Learning Policies through Argumentation-derived Evidence

(Extended Abstract)

Chukwuemeka D. Emele
University of Aberdeen,
Aberdeen, AB24 3UE, UK
c.emele@abdn.ac.uk

Timothy J. Norman
University of Aberdeen,
Aberdeen, AB24 3UE, UK
t.j.norman@abdn.ac.uk

Frank Guerin
University of Aberdeen,
Aberdeen, AB24 3UE, UK
f.guerin@abdn.ac.uk

Simon Parsons
Brooklyn College, City
University of New York, USA
parsons@sci.brooklyn.cuny.edu

ABSTRACT
We present an efficient approach for identifying, learning and modeling the policies of others during collaborative activities. In a set of experiments, we demonstrate that more accurate models of others’ policies (or norms) can be developed more rapidly using various forms of evidence from argumentation-based dialogue.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
Argumentation, Machine learning, Policies, Norms

1. INTRODUCTION

Many distributed problem solving scenarios require the formation of a team of collaborating agents. In such scenarios agents often operate under constraints, which determine to a large extent, how they go about their assigned tasks. When these constraints are part of the standard operating procedures of the agents or the organisations they represent, we refer to them as policies (also known as norms). Although agents may have prior assumptions about the policies that constrain the activities of others, these models are often incomplete and may be inaccurate. In a set of experiments, we investigate how information acquired through dialogue, which we call argumentation-derived evidence (ADE), can be effectively exploited to learn better models of agents’ policies. Our claim is that, through the use of argumentation-derived evidence, better (more complete and correct) models of the policies of others can be learned. We demonstrate the validity of this claim through experiments conducted in a resource provisioning scenario [1]. The research presented in this extended abstract represents the first model for using evidence derived from argumentation to learn underlying social characteristics (e.g. policies/norms) of others. There is, however, some prior research in combining machine learning and argumentation, and in using argument structures for machine learning. Rovatsos et al. [4] use hierarchical reinforcement learning in modifying symbolic constructs that regulate agent conversation patterns, and argue that their approach could improve an agent’s conversation strategy. In other research, Možina et al. [2] propose a novel induction-based machine learning mechanism using argumentation. In our work, we used information-seeking dialogue [6] to obtain evidence from the interaction and learned the entire sequence as against a segment (frame) of the interaction [4].

2. EXPERIMENTS

The scenario adopted in this research involves agents acting as resource seekers, that interact with potential providers to resource a plan. In order to gather useful evidence, agents engage in argumentative dialogue and attempt to learn from dialogical encounters with other agents. The enactment of both seeker and provider roles are governed by individual policies that regulate their actions. A seeker agent requires resources in order to carry out some assigned tasks. The seeker agent generates requests in accordance with its policies and negotiates with provider agents based on these constraints. On the other hand, provider agents have access to certain resources and may have policies that govern the provision of such resources to other members of the team.

Provider agents do not have an unlimited pool of resources and so some resources may be temporarily unavailable. By a resource being available we mean that it is not committed to another task (or agent) at the time requested.

In this study we used three different machine learning mechanisms: Decision tree learning, Instance-based learning and Rule-based learning. These three mechanisms represent very different classes of machine learning algorithms. The rationale for exploring a range of learning techniques is to

Copyright © 2010, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
3. RESULTS

Experiments were conducted with seeker agents initialised with random models of the policies of providers. 100 runs were conducted for each case, and tasks were randomly created during each run from 375 possible configurations.

Table 1 illustrates the effectiveness of identifying and learning policies through argumentation-derived evidence using the three machine learning techniques described above. It shows the percentage of policies classified correctly and their standard deviations. In each case the model of others’ policies is recomputed after each set of 1000 tasks. For all three machine learning techniques considered, the percentage of policies predicted correctly as a result of exploiting evidence derived from argumentation was consistently and significantly higher than those predicted without such evidence. This result shows that the exchange of arguments during practical dialogue enabled agents to learn and build more accurate models of other agents’ policies much faster than scenarios where there was no exchange of arguments.

Tests of statistical significance were applied to the results. Using linear regression, the analysis of variance (ANOVA) shows that as the number of tasks increases, each of the three learning techniques (with or without argumentation-derived evidence) consistently converges with a 95% confidence interval. Furthermore, for all the pairwise comparisons, the scenarios where argumentation-derived evidence was combined with machine learning techniques consistently yielded higher rates of convergence ($p < 0.02$) than those without additional evidence. These results confirm our hypothesis.

Table 1: Average percentage of policies classified correctly and standard deviation

<table>
<thead>
<tr>
<th>Tasks</th>
<th>C4.5 - ADE</th>
<th>C4.5 + ADE</th>
<th>k-NN - ADE</th>
<th>k-NN + ADE</th>
<th>Prism - ADE</th>
<th>Prism + ADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>58.3 ± 15.1</td>
<td>60.3 ± 14.4</td>
<td>65.2 ± 9.8</td>
<td>71.1 ± 9.0</td>
<td>66.7 ± 8.2</td>
<td>67.7 ± 7.7</td>
</tr>
<tr>
<td>2000</td>
<td>69.2 ± 16.6</td>
<td>75.0 ± 12.6</td>
<td>71.0 ± 7.8</td>
<td>85.9 ± 7.3</td>
<td>71.7 ± 6.0</td>
<td>87.1 ± 6.4</td>
</tr>
<tr>
<td>3000</td>
<td>75.1 ± 12.0</td>
<td>83.6 ± 6.5</td>
<td>75.3 ± 5.3</td>
<td>92.0 ± 4.6</td>
<td>78.7 ± 8.4</td>
<td>94.1 ± 4.2</td>
</tr>
<tr>
<td>4000</td>
<td>82.1 ± 12.3</td>
<td>89.9 ± 5.2</td>
<td>80.7 ± 3.8</td>
<td>96.8 ± 3.1</td>
<td>84.3 ± 6.5</td>
<td>96.6 ± 4.1</td>
</tr>
<tr>
<td>5000</td>
<td>85.3 ± 8.9</td>
<td>93.0 ± 3.4</td>
<td>81.0 ± 4.1</td>
<td>97.3 ± 3.6</td>
<td>87.4 ± 6.0</td>
<td>97.5 ± 2.6</td>
</tr>
<tr>
<td>6000</td>
<td>88.2 ± 8.2</td>
<td>95.6 ± 5.1</td>
<td>82.0 ± 3.8</td>
<td>98.4 ± 1.7</td>
<td>90.6 ± 5.3</td>
<td>99.2 ± 1.0</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

The results of these experiments have shown that evidence derived from argumentation can have a statistically significant positive impact on identifying, learning and modeling others’ policies during collaborative activities. Accurate policy models can inform strategies for advising human decision makers on how a plan may be resource and who to talk to [5], and may aid in the development of more effective strategies for agents [3]. Our results demonstrate that significant improvements can be achieved by combining machine learning techniques with argumentation-derived evidence.

Acknowledgements

This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

5. REFERENCES