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1 |  INTRODUCTION

Visual categorisation of natural stimuli can be performed ex-
tremely rapidly and efficiently (see Fabre-Thorpe, 2011 for 
a review). This ultra-rapid object categorisation is probably 
supported by feed-forward activity in the ventral stream, 

particularly in the infero-temporal cortex (ITC; see DiCarlo, 
Zoccolan, & Rust, 2012 for an analysis). Most studies on ob-
ject recognition and categorisation have examined objects be-
longing to a single category. However, in the real world, we 
routinely encounter multiple objects belonging to different 
categories. Since category-level processing of various kinds 
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Abstract
Humans can rapidly categorise visual objects when presented in isolation. However, 
in everyday life we encounter multiple objects at the same time. Far less is known 
about how simultaneously active object representations interact. We examined 
such interactions by asking participants to categorise a target object at the basic 
(Experiment 1) or the superordinate (Experiment 2) level while the representation of 
another object was still active. We found that the “prime” object strongly modulated 
the response to the target implying that the prime's category was rapidly and automat-
ically accessed, influencing subsequent categorical processing. Using drift diffusion 
modelling, we show that a prime, whose category is different from that of the target, 
interferes with target processing primarily during the evidence accumulation stage. 
This suggests that the state of category-processing neurons is altered by an active 
representation and this modifies the processing of other categories. Interestingly, the 
strength of interference increases with the similarity between the distractor and the 
target category. Considering these results and previous studies, we propose a general 
principle that category interactions are determined by the distance from a distractor's 
representation to the target's task-relevant categorical boundary. We argue that this 
principle arises from the specific architectural organisation of categories in the brain.
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of objects occurs in the same neural substrate, the ITC, it is 
vital to understand how the processing of one category af-
fects the simultaneous processing of other categories, or in 
other words, how does concurrent categorical analysis of one 
object in the ITC affect categorical processing of another. For 
example, when looking at a bird, if a cat suddenly appears, 
how does the representation of the bird influence the process-
ing of the cat representation? The bird representation could 
either (a) not influence the processing of the cat, the two cat-
egorisation processes being independent of each other, (b) 
interfere with it, perhaps by adding noise to the signal, or (c) 
facilitate it by pre-activating some of the neurons that repre-
sent the cat category (perhaps by a “spread of activation” be-
cause the two representations are semantically close). Each of 
these seemingly logically exclusive possibilities receives evi-
dence from and is grounded in different domains of research.

In the visual domain, interactions between object cate-
gories have been explored only in a few studies. Using in-
tracranial human recording, Agam et al. (2010) showed that 
categorical representations in the ITC are largely unaffected 
when two objects from different categories are presented si-
multaneously. That is, categorical representations are very 
robust and do not interact with each other. On the other 
hand, other studies suggest that object representations inter-
fere with each other. Cohen and colleagues (Cohen, Konkle, 
Rhee, Nakayama, & Alvarez, 2014) found that participants' 
performance in a multiple object change detection task was 
worse when objects belonged to the same category than when 
they belonged to different categories. Importantly, the authors 
also showed that the strength of this behavioural interference 
could be predicted by the difference in the neural activity 
(particularly in the occipito-temporal cortex) elicited by each 
object presented in isolation to the same participants. That is, 
the more similar the two patterns of neural activity, the worse 
the performance in the behavioural task. The degree of sepa-
ration between neural patterns has also been correlated with 
performance in visual search (Cohen, Alvarez, Nakayama, 
& Konkle, 2017) and the effectiveness of masking between 
objects belonging to different categories (Cohen, Nakayama, 
Konkle, Stantić, & Alvarez, 2015). These sets of results are 
contradictory: one set (Agam et al., 2010) finds, using intra-
cranial recordings, that representations of object categories 
in the ITC are robust and do not interfere, whereas the other 
set finds evidence of behavioural interference between visual 
representations that could be predicted by the degree of sep-
aration between their neural pattern in fMRI.

In the language domain, interference effects between ob-
ject categories have been explored more thoroughly. Such 
studies typically use a picture–word interference paradigm 
(PWI) in which a to-be-named picture is presented along with 
(or soon after) a distractor word. Their results show that par-
ticipants are slower at naming the picture (e.g., a dog) while 
ignoring a superimposed written label of a related object 

(e.g., horse) than a word unrelated to the picture (e.g., table) 
(Hantsch, Jescheniak, & Mädebach, 2012; Kuipers, La Heij, 
& Costa, 2006). However, the same studies have also reported 
that, under other circumstances, responses can be facilitated 
when the picture is presented with a related word. For exam-
ple, participants are faster in naming the image of a dog as 
an animal when presented with the word horse than with the 
word table. Further, the interference effect appears to be ab-
sent when the distractor is a picture (Damian & Bowers, 2003; 
La Heij, Heikoop, Akerboom, & Bloem, 2003), suggesting 
that contrary to words, visual representations might not inter-
fere automatically. Thus, the nature of representations (pic-
ture or word) and the specific task being performed might 
have different effects on inter-category interactions.

This study aims to shed light on whether and how visual 
categories interact. To do so, it will be important to manipu-
late the relatedness between visual representations as well as 
the level at which the categorisation task is performed by the 
participants. We were particularly interested in uncovering 
which processes are influenced (or not) when visual repre-
sentations interact and if there were systematic rules that they 
follow. To determine these, we used drift diffusion model-
ling to assess and quantify the cognitive processes that are 
affected during multiple object processing.

1.1 | Drift diffusion model

Drift diffusion models (DDM) allow us to uncover the 
cognitive mechanisms underlying binary decisions such as 
in two-alternative force-choice paradigms (see Ratcliff & 
McKoon, 2008 for a review). This set of models attempts to 
capture the entire range of behaviour exhibited in a binary 
decision paradigm by positing that evidence accumulates 
stochastically over time towards one of two decisions (e.g., 
category A or B). Once sufficient evidence accumulates and 
reaches a specific threshold, it triggers a decision and sub-
sequent behaviour. This accumulation is considered to be a 
directed random walk, as the perceptual and decision-making 
systems are noisy. The models estimate a range of parameters 
to describe the observed behaviour. These parameters map on 
to specific cognitive processes, such as the speed of evidence 
accumulation, setting the decision threshold, presence of pre-
existing bias towards one decision and non-decisional factors 
such as motor preparation. The models allow the contribu-
tions of these cognitive processes to behaviour to be robustly 
estimated (see the Data Analysis section in Experiment 1 for 
more details). However, the application of these models is 
not straightforward in many experimental conditions.

The vast majority of PWI or priming paradigms studying 
interactions in language processing typically require partici-
pants to name the target word. Hence, DDM analyses cannot 
be applied to such studies, where the behavioural response 
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is not restricted to two options. Consequently, even though 
a large number of studies have been conducted on linguis-
tic interactions, uncovering their cognitive mechanisms has 
proved to be difficult and has engendered different theories 
and vigorous debate (Kuipers & La Heij,  2012; Mahon, 
Costa, Peterson, Vargas, & Caramazza,  2007; Mulatti & 
Coltheart, 2012). Nevertheless, there have been a few PWI 
and priming studies that tested participants on 2AFC cate-
gorisation tasks and hence were amenable to DDM analyses.

Such studies have found that responses are faster and/or 
more accurate when a prime shares the same response as 
the target compared to when they convey different responses 
(Glaser & Düngelhoff, 1984; Lupker & Katz, 1981). For ex-
ample, participants are faster at categorising the word friend 
as a person after seeing the word murderer than after see-
ing the word chocolate. This facilitation has been termed 
response congruency or response priming. DDM analyses 
(e.g., Voss, Rothermund, Gast, & Wentura,  2013) have re-
vealed that this modulation occurs at the non-decisional 
stages (response competition or non-decision time, param-
eter t), probably during response execution. This is in line 
with electrophysiological findings that response congruency 
is mediated by pre-activation of the response associated with 
the prime (Bartholow, Riordan, Saults, & Lust, 2009; Eder, 
Leuthold, Rothermund, & Schweinberger, 2012). Response 
congruency seems to be a major contributor to priming in 
categorisation tasks, particularly when the primes are masked 
(for a meta-analysis see Van den Bussche, Van den Noortgate, 
& Reynvoet, 2009). In our study, we abstain from using masks 
as we do not want a mask to interfere with the neural response 
elicited by the prime and the target, and also because we are 
interested in examining the effect of relatedness between cat-
egories and not just the response congruency effect.

On the other hand, behaviour is also modulated by the 
similarity or relatedness between primes and targets (Alario, 
Segui, & Ferrand, 2000; Rahman & Melinger, 2007). For ex-
ample, participants are faster at categorising the word friend 
as positive after seeing the word chocolate than after seeing 
the word murderer. This effect is termed prime relatedness 
or associative priming. DDM analyses have pinned this effect 
to decisional processes (drift rate or speed of accumulation 
of evidence, parameter v), that is, the ease of access to target 
information (Voss et al., 2013). Voss et al. suggest that this 
facilitation could be explained by the “spreading of activa-
tion” hypothesis (Collins & Loftus, 1975). The prime would 
activate associated representations, including the target, and 
because the target will be pre-activated, its processing will 
be facilitated.

Thus, according to these findings, the interactions between 
linguistic categories take place not only at the response selec-
tion and execution stages but also at the stage where words 
are represented, that is at the evidence accumulation stage. 
We will use a similar approach, applied to the visual domain, 

to examine the mechanisms that might be involved when (and 
if) two visual categories interact. We will assess the contri-
butions of each of these processes (response congruency and, 
importantly, prime relatedness) and their corresponding cog-
nitive mechanisms to behavioural performance.

1.2 | Our approach

In our study, we used sequential presentation of objects where 
a distractor object (the “prime”) is presented just before the 
target object. This paradigm has the advantage that we can 
control the order in which the two stimuli are processed. It 
ensures that both stimuli are processed without the require-
ment of moving spatial attention, either overtly or covertly, 
to different locations. Additionally, it allows the assessment 
of the temporal dynamics of the interaction between object 
categories by varying the time interval between the presenta-
tion of the prime and the target (Stimulus Onset Asynchrony, 
SOA). For example, it has previously been found that the in-
terference effect of a distractor word (e.g., “boat”) on a pic-
ture (e.g., “train”) was present at short but not at long SOA 
(Alario et al., 2000). Similarly, Kinoshita, de Wit, Aji, and 
Norris,  (2017) found that when two stimuli convey incom-
patible responses, the strength of interference increases with 
time when the conflicting information is simultaneously pre-
sented (0 ms SOA), but the interference remains stable over 
time at longer SOA (500 ms). Finally, because we are inter-
ested in visual interactions, we minimised the involvement 
of language areas and its effects by testing participants in a 
manual yes/no categorisation task using a rapid picture-pic-
ture priming paradigm. Because this task involves a binary 
decision, drift diffusion modelling can and will be used to 
analyse the results.

