by

ˆ G p
≅⊕k=1,…p-2Uk ⊕Z1

Any invertible ZG-lattice in the flasque class of Gp will have the same ˆ Z N-

decomposition up to stable isomorphism, that is isomorphism modulo permutation

modules.
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Proof:

We have U ≅ ZN/C as a ZN-lattice , and U⊗A ≅ ZN⊗ZCResN
CA.  A Z-basis for A

is {hi-1: i=1,…,p-1}and this basis is permuted by C.  It follows directly that A is

ZC-free.  Thus

U⊗A ≅ ZN⊗ZCResN
CA.  ≅ ZN⊗ZCZC ≅ZN.

Let B=A*⊗A.  By Theorem 2.2, ˆ B  is isomorphic to G1 as a ˆ Z N- module. By [B3,

Proposition 1.1], we have B ⊕ U ≅ U⊗A ⊕ Z  as ZG-lattices.  Thus as ˆ Z N-

lattices

G1 ⊕ U0 ≅ ˆ Z  ⊕ ˆ Z N

Tensoring by Z1 over Z, we get

G2 ⊕ U1 ≅ Z1 ⊕ ˆ Z N

or equivalently

ˆ G p
 ⊕ U1 ≅ Z1 ⊕ ˆ Z N.

Since ˆ Z N≅ ˆ Z H⊗ ˆ Z C≅Û⊗(⊕k=1,…p-1Zk)≅⊕k=1,…p-1Uk, we have

ˆ G p ≅⊕k=1,…p-2Uk ⊕Z1.

For the second statement note that since Gp is invertible by [BL, Proposition 3,

section 3.1], φ(Gp) = -[Gp].  If I is an invertible ZG-lattice in the flasque class of

Gp, then φ(I) =-[I]= φ(Gp) =-[Gp], hence [Gp] = [I]. Thus there exist permutation

ZG-lattices P and R such that

Gp ⊕ P ≅ I ⊕ R.

and the result follows.
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It is of interest to note that all summands in this decomposition are ˆ Z N-

projective except Z1 which is H-trivial.  However, by Theorems 1.7 and 1.8 we

know that there can be no ZG-lattice M in the flasque class of Gp such that

ResG
N

ˆ M  is the sum of a projective lattice and an H-trivial lattice, since φ(Gp) ≠ 0

for p≥5 by [BL, Corollary 1, section 3.2].
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