We will examine the interactions between two pictures 
by manipulating the relatedness between them and assess-
ing its effect on behavioural responses. By performing drift 
diffusion analysis on this data, we hope to determine the 
cognitive processes that drive interactions between catego-
ries. If the presence of a task-irrelevant picture interacts 
with the processing of the target category, it could influ-
ence decisional or/and non-decisional processes. If the 
prime influences motor processes or other non-decisional 
mechanisms, it should be visible in a change in the parame-
ter t of the model (response congruency). This would imply 
that the prime does not affect the categorical processing 
of the target object but affects downstream processes, pos-
sibly by the pre-activation of a motor command. In this 
case, we would expect faster responses when prime and 
target share the same response than when they do not. The 
prime could also interact with decisional processes such as 
the efficiency or the ease of access to the target features 
(prime relatedness). This would be observed as a change in 
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evidence accumulation (parameter v). Such a finding would 
imply that target processing in the cortex is modulated by 
concurrent activity elicited by other objects. This effect of 
relatedness could be positive or negative. The study by Voss 
et al. (2013) could be taken to suggest that a related prime 
could aid the processing of a target category by pre-activat-
ing its representation. Similarly, one might expect that the 
target category's features will be processed more efficiently 
and faster since target and prime share common features. 
For example, seeing a cat might quicken the processing 
of a bird, as they are both animate, have legs, eyes, etc. 
Conversely, the results of Cohen et al. (2014) suggest that 
relatedness might lead to interference in the processing of 
similar features by making it hard to distinguish between 
targets and other objects. The results of this study will thus 
reveal the nature of the interactions between simultane-
ously active visual representations and (a) indicate how the 
relatedness between the prime and target images influences 
the categorisation of the target and (b) reveal the cognitive 
mechanisms underlying these interactions.

2 |  EXPERIMENT 1:  BASIC-
LEVEL (BIRD) CATEGORISATION

In Experiment 1, we tested participants in a bird/non-bird cat-
egorisation task. A to-be-ignored prime was presented 80 or 
180 ms before a target image. The prime could convey the 
same (congruent prime) or a different (incongruent prime) 
motor response as the target picture. Crucially, to study the 
effect of semantic distance between objects, incongruent 
primes were of two different types: they could belong to a 
category related to the bird target (e.g., another animal; i.e., 
they shared the same superordinate category) or to an unre-
lated category (e.g., a vehicle; i.e., they belonged to different 
superordinate categories).

2.1 | Methods

2.1.1 | Participants

13 volunteers (9 women, 1 left-handed; mean age 
25 ± 2 years; including the first author) participated in this 
experiment. The two experiments have been carried out in 
accordance with The Code of Ethics of the World Medical 
Association (Declaration of Helsinki) and received the ap-
proval of the French Ethical Committee (comité de pro-
tection des personnes Sud-Ouest et Outre-Mer I, protocol 
11015). All participants had normal or corrected to normal 
vision and provided written informed consent. Data from 
both experiments are accessible on the OSF website (OSF.
IO/ASB4E).

Although the number of participants in both experi-
ments might seem limited at first glance, we believe that 
the data analysis that we performed is robust for several 
reasons. First, unlike in previous studies of priming, par-
ticipants performed a large number of trials in each of the 
tested conditions. That is, in Experiment 1, each condition 
comprised at least 128 trials, and in Experiment 2, each 
condition consisted of 192 trials. Thus, the measurement 
of each participant's performance should be much more 
precise than in previous studies. Second, and more impor-
tantly, we utilised drift diffusion analysis to examine the 
behavioural data. This analysis takes into consideration 
every single trial, not just an average, in each participant, to 
estimate the model parameters. Further, the specific imple-
mentation we utilised was based on hierarchical Bayesian 
analysis, which parcels out variance at the individual level 
(Wiecki, Sofer, & Frank, 2013) to determine the drift diffu-
sion parameters. Additionally, we report the Bayesian prob-
abilities of whether one condition is different from another. 
Thus, contrary to the p-values used in frequentist statistics, 
this analysis gives a direct probability (P) measure that one 
condition is different from another given the data. This 
measure is not dependent on sample size as p-values are, 
but on the precision of measurement and overall variance. 
Therefore, we are confident that any reported P (probabil-
ity of overlap between conditions) value of <.05 reflects a 
strong effect irrespective of sample size.

2.1.2 | Design and stimuli

The experiment consisted of a total of 16 blocks of 96 trials 
each. The target-prime SOA was 80 ms in half of the blocks 
and 180 ms in the other half. The order of the blocks was 
randomised. Within each block, half of the target images 
were birds, ¼ were non-bird animals and ¼ were vehicles. 
As target images included other animals, the bird/non-bird 
categorisation had to be performed at the basic-level (not 
at a superordinate-level; see Macé, Joubert, Nespoulous, 
& Fabre-Thorpe,  2009). For each target image, half of the 
primes were congruent (both prime and target conveyed the 
same motor response), and half were incongruent (prime 
and target conveyed different motor responses). Moreover, 
for bird target images, incongruent primes were divided into 
two equal groups: they were either related (non-bird animal) 
or unrelated (vehicle) to the bird target category. Thus, each 
block consisted of 48 bird targets and 48 non-bird targets. 
The bird targets were preceded by congruent primes in 24 
trials, incongruent related primes in 12 trials, incongruent un-
related primes in another 12 trials. In the 48 non-bird target 
trials, 24 were non-bird animal targets preceded in half of 
the trials (12) by a bird prime and in the other half by a non-
bird animal prime, and 24 were vehicle targets preceded in 
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12 trials by bird primes and in the other 12 trials by vehicle 
primes. The type of trial was intermixed within each block.

Contrary to usual practice in priming studies, we used each 
image only once in an experiment. All 3,072 images were un-
altered, coloured natural images chosen from the image sets 
used in a previous study (Poncet & Fabre-Thorpe, 2014) and 
from the Internet. The set of images was also chosen so that 
it included one or several objects of various orientations, po-
sitions and sizes, ruling out the possibility that our results 
could be explained by simple image learning (low or high 
level) or familiarity due to image repetition. Furthermore, 
the stimuli were picked randomly for each participant, so 
the effect found in our study could not have been driven by 
specific pairs of stimuli. The bird category (1,536 images) 
included birds of different species (songbirds, owls, parrots, 
pigeons, ducks, etc.) in different environments (flying in the 
sky, perched on a tree, on the water, etc.). The non-bird an-
imal category (768 images) included mammals (dog, bear, 
elephant, etc.; 384 images) and fish (redfish, shark, etc.; 384 
images). The vehicle category (768 images) was also diverse 
and included planes, cars, boats, etc. Each image subtended 
8° × 8° visual angle and was seen only once by each partici-
pant either as a prime or as a target (its status was randomly 
assigned for each participant).

2.1.3 | Procedure

Participants were seated in a dimly lit room, approxi-
mately 60  cm from a CRT screen (refresh rate:  100  Hz). 
Stimuli were displayed using Matlab with Psychophysics 
Toolbox extensions (Brainard,  1997; Kleiner, Brainard, & 
Pelli,  2007) and were synchronised with the refresh rate 
of the monitor. Participants were asked to perform a bird/
non-bird categorisation task (chance level was 50%). At the 
beginning of a trial, a white fixation dot was presented at 
the centre of a black screen for 500 ms. The prime image 
was then presented at the centre of the screen for 20  ms 
followed by a blank screen. The target image was pre-
sented for 100 ms and appeared either 80 or 180 ms after 
the onset of the prime (Figure 1). The shorter SOA (80 ms) 
was long enough to allow participants to correctly perceive 
the order of the stimuli (Theeuwes & Van der Burg, 2013). 
Participants were told to ignore the first image and report 
whether the second image contained a bird or not by press-
ing the left (“yes” response) or right (“no” response) arrow 
key using the same hand. At the end of the trial, an auditory 
beep (negative feedback) signalled an incorrect response or 
an absence of response in the allowed time. The next trial 
started right after the participant's response or after a maxi-
mum of 1.2 s after the onset of the target image. Before the 
experiment began, participants were trained on 20 trials with 
a separate set of images.

2.1.4 | Data analysis

For each participant, behaviour was assessed using me-
dian reaction time (RT) for correct yes responses (Hits) 
and mean error rates (ER) on bird target images (misses). 
Anticipatory responses (RT faster than 150  ms) and tri-
als without any response (no response within 1.2 s) were 
excluded from the analysis (0.4% of trials were rejected). 
We focused our analysis on bird target images because the 
non-bird category was undefined. Participants were asked 
to report whether the target image belonged to a bird or 
not. Presumably, their response was based on the (correct 
or incorrect) detection of certain target features (e.g., beak, 
feather). However, the basis for participants' responses to 
non-bird images is not clear. It could have been driven by 
the absence of bird features or the presence of a combina-
tion of attributes for the distractor category that might vary 
substantially between participants. Importantly, responses 
to non-bird animals and vehicles might be different to such 
an extent that the role of the prime would be difficult to 
assess. Nonetheless, for completeness, we present the re-
sults for responses to non-bird images (correct rejections 
and false alarms) and report relevant statistical analysis in 
Appendix S1. These data and analyses corroborate the re-
sults reported for bird images.

We define the priming effect as the difference in perfor-
mance between incongruent and congruent trials. We cal-
culated priming effects for the two target-prime relatedness 
(related and unrelated prime) conditions and two SOAs (80 
and 180 ms) using both RT and ER measures (henceforth re-
ferred to as RT and ER priming). As a first step, we compared 
this difference to zero, using one-sample t tests, after pool-
ing related and unrelated trials for the two SOAs separately. 
This comparison reflects the role of response congruency on 

F I G U R E  1  Illustration of a trial in Experiments 1 and 2. In 
Experiment 1, participants were asked to perform a bird/non-bird 
categorisation on the target image whereas in Experiment 2 they 
were asked to perform an animal/non-animal categorisation. In both 
experiments, participants were told to ignore the first image

500ms

Prime
20ms

Target
100ms

SOA = 80 or 180ms

Yes/no answer
(max 1.1 sec)
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performance. Then, to investigate the effect of relatedness on 
the interaction between categories, we performed a two-way 
repeated measures ANOVA with prime relatedness and SOA 
as factors on RT and ER priming. All follow-up paired t tests 
were conducted with appropriate Bonferroni corrections ap-
plied for multiple comparisons.

A different approach would be to conduct signal detection 
theory (SDT) based analysis, where unbiased discrimination 
(d-prime) and possible biases (criterion shift) in the different 
conditions can be computed. This can allow us to verify, for 
example, if performance differences (e.g., priming effects) 
are driven by differences in processing the stimuli (d-prime) 
or instead by biases induced by the prime (prime inducing 
more liberal or more conservative responses; criterion). This 
approach, although frequently deployed in categorisation 
studies, is generally not used in priming studies. One substan-
tial reason for the absence of its usage is that the effects of 
multiple factors tend to be pooled together and become hard 
to distinguish when applying STD analysis to priming studies. 
First, both the prime and the test image can influence perfor-
mance and the two effects are difficult to separate using STD 
analysis. For example, the characteristics of the responses 
to vehicles and non-bird animal images might be different 
regardless of their status as prime or test image. Therefore, 
a difference in d-prime between conditions might be due to 
the category of the prime and/or the test image. Second, the 
comparison between different conditions involves multiple 
confounds. For example, if one wants to compare the effect 
of a bird prime with the effect of a vehicle prime, Hits are 
based on congruent trials in one condition (correct responses 
on trials with a bird prime preceding a bird image) but on 
incongruent trials in the other condition (correct responses 
on trials with a vehicle prime preceding a bird image, see 
Table  3). Similarly, false alarms would be incongruent tri-
als in one condition (incorrect responses on trials with a bird 
prime preceding a vehicle image) and congruent trials in the 
other condition (incorrect responses to trials with a vehicle 
prime preceding a vehicle image). That is, there are clear re-
sponse congruency differences between the two conditions. 
This confound is inextricable. Therefore, the origin of the 
potential differences in d-primes calculated with these Hits 
and FAs would be unclear. Finally, there is no obvious way 
to determine which false alarms should be assigned to which 
Hit rates. For example, instead of keeping the prime constant 
between Hits and FAs as in the previous example, one can 
instead keep response congruency constant (see Table  3). 
However, in this case it is not possible to separate out the ef-
fect of the kind or relatedness of the prime, and consequently, 
we cannot ascertain the bias induced by that prime. Since 
we are interested in the effect of both congruency and prime 
relatedness, we felt that SDT analysis would not help address 
our questions. Altogether, these issues raise difficulties in in-
terpreting the results of SDT analysis and can easily lead to 

confusions and misinterpretations. This analysis is not central 
to test our questions but readers well-versed and interested in 
SDT can find it in a separate section.

To get a better understanding of the cognitive mechanisms 
underlying the observed effects, we performed two additional 
analyses. The first consisted of a quantile analysis of RTs to 
determine whether the priming effect changes across a range 
of RTs. One could imagine that the priming effect is smaller 
for fast RT compared to slower responses as observed by 
Kinoshita et al. (2017). For each participant and each condi-
tion separately, the quantiles were estimated using the quan-
tileIOSR function in Matlab (R-8 type). For each bin, we 
then computed the RT priming (quantile in the incongruent 
condition minus quantile in the congruent condition) which 
was then averaged across participants. In a second analysis, 
we used the diffusion model developed by Ratcliff,  (1978) 
to analyse our data. The goal of this analysis, described in 
more details in the following section, was to utilise the full 
distribution of behavioural data (RT and ER) to shed light on 
the cognitive mechanisms underlying the decision process in 
the categorisation task.

2.1.5 | Drift diffusion modelling

The drift diffusion model (DDM) is a sequential sampling 
model for analysing response-time data in a two-alternative 
forced choice task. It has been used in a range of tasks in-
cluding categorisation and priming tasks (e.g., McKoon & 
Ratcliff, 2012; Nosofsky & Palmeri, 1997; Voss et al., 2013). 
In such models, the two choices are represented as an upper 
and a lower threshold. The model assumes a single process 
accumulating evidence until one of the decision thresholds 
is reached. This process is chiefly characterised by four 
parameters:

1. a, the distance between the two boundaries; it reflects 
how much evidence is required for a decision to be 
reached,

2. t, the set of all non-decisional processes such as encoding, 
memory access, movement initiation and execution,

3. v, the speed at which evidence accumulates (drift rate); it 
is low when stimuli are harder to discriminate,

4. z, an a-priori response bias affecting the starting point of 
the accumulation of evidence.

In addition to these four mains parameters, three inter-trial 
variability parameters (for the inter-trial variability in a, t 
and v) can be included. However, these parameters require 
a very large amount of data to estimate and their influence 
on the model output is usually very small. More importantly, 
the hypotheses we consider do not make any specific pre-
dictions (or provide a clear path to interpretation) for these 
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parameters. Hence, increasing the complexity of the models 
to assess these parameters is not desirable. Thus, as recom-
mended by a large consortium of researchers using drift dif-
fusion modelling (Boehm et al., 2018), we did not estimate 
inter-trial variability parameters in our models.

DDM has been successfully applied by Voss et al. (2013) 
to examine the distinction between response congruency and 
prime relatedness in a word priming task. The authors showed 
that whereas congruency effects are mapped onto non-deci-
sional processes (response competition, t), prime relatedness 
(or semantic congruency) affects the speed of information 
uptake (drift rate, v). In other words, the congruency effect is 
mainly the result of motor response competition, which does 
not affect target processing. However, prime relatedness af-
fects how well the target stimulus is processed.

In our experiment on the interaction between visual cat-
egories, we expect response competition to be larger for in-
congruent primes than for congruent primes. However, we 
are mostly interested in exploring the cognitive mechanisms 
that underlie the priming effect for related versus unrelated 
primes when both primes elicit the same incongruent re-
sponse relative to the target. Indeed, this comparison should 
determine whether and what kind of interactions take place 
during the early stages of target processing, possibly in the 
visual system when non-decisional processes (t) are kept the 
same.

In terms of the DDM, if the activity elicited by the prime 
modulates the neural processing of the target, we would pre-
dict that the speed of evidence accumulation (v) will be dif-
ferent for the two incongruent primes and there should not 
be a difference in non-decisional processes (t) between them. 
Further, related primes could interact with target processing 
more than unrelated primes. They could facilitate the pro-
cessing of the target by pre-activating the neural population 
of the target (higher v). On the contrary, because related but 
incongruent primes share features with the target, evidence 
could accumulate towards either decision boundary. This 
should slow down the processing of the target (lower v) for 
the related prime compared to the unrelated prime.

The parameter a (response threshold) was also allowed 
to vary in our model. This parameter can reflect a speed–
accuracy trade-off between conditions. When instructed 
to be fast at the expense of accuracy, participants decrease 
their response criterion, that is, they lower their decision 
threshold (Zhang & Rowe, 2014) and hence require less ev-
idence to trigger a response. On the other hand, with a high 
response criterion, participants are more accurate but also 
respond slower. In our paradigm, both accuracy and speed 
were emphasised with a negative feedback and a response 
deadline, respectively. However, recent studies have shown 
that the response threshold could change on a trial by trial 
basis (Domenech & Dreher, 2010; Steinweg & Mast, 2017). 
Including this parameter in the model should inform us about 

different speed–accuracy trade-off strategies in response to 
different kinds of primes.

The analysis was performed using the HDDM toolbox de-
veloped by Wiecki et al. (2013). The parameters of the model 
(a, t, v) were fitted using an accuracy-coding procedure on 
the bird target trials for the three different primes and two 
SOA conditions simultaneously. In this procedure, the upper 
threshold represents correct responses (Hits) and the lower 
threshold incorrect responses (misses).1

We generated 20,000 posterior samples and discarded the 
first 2,000 samples as burn-in (see Wiecki et  al.,  2013 for 
details about the HDDM procedure). We evaluated the model 
first by visually inspecting the traces of the posteriors, the 
autocorrelation and the marginal posterior, as recommended 
by Wiecki et al. (2013). This inspection demonstrated the ex-
pected patterns for a converged model. We further assessed 
the convergence of the model with the Gelman–Rubin diag-
nostic (Gelman & Rubin, 1992). This statistic compares, for 
each parameter, the estimated between- and within-Markov 
chain variances for different runs of the same model (in this 
study we compared 5 runs). These differences (R̂ values) 
should be close to 1; large differences indicate non-conver-
gence. In our model, all R̂ were less than 1.0013, showing 
that the model converged very well. We also performed pos-
terior predictive checks, which consist of simulating new data 
from the fitted model and comparing it to the original data. 
The observed and predicted RT distributions for correct and 
incorrect responses in the different conditions are shown in 
Figure 2. The summary statistics of the posterior predictive 
checks can be found in Appendix S1 (Table S1). They con-
firm that the predicted RT distribution falls within the 95% 
credible interval of the observed RT distribution. That is, the 
model produces data that closely mimics the observed data, 
indicating that the model fit was excellent.

Hypothesis testing was performed by taking advantage 
of the Bayesian estimation of the DDM parameters provided 
by the HDDM toolbox. We analysed the probability, P, that 
two conditions are different from each other by determining 
how much the difference between two conditions overlaps 

 1A different, “stimulus coding” procedure, where the upper threshold 
corresponds to the target category (bird images) and the lower threshold to 
the distractor category (non-bird images), can be used to include the 
parameter z in the model. This model includes all the data collected (for 
bird and non-bird images, correct and incorrect answers). However, the 
parameters fitted with this procedure are not always easy to interpret and it 
requires assumptions that are difficult to justify in our paradigm (in 
particular, a similar drift rate for bird and non-bird responses). 
Nevertheless, we report this procedure in Supplementary Materials (Figure 
S7). It revealed that responses were biased (parameter z in the model) 
towards a bird response if the trial included a non-bird image (as prime 
and/or target) and towards a non-bird response if the trial included a vehicle 
image. All the other parameters (a, t, v) were highly similar to the model 
presented here. Thus, our results cannot be accounted by a difference in 
response bias.
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with 0. If the distribution of the difference is centred around 
0, P =  .5 (50% of the distribution is on one side and 50% 
on the other side). If the distribution of the difference is 
not centred around 0, that is if one condition is higher than 
the other one, P will move away from 0.5 towards 0. For 
example, if 10% of the difference distribution is on the 
left side of 0 and 90% is on the right side, it will result in 
P =  .1. The minimum P value between two conditions is 
P = 0, when the distribution difference does not include 0; 
that is, the two conditions do not overlap at all. Contrary to 
p-values used in frequentist statistics, this analysis gives a 
direct probability measure, but it can still be interpreted in 
a similar way as p-values.

2.2 | Results

2.2.1 | Priming effect

The main goal of the study was to test interactions between 
visual categories. To this end, we compared the priming 
effect between conditions. Average median RT and mean 
ER for bird images are displayed in Table 1. We define the 
priming effect as the difference between congruent (bird 
prime and bird target) and incongruent (non-bird prime and 
bird target) trials. The priming effect was computed sepa-
rately for the two relatedness and the two SOA conditions 
(Figure 3). To test the effect of response congruency, the two 
relatedness conditions were pooled. For non-bird images, 
congruent trials were trials with non-bird animal or vehicle 
images preceded by a non-bird animal or a vehicle image, 

respectively, whereas incongruent trials were trials with 
non-bird images preceded by a bird prime (Table  2). The 
statistical analysis of these data are presented in Appendix 
S1 and show results closely resembling the ones presented 
here for bird images.

Effect of response congruency
Error rates. ER priming was positive at both 80 and 
180 ms SOA meaning that when primes and targets map on 
to different motor responses (incongruent trials), participants 
made more errors than when they map on to the same motor 
responses (congruent trials). ER was higher by on average 3.3 
percentage points when categorising bird targets preceded by 
non-bird primes than if preceded by bird primes (t(12) = 3.94, 
p = .004 and t(12) = 4.29, p = .002 at 80 and 180 ms SOA, 
respectively).

Reaction times. At both SOAs, RT priming was positive. 
Participants categorised congruent target images faster than 
incongruent target images by on average 31  ms at 80  ms 
SOA (t(12)  =  8.13, p  <  .001) and 41  ms at 180  ms SOA 
(t(12) = 6.89, p < .001).

Effect of relatedness
Error rates. ER priming was larger for non-bird animal 
(related) primes than for vehicle (unrelated) primes 
(F(1,12) = 10.41, p = .007, pη2 = 0.46). That is, participants 
made more mistakes when incongruent primes belonged 
to the same superordinate category (animal) as the target 
(bird) than when they belonged to a different one (vehicle). 
There was no main effect of SOA (F(1,12) = 0.19, p = .67, 
pη2  =  0.02). Further, there was no interaction between 
relatedness and SOA (F(1,12) = 3.24, p = .10, pη2 = 0.21). 
The effect of relatedness can be observed (unchanged) at 
both long and short SOAs indicating that relatedness affects 
categorisation very early on.

Reaction times. We found no strong evidence for the effect 
of prime relatedness (F(1,12) = 4.00, p = .07, pη2 = 0.25) and 
SOA (F(1,12) = 4.02, p =  .07, pη2 = 0.25) on RT priming. 
However, there was a significant interaction between these 
two factors (F(1,12)  =  10.21, p  =  .008, pη2  =  0.46). At 
80  ms SOA, there was no effect of prime relatedness: RT 
priming was the same for non-bird animal and vehicle primes 
(t(12) = 1.07, p = .61); whereas at 180 ms SOA, there was 
a noticeable effect of relatedness: RT priming was larger 
for non-bird animal than for vehicle primes (t(12)  =  3.80, 
p  =  .006). In other words, the type of incongruent prime 
(related or unrelated) had no influence on RTs at 80  ms 
SOA, but at an SOA of 180 ms, incongruent related primes 
(non-bird animals) slowed down the categorisation of the 
target picture (bird) more than incongruent unrelated primes 
(vehicles).

F I G U R E  2  Observed (red histograms) and HDDM predicted 
(blue histograms) RT distributions in the different prime and SOA 
conditions in Experiment 1. Incorrect responses are represented with 
negative RTs
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Summary
Participants were faster and more accurate in congruent than 
incongruent trials. This suggests that even though they knew 
that they had to ignore the first (prime) image, they auto-
matically processed its basic-level category, which then af-
fected their categorisation responses to the bird target image. 
Importantly, the priming effect was larger for related primes 
than for unrelated primes and this effect increased with 
longer SOA.

2.2.2 | Signal detection analysis

SDT analysis can be useful for separating the ability to 
discriminate between stimuli from potential biases in par-
ticipants' response criterion. Towards this end, a reviewer 
requested that we calculate criterion using the Hits and FAs 
on trials with different types of prime (bird, non-bird animals, 
vehicles, separately) to uncover any biases that might arise 
from specific kinds of primes. However, as discussed above 
in the data analysis section (2.1.4), if the prime category is 

kept constant across Hits and FAs, response congruency can-
not be the same between Hits and FAs and therefore one can-
not exclude or assess the effect of congruency on d-primes. 
On the other hand, we could compute the d-primes accord-
ing to consistent response congruency. When response con-
gruency is the relevant framework across Hits and FAs, the 
primes are not the same, so it is not possible to calculate the 
effect of the prime category on the criterion. Another diffi-
culty with SDT analysis in priming studies is that it can be 
unclear whether the prime or the test image is driving the 
changes in d-primes and criteria. With these caveats in mind, 
we report SDT analysis (Table 3) following both approaches 
outlined above: that is, while a) prime category is consistent 
for Hits and FAs and while b) response congruency is con-
sistent for Hits and FAs.

In the approach, where the prime is consistent across Hits 
and FAs, at first glance it seems that vehicle primes lead to 
biased responses towards a “no” response (conservative cri-
terion) compared to non-bird animal primes. This finding can 
be taken to argue that the effect of the prime category on par-
ticipants' performance is due to differences in bias. However, 

F I G U R E  3  Priming effect (incongruent–congruent) in bird/non-bird categorisation task for error rates (ER, left panel) and reaction times (RT, 
right panel) in Experiment 1. A priming effect of 0 (dashed horizontal line) shows no effect of response congruency while a positive priming means 
that responses are worse in the incongruent than in the congruent condition. Each coloured dot represents one participant's performance in the 
specified condition. The mean priming effect and within-subject 95% confidence interval (CI) are represented in red. All CI is calculated using the 
Cousineau–Morey method (Cousineau, 2005; Morey, 2008)
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T A B L E  1  Average of median RT in ms and mean ER in % for categorising a bird image in Experiment 1

80 ms SOA 180 ms SOA

Congruent Incongruent related
Incongruent 
unrelated Congruent Incongruent related

Incongruent 
unrelated

RT 504 (15) 533 (14) 538 (15) 497 (20) 548 (17) 532 (18)
ER 4.94 (0.68) 9.27 (1.41) 7.08 (1.20) 4.42 (0.75) 10.63 (1.81) 5.16 (0.89)

Note: The bird image was preceded by a congruent (bird), an incongruent related (non-bird animal) or an incongruent unrelated (vehicle) image with a SOA of 80 or 
180 ms. SEM are reported in parentheses.
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there are several reasons to think that this is not the case. 
First, even though the criteria were different for non-bird an-
imals and vehicle primes, the d-primes were also higher for 
vehicle primes than non-bird animal primes. That is, there is 
clear evidence for a difference in sensitivity due to the prime 
category. Second, this bias was also found for bird primes: 
with the prime always being a bird, participants' responses 
were more conservative to vehicle test images than to non-
bird test animal images. This shows that criterion can change 
even when the prime is kept constant, indicating that a crite-
rion change is not necessarily attributable to the prime. We 
take these findings to reflect a general difference in responses 
to non-bird animal and vehicle images, not a specific effect 
of the prime.

It might be possible to assess the effect of prime with an 
alternative comparison. For example, if we consider trials 
where the test images are consistent but the primes are varied 
across conditions, we find differences in criterion but not in 
d-primes (e.g., when comparing bird prime related and non-
bird animal prime conditions, the test images are consistent, 
birds and non-bird animals in Hits and FAs, respectively, for 
both conditions, but primes are either birds in the bird prime 
related condition or non-bird animals in the non-bird animal 
prime condition). This change in criterion can be argued to 
drive performance. However, once again, there are several 
confounds in this comparison, which makes any conclusion 
unreliable. First, response congruency is confounded in the 
two cases. When the prime is a bird, Hits are congruent and 
FAs are incongruent, whereas the opposite is true for non-bird 
primes. That is, the differences can be attributed to differ-
ent congruency relationships and not type of prime. Second, 
even when the prime is the same (bird), criterion shifts from 
liberal to conservative depending on the type of test image 
that elicits FAs (non-bird animal versus vehicle). This indi-
cates that it is not the prime that drives the shift in criterion 
and further supports the inference made above that general 
differences in processing non-bird animal and vehicle affect 
both d-primes and criterion. It is therefore very difficult to in-
terpret any differences in d-primes or criterion between bird 
and non-bird prime trials.

In the approach, where congruency is consistent across 
Hits and FAs, we observe a bias towards “no” responses in 
related trials (including a vehicle) compared to unrelated 
trials (including a non-bird animal). This bias is also found 
in the parameter z for a DDM based on a stimulus coding 
procedure (see Appendix S1). We nevertheless observe a 
difference in d-primes between related and unrelated con-
ditions, suggesting that despite a difference in criterion, 
congruency affects sensitivity. The results of this approach 
also suggest that vehicle images are processed differently 
than non-bird animal images. Indeed, d-primes and crite-
rion were higher in the unrelated than in the related con-
gruent condition, and since Hits were the same in both TA
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conditions, this effect originates from FAs. This suggests 
that, with vehicle images, participants were more conser-
vative and categorised them better than non-bird animal 
images.

2.2.3 | Quantile analysis

Quantile analysis allows us to investigate the dynamics of the 
RT priming effect depending on the speed of participants' re-
sponses. Kinoshita et al. (2017) found that when two stimuli 
convey incompatible responses, the interference increases 
with longer RTs. On the other hand, the interference is stable 
across time if the incongruent stimulus is presented 500 ms 
before the target. The authors argue that when both distrac-
tor and target are presented simultaneously, the interfer-
ence between stimuli increases because the accumulation of 
evidence occurs simultaneously for both stimuli. With such 
concurrent accumulation, the mutual interference increases 
as time passes. When the distractor is presented 500 ms in 
advance of the target, the information about the distractor 
would have been fully accumulated, and hence, interference 
would be constant across time. In our paradigm, the prime 
and the target were presented 80 or 180 ms apart. It is pos-
sible that the prime, even if it was supposed to be ignored by 
the participants, was still being processed over time, espe-
cially since it was not masked. If it were the case, its interfer-
ence with the target should increase with longer RTs. Such 
an increase should be observable particularly at short SOA, 
when the accumulation of evidence for the prime might still 
be ongoing.

The results show that the prime interferes with the pro-
cessing of the target to the same extent across RTs (Figure 4). 
The priming effect is quite stable for all conditions except 

from the 6-7th decile at long SOA where it starts decreasing 
for both the unrelated (vehicle) and the related (non-bird an-
imal) prime conditions. Indeed, the priming effect is close to 
0 at long SOA for the slowest RT quantile bin when the prime 
was a vehicle. These findings suggest that the prime has been 
processed very quickly and automatically through a feed-for-
ward pathway and is not processed further after the target 
appears. Its effect, either during processing in visual areas 
or at the motor level stage, is stable over time. Additionally, 
the interference seems to decrease with longer RTs and SOA, 
particularly for unrelated primes.

2.2.4 | Drift diffusion modelling

The priming effect that we observed can be the product of 
different cognitive processes. The DDM allows us to estimate 
the contributions of mechanisms such as non-decisional pro-
cesses (t), speed of information processing (v) and decision 
threshold (a). Based on previous results (Voss et al., 2013), 
we might expect that the priming effect (the difference be-
tween congruent and incongruent primes) will be related to 
a difference in motor response (t). Our results also showed 
a difference between related and unrelated primes. This ef-
fect cannot be accounted by a difference in motor response 
as both primes are incongruent. However, it could be attrib-
utable to a difference in the speed of evidence accumula-
tion (v), which would suggest that the neural processing of 
the target is affected differentially by the relatedness of the 
prime. We do not have any predictions for a but including 
it in the model should control for any difference in decision 
criteria (speed–accuracy trade-off) that could affect a specific 
condition. Please note that the results are presented with a 
Bayesian probability measure (P) that two distributions are 

T A B L E  3  Signal detection analysis in Experiment 1

Hit trials FA trials

80 ms SOA 180 ms SOA

d-prime Criterion d-prime Criterion
Consistent prime

Bird prime related BB BA 3.11 (0.13) −0.14 (0.05) 3.09 (0.16) −0.24 (0.07)
Bird prime unrelated BB BV 3.72 (0.12) 0.18 (0.07) 3.66 (0.14) 0.05 (0.09)
Non-bird animal prime AB AA 2.97 (0.13) 0.10 (0.05) 3.02 (0.14) 0.17 (0.06)
Vehicle prime VB VV 3.81 (0.15) 0.38 (0.05) 3.94 (0.13) 0.26 (0.06)

Consistent congruency
Congruent related BB AA 3.27 (0.11) −0.05 (0.04) 3.47 (0.13) −0.05 (0.04)
Congruent unrelated BB VV 3.96 (0.10) 0.30 (0.05) 4.00 (0.13) 0.23 (0.05)
Incongruent related AB BA 2.81 (0.16) 0.01 (0.05) 2.64 (0.18) −0.02 (0.08)
Incongruent unrelated VB BV 3.58 (0.18) 0.25 (0.06) 3.57 (0.19) 0.08 (0.06)

Note: The analysis is based on whether the prime category or response congruency is kept constant between Hit and FA trials. For each condition, the exact trials for 
Hit and FA are described as prime-test image pairs, where B stands for bird, A for non-bird animal, V for vehicle. For example, AB is a trial where a non-bird animal 
is presented as a prime and a bird as the test image to be categorised. SEM is reported in parentheses next to mean d-prime and criterion.
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different from each other. This can be interpreted in a similar 
way, but is not equivalent, to p-values estimated in frequen-
tist statistics. Here, a probability (P) of less than .05 indicates 
that there is substantial evidence for a difference between the 
two conditions being compared and the strength of this dif-
ference is reflected in the probability value.

Drift rate (v)
In general, non-bird animal primes slowed down the accu-
mulation of evidence of the target stimulus compared to the 
other primes (Figure 5). The accumulation of evidence was 
slower when the bird target was preceded by a non-bird ani-
mal than by a bird prime at both 80 ms (P = .02) and 180 ms 
(P = .002) SOA. The drift rate in the non-bird animal prime 
condition was also slower than in the vehicle prime condition 
at 180 ms (P =  .0015) but only to a small extent at 80 ms 
(p = .10). There was no clear difference in v between bird and 
vehicle primes (P = .21 and P = .51 at short and long SOA, 
respectively).

Non-decisional processes (t)
Non-decisional processes were faster following a bird than a 
non-bird animal prime (P = .02 and P = .03 at 80 and 180 ms 
SOA, respectively). For the vehicle prime, t was slower than 
for the bird prime at the short SOA (P = .06), but did not differ 
from that for the non-bird animal prime condition (P = .34). 
At the longer SOA, t in the vehicle prime condition became 
faster and was barely distinguishable from bird or non-bird 
animal prime conditions (P = .20 and P = .13, respectively). 
This finding is supported by the quantile analysis described 
earlier which shows a decay in the priming effect due to vehi-
cle primes for the long SOA at long RTs (later quantiles). In 
short, primes eliciting different motor responses than the tar-
get slowed down behaviour. This effect was observed at both 
short and long SOAs although the difference was reduced for 
the unrelated prime at long SOA. This replicates the response 
congruency effect found by Voss et al. (2013).

Decision threshold (a)
The decision threshold was similar after bird and vehicle 
primes at both SOAs (Ps > .46). It was lower in the non-bird 
animal prime condition, particularly at long SOA (Ps < .03); 
there was less of a difference at short SOA (P  =  .10 and 
P =  .17 compared to bird and vehicle prime condition, re-
spectively). This suggests that incorrect responses were fast 
in the related incongruent prime condition compared to the 
other two conditions, particularly at long SOA. This might 
reflect the premature execution of an incorrect response, 
probably due to the high similarity between prime and target 
features.

Summary
The DDM results show that the priming effect for unrelated 
(vehicle) primes is mainly the result of longer non-decisional 
processes, indicating a likely interference in motor response. 

F I G U R E  4  Evolution of the RT priming effect depending on the 
speed of the participants' responses. Error bars represent within-subject 
95% CI
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For related primes (non-bird animal) in addition to response 
competition, decisional processes interfere with the categori-
sation of the target.

2.3 | Discussion

Our results showed that an image flashed for only 20 ms af-
fected the categorisation of a subsequent image both in terms 
of response speed and accuracy. If the two images in the se-
quence contained a bird, even though not identical, partici-
pants were faster and more accurate than when the prime was 
a non-bird animal or a vehicle. This was true at short and long 
SOAs, implying that some information about the prime's cat-
egory, perhaps sufficient to bias a motor response, had been 
processed automatically and very quickly.

As such, it can be argued that this priming effect is not the 
consequence of the interaction between different object cat-
egories but reflects stimulus-response binding between the 
bird category and a “yes” motor response (e.g., Denkinger 
& Koutstaal,  2009; Eckstein & Henson,  2012; Horner & 
Henson,  2009). This is probably the case to some extent 
and the results of the drift diffusion model support this idea 
showing slower non-decisional processes in the two incon-
gruent conditions compared to the congruent condition. That 
is, the incongruent prime slows down response execution.

Importantly, our results showed that the priming effect 
was larger for related (non-bird animal) than unrelated (vehi-
cle) primes. Both types of incongruent primes were presented 
the same number of times over the experiment and had the 
same stimulus–response association (“no” response). Thus, 
if the priming effect was only driven by stimulus–response 
association or a motor conflict, we should have observed the 
same amount of priming for related and unrelated incongru-
ent primes. Our results suggest that at least part of the prim-
ing effect is directly caused by the relatedness between prime 
and target categories. Indeed, the DDM results show that 
the priming effect due to a vehicle prime could be explained 
mainly by non-decisional processes. However, the priming 
effect caused by non-bird animal primes was explained by 
non-decisional and decisional processes. Non-bird animal 
primes affected the accumulation of evidence v, the decision 
threshold a and non-decisional processes t.

The priming effect increases for related primes at longer 
SOA but not for unrelated primes. This could be explained 
by the combination of two mechanisms. First, the effect of 
unrelated primes decreases with longer SOA (the DDM pa-
rameters for unrelated incongruent primes become compara-
ble to those of the congruent condition at the longer SOA). 
Second, the decision threshold does not increase at long SOA 
for non-bird animal primes compared to vehicle primes. That 
is, in the non-bird animal prime condition participants are 
fast but at the expense of accuracy, particularly at long SOA. 

Taken together, these mechanisms can explain the increase in 
the priming effect for related compared to unrelated primes 
with longer SOA.

Considered together, our results show that the categori-
sation of a bird image is easier after a congruent than an in-
congruent prime due to an easier response selection process 
(t). Decisional processes were affected differentially depend-
ing on whether the prime was related or unrelated (shared 
the same superordinate animal category as the target or not). 
Unrelated primes marginally affected the accumulation of 
evidence while related primes caused both a lower decision 
threshold and a slower accumulation of evidence (corre-
sponding to less accurate and slower responses, respectively). 
Thus, the efficiency of processing the target stimulus (bird) 
was almost unchanged by an unrelated prime (vehicle) but 
strongly affected by a related prime (non-bird animal). This 
specific effect can be understood as the processing of a noisy 
signal (which leads to both a slow drift rate and inaccurate 
responses) and is in accordance with the interference effect 
found by Cohen et al. (2014) but not with a facilitation effect 
from a spread of activation process. Our results suggest that 
the priming interference depends on how many attributes are 
shared between prime and target. When prime and target fea-
tures are vastly different, such as in the unrelated condition, 
the prime marginally affects the accumulation of evidence. 
However, in the related condition, prime and target share 
many visual features (i.e., all animals have eyes), which ren-
ders the accumulation of evidence slower and noisier.

3 |  EXPERIMENT 2: 
SUPERORDINATE-LEVEL (ANIMAL) 
CATEGORISATION

In the second experiment, we tested participants in an animal/
non-animal categorisation task. We further tested the effect 
of shared attributes by examining more subtle relationships 
between objects. Instead of comparing objects that share or 
do not share the same superordinate category (and therefore 
many or almost no features), we tested attributes that are not 
inherent to a specific superordinate category and therefore not 
directly relevant for the task. In other words, we determined 
whether the sharing of non-essential features also modulates 
interactions between visual categories. These non-essential 
properties nevertheless varied the semantic connections be-
tween pairs of objects.

Orthogonal visual features, such as size, position, orien-
tation, are processed automatically (Hong, Yamins, Majaj, & 
DiCarlo, 2016; Konkle & Oliva, 2012), and the function of ob-
jects also plays a role in how objects are represented (Greene, 
Baldassano, Esteva, Beck, & Fei-Fei, 2016; Huth, Nishimoto, 
Vu, & Gallant,  2012; Peelen & Downing,  2017). Here, we 
grouped animal and vehicle images into three subclasses: air, 
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ground or water. This should allow us to compare images that 
are a-priori more related to each other within a group than 
across groups. Further, this membership was not relevant for 
the animal/non-animal categorisation task and could be tested 
in both congruent and incongruent trials. To give a concrete 
example, a target dog, categorised as an animal, could be pre-
ceded by four types of primes: a cat (congruent related: same 
response and ground subclass), a bird (congruent unrelated: 
same response, different subclass), a truck (incongruent related: 
different response, same ground subclass), or a plane (incon-
gruent unrelated: different response and subclass).

3.1 | Method

3.1.1 | Participants

13 new volunteers and the first author (8 women, all right-
handed; mean age 24 ± 3 years) participated in this experiment. 
All participants had normal or corrected to normal vision and 
provided written informed consent. Experiment 2 participants 
were different from Experiment 1 participants (except for the 
first author) so that the stimulus–response association was un-
contaminated within each experiment. This was done to pre-
vent introducing confounds due to task-switching (Denkinger & 
Koutstaal, 2009; Druey, 2013; Horner & Henson, 2008, 2009, 
2011) ; that is, interference from an earlier task on the current 
one, for example interference due to a dog being a distractor in 
an earlier task but a target in the current one, was avoided.

3.1.2 | Design and stimuli

The experiment consisted of a total of 16 blocks of 96 trials. In 
half of the blocks, the SOA between the prime and the target 
image was 80 ms, and in the other half, it was 180 ms. The 
order of the blocks was randomised. Within a block, half of 
the target images contained animals and the other half vehi-
cles. For each target type, half of the primes were congruent 
and half were incongruent. Furthermore, each stimulus could 
belong to one of three subclasses (air, ground or water). For 
each congruent or incongruent condition, half of the primes 
belonged to the same subclass as the target image (related 
prime) and half belonged to a different subclass (unrelated 
prime). Thus, in one block, participants performed 12 congru-
ent related trials (e.g., cat–dog), 12 congruent unrelated trials 
(e.g., bird–dog), 12 incongruent related trials (e.g., truck–dog) 
and 12 incongruent unrelated trials (e.g., plane–dog) with an 
animal presented as the target image. Additionally, the same 
conditions with the same number of trials per block were used 
but with a vehicle presented as the target image.

Most of the stimuli were the ones used in Experiment 1 
but for the purpose of this experiment, fewer images of birds 

and more images of vehicles and non-bird animals were in-
cluded. The set of images was composed of 1,536 animals 
and 1,536 vehicles that could be presented as either the prime 
or the target image. These two categories were composed of 
three equal subclasses representing air, ground or water. In 
the animal category, 1/3 of the images were birds (pigeon, 
duck, etc.), 1/3 were mammals (cow, deer, etc.) and 1/3 were 
fish (shark, salmon, etc.). In the vehicle category, 1/3 of the 
images were air vehicles (plane, helicopter, etc.), 1/3 were 
ground vehicles (motorbike, truck, etc.), and 1/3 were water 
vehicles (boat, canoe, etc.). Within each subclass, the object 
was presented in various contexts, for example a bird could 
be flying in the sky, standing on the ground or on a lake.

3.1.3 | Procedure

The same procedure as in Experiment 1 was used but partici-
pants were asked to perform an animal/non-animal categori-
sation task (Figure 1).

3.1.4 | Data analysis

We calculated ER and median RT on animal target pictures for 
each participant. The analysis for responses to vehicle images 
can be found in Appendix S1. Trials with anticipatory re-
sponses or the absence of response within 1.2 s (0.8% of all 
trials) were excluded from the analysis. As in Experiment 1, 
we defined the priming effect as the difference in performance 
between incongruent and congruent trials. We determined the 
priming effect for related images (e.g., car/dog trial minus cat/
dog trial) and for unrelated images (e.g., plane/dog minus fish/
dog), separately. We first compared these differences, pooled 
over related and unrelated trials, to 0 using one-sample t tests 
to determine the effect of response congruency on perfor-
mance. Then, a 2 × 2 repeated measures ANOVA (SOA x re-
latedness) was applied to RT and ER priming to determine the 
role of relatedness on performance. All reported paired t tests 
are Bonferroni corrected. We also included signal detection 
analysis while keeping in mind the caveats introduced in 
Experiment 1 (see section 2.1.4). Finally, we conducted a 
quantile analysis of RT and modelled our data with HDDM 
using the same procedure as in Experiment 1. Gelman–Rubin 
diagnostics showed that all 5 chains converged well: all R̂ val-
ues were below 1.0065. Posterior predictive checks also 
showed a good fit between observed RT and predicted RT 
from the model (see Figure 6 and Table S2).2

 2As in Experiment 1, the results of a stimulus-coding procedure which 
includes responses to animal and non-animal images are reported in 
Supplementary Materials (Figure S8). This model revealed no difference in 
response bias, z, between conditions and produced very similar output as 
reported here with an accuracy-coding procedure.
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3.2 | Results

3.2.1 | Priming effect

As in Experiment 1, we were interested in studying the in-
fluence of the prime category and SOA on the priming ef-
fect (Figure 7). To test the effect of response congruency, the 
two relatedness conditions were pooled. We report the raw 
RT and ER for the target category “animal” in Table 4 and 
for the distractor category “vehicle” in Table 5. We present 
the statistical analysis of responses to vehicle images in the 
Appendix S1. This analysis shows comparable results to that 
of animal images.

Effect of response congruency
Error rates. ER was in general higher in incongruent than 
in congruent trials. At 80  ms SOA, ER was on average 3 
percentage points higher in the incongruent compared to the 
congruent condition (t(12) = 3.20, p = .02), and at 180 ms, 
it was around 5 percentage points higher (t(12)  =  3.72, 
p = .006).

Reaction times. RTs were on average 41  ms slower in 
the incongruent compared to the congruent condition at 
80  ms SOA (t(12)  =  6.77, p  <  .001) and 61  ms slower in 

the incongruent condition at 180  ms SOA (t(12)  =  6.45, 
p < .001).

Effect of relatedness
Error rates. The RM-ANOVA on ER priming revealed 
no difference between related and unrelated primes 
(F(1,12) = 0.26, p = .62, pη2 = 0.02). There was also no effect 
of SOA (F(1,12) = 1.60, p = .23, pη2 = 0.12) or interaction 
between relatedness and SOA (F(1,12)  =  0.42, p  =  .53, 
pη2 = 0.03).

Reaction times. RT priming was higher at longer SOA 
(F(1,12) = 8.83, p = .01, pη2 = 0.42) but there was no effect 
of relatedness (F(1,12)  =  0.13, p  =  .52, pη2  =  0.03) or an 
interaction (F(1,12) = 3.50, p = .09, pη2 = 0.23).

Summary
As observed in Experiment 1, the prime category was pro-
cessed automatically by the participants leading to better 
performance in the congruent condition than in the in-
congruent conditions. However, prime relatedness, when 
not task-relevant, did not seem to have modulated re-
sponses, confirming previous results (Evans, Horowitz, & 
Wolfe, 2011).

3.2.2 | Signal detection analysis

As mentioned in Experiment 1, SDT analysis is not eas-
ily applicable to our paradigm and its interpretation can 
be unclear. Nevertheless, we report d-prime and criterion 
(Table 6) using the two approaches discussed earlier: when 
the kind of prime is consistent across Hits and FAs (con-
founding the effect of congruency) and when congruency 
is consistent across Hits and FAs (confounding the effect of 
prime category).

According to the approach where the prime is kept constant, 
participants showed a bias towards “yes” responses when pre-
sented with an animal prime and towards “no” responses with 
a vehicle prime. d-primes were otherwise very similar in all 
conditions. Given that accuracy is very high, comparing ani-
mal and vehicle primes consists primarily in comparing Hits 
for animal prime trials, which are congruent, with Hits for vehi-
cle prime trials, which are incongruent. Thus, not surprisingly, 
participants were more conservative in incongruent trials than 
in congruent trials. On the contrary, according to the approach 
where congruency is kept constant, d-primes were higher for 
congruent than for incongruent trials. Importantly, no response 
bias was observed suggesting that the effect of congruency was 
perceptual. Overall, these results support the findings that, with 
the current set of manipulations, congruency strongly affects 
performance, whereas relatedness between two categories has 
little to a mild effect on behaviour.

F I G U R E  6  Observed (red histograms) and HDDM predicted 
(blue histograms) RT distributions in the different prime and SOA 
conditions in Experiment 2. Incorrect responses are represented with 
negative RTs
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3.2.3 | Quantile analysis

The results of the quantile analysis show that the priming ef-
fect is stable across RTs in both related and unrelated con-
ditions (Figure  8). There might be a small decrease at the 
slowest quantile for the unrelated prime at long SOA but this 
observation is based on just one data point. In general, the 
analysis suggests that the prime is not processed further once 
the target object is presented. The interference that the prime 
induces is present from the onset of the target and does not 
change at longer RTs.

3.2.4 | Drift diffusion modelling

As in Experiment 1, to compare the experimental conditions, 
we calculated a Bayesian probability measure (P) that two 
distributions are different from each other.

Drift rate (v)
The accumulation of evidence was much faster after a con-
gruent than an incongruent prime (all Ps <  .01; Figure 9). 
However, the drift rate was not affected by the relatedness of 
the prime (all Ps > .14) or by the SOA (all Ps > .19).

F I G U R E  7  Priming effect in Experiment 2 (animal/non-animal categorisation task) for ER (left panel) and RT (right panel). Each coloured 
dot represents one participant's performance. The average across participants is represented in red with within-subject 95% CI
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T A B L E  4  Average of median RT in ms and mean ER in % in Experiment 2 for categorising an animal image

80 ms SOA 180 ms SOA

Congruent 
related

Incongruent 
Related

Congruent 
Unrelated

Incongruent 
Unrelated

Congruent 
related

Incongruent 
Related

Congruent 
Unrelated

Incongruent 
Unrelated

RT 496 (17) 534 (16) 497 (17) 538 (17) 488 (19) 553 (19) 492 (20) 549 (20)
ER 2.59 (0.74) 6.04 (1.55) 3.50 (0.79) 6.71 (1.17) 2.35 (0.66) 6.80 (1.47) 3.03 (0.63) 8.58 (2.21)

Note: Animal images were presented after a congruent related, an incongruent related, a congruent unrelated or an incongruent unrelated prime with a SOA of 80 ms or 
180 ms. SEM are reported in parentheses.

T A B L E  5  Average of median RT in ms and mean ER in % in Experiment 2 to non-animal (vehicle) images

80 ms SOA 180 ms SOA

Congruent 
related

Incongruent 
Related

Congruent 
Unrelated

Incongruent 
Unrelated

Congruent 
related

Incongruent 
Related

Congruent 
Unrelated

Incongruent 
Unrelated

RT 488 (18) 538 (19) 501 (17) 541 (19) 495 (21) 553 (22) 507 (20) 555 (23)
ER 1.80 (0.56) 5.64 (1.02) 1.47 (0.48) 5.99 (1.26) 1.45 (0.40) 7.14 (2.47) 2.51 (0.52) 7.13 (2.39)

Note: At 80 ms and 180 ms SOA depending on the prime congruency and relatedness. SEM are reported in parentheses.
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Non-decisional processes (t)
Non-decisional processes were similar across conditions, 
except that it decreased in the congruent related condi-
tion at longer SOA (P  =  .01). With an increase in SOA, 
there might be better preparation of the motor response in 
the congruent conditions. However, t does not decrease as 
much after a congruent unrelated prime (P =  .15). Thus, 
response congruency alone cannot account for the ac-
celeration of non-decisional processes with longer SOA. 
The relatedness of the prime also needs to be taken into 
consideration.

Decision threshold (a)
At short SOA, the decision threshold was similar across con-
ditions (all Ps > .18). a increased (less noisy signal, more ac-
curate responses) in the congruent related condition at longer 
SOA compared to short SOA (P = .04) such that there was a 
clear difference at long SOA between related congruent and 
incongruent conditions (P = .009). In other words, when the 
prime was from the same category and class as the target, 

responses became more accurate at long SOA. This effect 
was absent in other prime conditions.

Summary
The priming effect observed in Experiment 2 is the result 
of a strong congruency effect on the drift rate. Although we 
would have expected an effect on non-decisional processes 
(t), the congruency effect is explained by a slower v in in-
congruent than in congruent conditions. With our results, it is 
difficult to determine whether the congruent prime facilitates 
the accumulation of evidence (v) or if the incongruent prime 
slows it down. However, given that in Experiment 1 the ac-
cumulation of evidence was slowed down only in the incon-
gruent related condition, it is more likely that incongruent 
primes slow down the accumulation of evidence.

There was no effect of relatedness in the incongruent con-
ditions. However, in the congruent condition, related primes 
facilitated target processing at long SOA for a and t. This sug-
gests that when prime and target are very similar, the prime 
can speed up target processing with long enough SOA. That 
is, this facilitation is a late effect and seems to build up with 
more time between prime and target.

3.3 | Discussion

As in Experiment 1, the presentation of a brief image influ-
enced the categorisation of a following image in an animal/
non-animal task. Despite a large diversity of images (animals 
and vehicles) used in this study, we found a large congruency 
effect. Participants were slower and less accurate in catego-
rising an animal target after a vehicle prime than after an ani-
mal prime and this effect increased with SOA.

Our DDM analyses show that the difference between 
congruent and incongruent primes was not explained by 

T A B L E  6  Signal detection analysis in Experiment 2 

Hit trials FA trials

80 ms SOA 180 ms SOA

d-prime Criterion d-prime Criterion
Consistent prime

Animal related AA related AV related 3.73 (0.19) −0.21 (0.05) 3.79 (0.24) −0.21 (0.08)
Animal unrelated AA unrelated AV unrelated 3.61 (0.17) −0.13 (0.07) 3.67 (0.24) −0.13 (0.06)
Vehicle related VA related VV related 3.85 (0.20) 0.26 (0.04) 3.79 (0.15) 0.33 (0.05)
Vehicle unrelated VA unrelated VV unrelated 3.79 (0.13) 0.34 (0.06) 3.59 (0.19) 0.25 (0.08)

Consistent congruency
Congruent related AA related VV related 4.21 (0.18) 0.06 (0.06) 4.29 (0.16) 0.08 (0.06)
Congruent unrelated AA unrelated VV unrelated 4.12 (0.15) 0.18 (0.06) 3.98 (0.14) 0.03 (0.06)
Incongruent related VA related AV related 3.39 (0.23) −0.02 (0.03) 3.27 (0.25) 0.06 (0.07)
Incongruent unrelated VA unrelated AV unrelated 3.25 (0.16) 0.05 (0.07) 3.26 (0.31) 0.08 (0.04)

Note: Mean d-prime and criterion are reported with their SEM in parentheses.
Abbreviations; A, animal image; V, vehicle image.

F I G U R E  8  Evolution of the RT priming effect in Experiment 
2 depending on the speed of the participants' responses. Error bars 
represent within-subject 95% CI
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non-decisional processes (motor preparation) but by a slower 
drift rate in the incongruent conditions. Even if prime and 
target do not belong to the same subclass, as long as they 
share the same superordinate category, the drift rate is faster 
than for a prime that belongs to a different superordinate cat-
egory. It is somewhat surprising that we did not find a no-
ticeable difference in non-decisional time between congruent 
and incongruent trials even though this effect was clearly 
visible in Experiment 1. t was in general lower (faster) in the 
congruent condition compared with the incongruent condi-
tion (the extent of overlap between conditions varied between 
0.77 and 0.96, with 0.5 being complete overlap and 1 no over-
lap) but this difference was stronger in Experiment 1 (where 
the probabilities were above 0.95, except at long SOA when 
comparing vehicle and bird primes). This suggests that the 
association between an object category and its correspond-
ing motor response was stronger in Experiment 1 than in 
Experiment 2. One possible explanation for this stimulus–re-
sponse mapping difference is that the target category (bird) 
is better defined (less broad and diverse) in the first than 
in the second (animal category) experiment. Therefore, the 
mapping between the response and the stimulus could have 
been based on only a few bird features in Experiment 1 which 
would accentuate the effect of non-decisional processes.

Relatedness had only a small effect in this experiment. 
This could be because these attributes were task irrelevant 
and/or because the (semantic) relationship between the ob-
jects (e.g., within air animals as opposed to between air and 
ground animals) was not very strong. Nevertheless, the re-
sults of the DDM suggest that relatedness seems to have an 
effect at long SOA on congruent primes. We found that re-
lated congruent primes facilitated target categorisation, par-
ticularly at long SOA, through modulating a and t.

Interestingly, task requirements have a major impact on 
the priming effect. In Experiment 1, categorising a bird target 
was much faster and more accurate when preceded by a bird 
than by a non-bird animal. On the other hand, in Experiment 

2, there was no difference when air animal (birds) were pre-
ceded by either air animals or other animals (non-birds) (RT 
priming: t(12) = 0.55, p =  .59; ER priming: t(12) = 0.39, 
p =  .70). This difference between the two experiments, de-
spite these conditions using the same stimulus pairings, can 
be explained by response congruency: in Experiment 1, non-
bird animal primes were incongruent with a bird response 
whereas in Experiment 2 non-bird animal primes were con-
gruent with an animal response.

However, response congruency alone cannot explain all 
our results. For example, the amount of priming was differ-
ent for the two incongruent primes in Experiment 1. Further, 
consider the following results. A vehicle prime in Experiment 
2 interfered more than an animal prime when categorising 
an animal target. In Experiment 1, a vehicle prime interfered 
less than an animal prime when categorising a bird target. 
This set of findings cannot be explained by response congru-
ency, since vehicles were incongruent in both experiments. 
Hence, this outcome must depend on the specific categorisa-
tion task. In Experiment 1, the target category is set around 
only birds, whereas in the second the target category encom-
passes a larger set of objects, all animals. We discuss how this 
difference in task requirements can explain our results in the 
General Discussion section.

4 |  GENERAL DISCUSSION

The main goals of this study were to examine how visual 
categories interact when active within a short temporal 
window and to determine the cognitive mechanisms under-
lying these interactions. Our results show that a brief pres-
entation of an image influenced categorisation performance 
of a subsequent test image at both basic and superordinate 
levels. Participants knew that they should ignore the first 
image (prime) but its processing was unavoidable. Thus, in 
agreement with previous observations (Evans et al., 2011), 

F I G U R E  9  Posterior estimates of the hierarchical drift diffusion model parameters in Experiment 2: drift rate v, non-decision time t, decision 
threshold a, for the four different primes and the two SOAs. Error bars represent 89% credible intervals
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a first conclusion of our study is that object attributes, par-
ticularly those that determine category membership, are 
automatically and rapidly processed and can influence the 
processing of other objects. Crucially, the relatedness be-
tween the prime and the subsequent image modulated per-
formance. We discuss these findings and their implications 
in detail below (see section 4.1).

Additionally, our results show that when prime and target 
conveyed the same response (congruent condition) perfor-
mance was better than when the two images conveyed con-
flicting responses (incongruent condition). This effect can 
partially be attributed to an interference at the motor response 
stage, which replicates previous findings (Voss et al., 2013), 
but more so, and interestingly, during the accumulation of 
evidence. This suggests that the prime sufficiently alters the 
state of category-processing neurons such that subsequent 
processing of the target is modulated by this changed state. 
This effect of the prime on the accumulation of evidence de-
pends on how similar the prime is to the target category as 
defined by the task.

Finally, the SOA between the two images influenced 
the priming effect only in two specific conditions. In 
Experiment 1, the interference due to an unrelated incon-
gruent prime (vehicle prime for a bird target) reduced with 
longer SOA. In Experiment 2, related congruent primes 
(bird prime for a bird target) facilitated target categorisa-
tion at the longer SOA. Interestingly, although these ef-
fects seem to be in opposite directions, the DDM results in 
both conditions reveal that the SOA effect was not driven 
by a difference in v but instead by faster t and higher a. 
This finding could be explained by a striking character-
istic shared by these two conditions: they are the easiest 
conditions in terms of perceptual distance or similarity 
between the prime and the target. The primes are either 
extremely dissimilar to the target representation (vehicles 
in Experiment 1; maximal perceptual distance with the tar-
get exemplar) or extremely similar to it (congruent related 
primes in Experiment 2; minimal distance from the target 
exemplar). That is, SOA did not influence the processing 
of the target during categorisation, but participants modi-
fied their response criteria and motor preparation at longer 
SOAs in the easiest conditions. This suggests that the in-
teraction between two objects is temporally stable, partic-
ularly with regard to the processing of categories in the 
visual system (accumulation of evidence). This conclusion 
is bolstered by the finding that the behavioural priming ef-
fect remains stable over a long range of response times, as 
revealed by the quantile analyses.

Together, our results suggest that a briefly presented 
image interacts with the categorisation of a following image. 
This interaction does not facilitate the processing of the 
image, as the pre-activation or the spread of activation hy-
potheses would suggest, but instead interferes with it, as the 

neural interference proposal would suggest (such as in Cohen 
et al., 2014). We outline, below, a general principle that can 
explain our and others' results, inspired by and incorporating 
the current understanding of the organisation of visual cate-
gories in the brain.

4.1 | Interactions are determined 
by the organisation of categories

Visual objects can be represented in a multi-dimen-
sional space in which the distance between them is 
based on their perceptual similarity (Carlson, Ritchie, 
Ritchie, Kriegeskorte, Durvasula, & Ma,  2013; Mohan 
& Arun,  2012; Ritchie, Tovar, & Carlson,  2015; Sofer, 
Crouzet, & Serre, 2015). When these distances are mapped 
out, the resulting layout exhibits a hierarchical structure 
in which sub-categories are nested within more broad cat-
egories (see Figure 10). This sort of organisation has also 
been described in the language domain, particularly by 
McClelland & Rogers to illustrate their Parallel Distributed 
Processing theory (McClelland & Rogers, 2003; Rogers & 
Patterson, 2007).

Interestingly, this perceptual organisation accords well 
with the neural organisation of visual categories in the ITC 
(Carlson, Simmons, Kriegeskorte, & Slevc,  2014; Jozwik, 
Kriegeskorte, & Mur,  2015; Mur et  al.,  2013). Several 
studies have shown that real-world objects are represented 
in the ITC both in a continuous and a categorical manner 
(Bell, Hadj-Bouziane, Frihauf, Tootell, & Ungerleider, 2008; 
Kriegeskorte et al., 2008; Sato et al., 2013; Sha et al., 2014). 
Patterns of neural activity elicited by related objects (e.g., 
cat and bird) resemble each other more than those elicited 
by unrelated objects (e.g., cat and plane). The degree of (dis)
similarity between objects can be depicted as a distance in 
a multi-dimensional continuous semantic or neural space 
(Kriegeskorte et al., 2008; Mur et al., 2012). Further, objects 
are represented in the ITC in categorical clusters. For exam-
ple, there seem to be patches of neurons that specialise in 
processing specific categories such as animate and inanimate 
objects, or faces and body parts (e.g., Freiwald & Tsao, 2010; 
Grill-Spector, 2003).

Given this perceptual and neural organisation, to perform 
a categorisation task the system will need to determine a 
boundary around the set of object features or elements that 
define and distinguish the target category from other cate-
gories. For example, in a bird/non-bird categorisation task, 
the system needs to include features that are shared by other 
categories, such as “eye,” but needs to specifically look for 
features that are found only in birds, such as “feather.” This 
boundary might be thought of (but is not restricted to) as a 
linear separation between target and distractors as decod-
ing studies might suggest (DiCarlo & Cox,  2007). We are 
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agnostic as to how exactly this separation occurs in the rep-
resentational space.

In addition to changes in task-related boundary, the dis-
tance between representations itself might vary depending 
on the task. Several studies have shown that discriminability 
of neural representations is affected by task demands and it 
has been suggested that attention could selectively exaggerate 
the distance between them along relevant dimensions (Çukur, 
Nishimoto, Huth, & Gallant,  2013; Erez & Duncan,  2015; 
Harel, Kravitz, & Baker, 2014; Nastase et al., 2017). However, 
such effects cannot explain, on their own, the difference be-
tween facilitatory or interfering prime effects. A boundary 
or a maximal distance at which one representation cannot be 
considered as congruent (and becomes incongruent) needs to 
be set. Therefore, we focus our interpretation on the role of 

task boundary in the priming effect without discussing the 
role of attention further.

The continuous and categorical organisation of catego-
ries influences participants' performance in single object 
categorisation tasks (Carlson, Ritchie, et al., 2013; Ritchie 
et  al.,  2015; Sofer et  al.,  2015). For example, Carlson, 
Ritchie, et al. (2013) have shown that the distance between 
the neural representation of an object and its task-defined 
category boundary predicts the speed at which it can be 
categorised. According to them, this finding explains why 
a highly discriminable object, which implies a large dis-
tance between it and its category boundary, can be cate-
gorised quickly. We will utilise this “distance-to-bound” 
approach (Ritchie & Carlson, 2016) in our explanation of 
the results. Specifically, we will consider the proposal that 

F I G U R E  1 0  Schematic representation of object representations with their possible interactions. Each coloured circular blob represents an 
object. Different colours represent different basic categories from among natural and man-made categories. In Experiment 1, we asked observers to 
perform a bird/non-bird categorisation task. The task boundary in this case would be the red square that encloses bird representations but excludes 
all other. The task boundary in Experiment 2 (animal categorisation) is represented by the blue square. The different experimental conditions are 
illustrated with patterned circles. The red circle with dot patterns represents a bird (animal) target. The four circles with vertical lines represent 
possible primes. The red circle with vertical lines is a bird prime, the orange circle with vertical lines is a non-bird animal prime, and the two blue 
circles with vertical lines are vehicle primes. In Experiment 2, if we take the example of an air animal target (bird, dot-filled circle), the red circle 
with vertical lines represents a congruent related prime (bird), the orange circle with vertical line an unrelated congruent prime (cat), the two blue 
vertical blobs a related and an unrelated incongruent prime (plane and car respectively). The arrows indicate interference in Experiments 1(red 
arrows) and 2 (blue arrows). When the prime does not belong to the target category (the prime is outside the red or blue square), the closer it is to 
the boundary, the slower the target processing. In Experiment 1, the distance to the task boundary (red square) is close for non-bird animals but not 
for vehicles, explaining the large interference from the non-bird animal primes (larger arrow) but almost no interference from vehicle primes. In 
Experiment 2, the distance between vehicles and the task boundary (blue square) decreases compared to Experiment 1 such that vehicles interfere 
with the processing of an animal target. Icons from https://icons8.com

https://icons8.com
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the distance from a prime to the target category boundary 
modulates the strength of the interference in the accumula-
tion of evidence.

In Experiment 1, participants were asked to perform 
a bird/non-bird categorisation. Here, the target category 
boundary would be set around birds. In this situation, 
non-bird animals are close to the boundary (since they are 
within the same superordinate animal category) while ve-
hicles are further away from the target category boundary 
(since they belong to a distinct superordinate category). In 
accordance with the distance-to-bound principle's predic-
tions, the accumulation of evidence was slower for a bird 
image when it was preceded by a related (non-bird animal) 
than by an unrelated (vehicle) prime. In Experiment 2, 
the task boundary was set around all animals. The vehicle 
category is now closer to the boundary. According to the 
distance-to-bound principle, it should interfere with the ac-
cumulation of evidence for an animal (such as a bird) target 
image, more than in Experiment 1, which is what we find. 
This raises the important point that it is not the distance 
between the prime and the specific target image that mat-
ters but the prime's distance to the task-relevant category 
boundary. Indeed, if the distance between prime and target 
images were the determining factor, the interference in-
duced by a vehicle prime on a bird target should have been 
the same in both experiments; the distance between them 
remains the same in both tasks. However, there was hardly 
any interference in the speed of information accumulation 
in the basic-level categorisation task (Experiment 1), but a 
substantial reduction in the speed at the superordinate-level 
(Experiment 2). Thus, the rate of evidence accumulation 
depends on the prime's distance to the target boundary 
and therefore reflects the organisation of categories in the 
brain, presumably in the ITC (see Figure 10 for an illustra-
tion and examples).

This distance-to-bound approach is not incompatible 
with the neural overlap explanation developed by Cohen 
et al. (2014). In their studies, they argue that the interference 
from a distractor depends on the extent to which its neural ac-
tivity overlaps with that of the target representation: the more 
similar the neural activity, the greater the interference. One 
can easily consider the amount of neural activity overlap to be 
in direct relation with the distance between representations, 
the explanatory principle that we utilise, since both reflect the 
perceptual similarity between the stimuli. That is, the extent 
of neural overlap between two objects might be strongly cor-
related with the perceptual distance between them. Extending 
this reasoning to our study, we can begin by assuming that 
the categories of both objects are processed and overlap in 
the ITC (the interpretation remains the same if the relevant 
processing occurs in other brain regions) since the SOA be-
tween the two images is relatively short (but long enough 
to not cause backward or forward masking). In incongruent 

trials, a related incongruent prime (say a non-bird animal in 
Experiment 1) would elicit activity that is more similar to that 
of the target than an unrelated incongruent prime (a vehicle in 
Experiment 1). This increased similarity in neural activity of 
the related incongruent prime leads to more interference with 
the target, which would explain our current result.

Speaking in more general terms, when the prime is con-
gruent with the target (bird–bird trial in Experiment 1 and 
animal–animal trial in Experiment 2), it evokes the same 
motor and similar neural response as the target. In an in-
congruent trial, the prime elicits activity outside the tar-
get category boundary, whereas the target elicits activity 
within it. The available information is therefore noisy as 
it conveys conflicting information and the system needs to 
separate out the two patterns of activity to reach a decision 
about the target's category. In this case, we would expect 
that the more similar the two representations are, the more 
the prime will interfere with the processing of the target, 
exactly as observed. Our findings therefore support Cohen 
et al.'s proposal. However, as mentioned above, there is a 
caveat. Cohen et al. considered the neural overlap between 
two objects, which translates to the distance between two 
objects. This distance is not sufficient to explain all our 
results. As discussed, it is the distance of the prime to the 
task-relevant boundary and not to the target representation 
that is relevant; otherwise, the vehicle prime would have 
had the same interference at both categorisation levels. 
Thus, we argue that Cohen et al. proposal is only applica-
ble to the specific situation they tested and thus may not 
be a general principle to explain object interactions. In a 
categorisation task, the system is looking for any evidence 
(neural activity) that suggests that the image belongs to 
the target category. If there is activity outside the category 
boundary, as is the case for an incongruent prime, the dis-
tance-to-bound principle indicates that the processing time 
needed for the prime representation to be discounted (or 
parcelled out) increases the closer it is to the task-relevant 
category boundary.

4.2 | Locus of category interactions

There are good reasons to think that categories interact in 
the ITC, particularly when two objects are visually presented 
in rapid succession. First, ITC has been documented to rep-
resent categories, in a way that is similar to the perceptual 
organisation of categories (Jozwik et al., 2015; Kriegeskorte 
et  al.,  2008). Similarly, there is strong evidence that cat-
egorical information at the superordinate-level (“animal”) 
and basic-level (“dog”) can be accessed automatically (Li, 
VanRullen, Koch, & Perona, 2002; Poncet, Reddy, & Fabre-
Thorpe,  2012; Rousselet, Thorpe, & Fabre-Thorpe,  2004). 
Therefore, it seems plausible that the category of a distractor 
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image could influence the processing of a subsequent target 
image. Second, the activity elicited by a stimulus persists 
in the ITC long after its presentation (Kovács, Vogels, & 
Orban, 1995; Rolls & Tovée, 1994). Rolls and Tovée, (1994) 
reported that neurons in ITC continued to respond for 300 ms 
to a stimulus presented for only 16 ms; they also noted that 
neuronal activity was sustained for even longer durations 
when stimulus presentation times were increased. Finally, 
accurate and robust information about object category can be 
decoded in the ITC as early as 100 ms after stimulus onset 
(Hung, Kreiman, Poggio, & DiCarlo,  2005; Liu, Agam, 
Madsen, & Kreiman, 2009) for multiple levels of categori-
sation (Carlson, Tovar, Tovar, Alink, & Kriegeskorte, 2013; 
Cichy, Pantazis, & Oliva,  2014). Thus, if two pictures are 
presented in rapid succession, categorical information will be 
processed very rapidly for both stimuli, allowing the possibil-
ity for them to interact.

On the other hand, it might be argued that interference 
between images instead takes place at earlier stages of the 
ventral pathway. For example, bird and non-bird animal im-
ages could interfere with each other more than bird and vehi-
cle images because their low-level features are more similar 
in the former than in the latter case (Coggan, Liu, Baker, & 
Andrews, 2016; Oliva & Torralba, 2001). That is, the low-
level image statistics might be enough to explain the inter-
ference in our results without the need to access category 
information. However, this is very unlikely for two main rea-
sons. First, if early interference occurs between similar ob-
jects (e.g., animal–bird), but not between dissimilar objects 
(e.g., vehicle–bird), which is necessary to explain our results, 
then one would predict that the maximal interference should 
occur for congruent trials (e.g., bird prime followed by a bird 
target). The current evidence contradicts this prediction, and 
in fact, we get the best performance in those cases. Note that 
we never used the same image twice, and hence, the target 
and prime were distinct images (so the observed facilitation 
cannot be attributed to putative low-level facilitation from 
identical images). Second, the interference depends on the 
task: bird and animal images interfere in Experiment 1 but 
not in Experiment 2. This would be very unlikely if the ef-
fect was due to low-level image or feature interference. These 
findings argue against the possibility that the results can be 
explained by low-level (pre-categorical) interference.

Nevertheless, it is possible that these interactions take 
place at a step later than ITC, in the pre-frontal cortex (PFC). 
The ITC has strong projections to PFC (Ungerleider, Gaffan, 
& Pelak, 1989; Webster, Bachevalier, & Ungerleider, 1994) 
and it has been argued that while ITC encodes relevant ob-
ject level properties needed to identify an object category, 
PFC categorises stimuli based on more abstract attributes 
(Freedman, Riesenhuber, Poggio, & Miller,  2003; Pan & 
Sakagami,  2012). However, it has been shown that mon-
keys with bilateral removal of PFC were still able to learn 

and generalise perceptual categories of related stimuli rap-
idly without explicit instruction (Minamimoto, Saunders, & 
Richmond, 2010). In humans, damage to the ITC but not 
PFC leads to visual categories agnosias (Gainotti,  2000). 
Closer to our focus, in priming studies PFC seems to be 
mostly involved in the retrieval of stimulus–response asso-
ciations (Horner & Henson, 2008, 2011; Thompson-Schill, 
D'Esposito, & Kan,  1999). Further, Cohen et  al.  (2014) 
found that behavioural interference from multiple object 
categories was correlated with the degree of separation be-
tween the neural patterns in the ITC but not in the PFC. 
These results, in conjunction with the extremely rapid 
reaction times observed in humans when performing cat-
egorisation tasks (Thorpe, Fize, & Marlot,  1996), lead to 
the conclusion that the interactions observed in our study 
are more likely to take place in the ITC than in the PFC. 
Nevertheless, the conclusions of our study are the same ir-
respective of whether the interaction takes place in the ITC 
or in other brain areas.

Another possibility is that the PFC reads out the ITC ac-
tivity to perform the categorisation task. Indeed, there is ev-
idence that object representations in the ITC are unaffected 
by the task, whereas PFC seems to represent only task-rel-
evant information (Bracci, Daniels, & Op de Beeck,  2017; 
Erez & Duncan,  2015; McKee, Riesenhuber, Miller, & 
Freedman,  2014). One can imagine that the boundary be-
tween categories is set by the PFC depending on task de-
mands. During the categorisation, the PFC will “look” at the 
activity in the ITC centres. If the neural activity is within the 
target category boundary, the decision process is fast; how-
ever, if the neural activity crosses the boundary, that is if the 
signal is noisier, the PFC will have to disentangle those pat-
terns of activity and the categorisation process will be slower. 
Lower performance or a large priming effect would thus be 
the result of the difficulty to read-out the ITC signal by the 
PFC or in other words, it would be affected by the quality of 
the signal in ITC. This possibility implies that the interac-
tions between categories are still occurring in the ITC and is 
constrained by its structure.

4.3 | Category interactions in the 
visual domain

Our proposal is consistent with recent advances in under-
standing categorisation mechanisms when only one object is 
presented at a time. Neuroimaging studies have shown that 
all visual features are extracted in parallel or at least around 
the same time after stimulus onset (Carlson, Tovar, et al., 
2013; Cichy et al., 2014; Contini, Wardle, & Carlson, 2017). 
Our proposal incorporates this finding in assuming that in-
formation about all categories is accessed at the same time. 
However, results from behavioural studies have shown that 
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all categorisations are not the same. Performance (RTs and 
ERs) is better when a categorisation task involves pitting 
distant categories (e.g., bird and car) against each other than 
when it involves closer (e.g., bird and dog) categories (e.g., 
Bowers & Jones,  2008; Kadar & Ben-Shahar,  2012; Macé 
et al., 2009; Praß, Grimsen, König, & Fahle, 2013; but see 
Mack & Palmeri, 2015).

Sofer et al. (2015) proposed that such differences in be-
havioural performance could reflect differences in discrim-
inability. With a computational model based on task-specific 
perceptual discriminability between images, they could 
accurately predict behavioural responses in categorisation 
tasks. In our proposal, task-specific perceptual discrimin-
ability would map onto the distance between the distractor 
and the task relevant (target) category boundary. The fur-
ther away the distractor is from the boundary, the easier it 
is to reject it, which would explain the above results. Thus, 
well-established results in visual categorisation studies, such 
as the superordinate superiority (Joubert, Rousselet, Fize, & 
Fabre-Thorpe, 2007; Macé et al., 2009; Wu, Crouzet, Thorpe, 
& Fabre-Thorpe, 2015) or the effect of distractor variability 
(Bowers & Jones, 2008; Poncet & Fabre-Thorpe, 2014) can 
be explained by the distance-to-bound principle. An interest-
ing corollary is that the farther away a specific target is from 
the (target) boundary, the easier (faster) it should be to reach 
the decision that it is a target. We did not test for this possi-
bility in our study, but this prediction would fit well with our 
proposal.

Category interactions have also been reported in visual 
short-term memory studies. In a change detection task, Cohen 
et al. (2014) found that if multiple objects belong to the same 
category, changes are detected less often than if they belong 
to different categories. Further, they found that the similarity 
between neural activity patterns of these objects presented in 
isolation could predict the extent of interference in memory. 
In our study, participants do not actively maintain the prime 
representation in memory, but we expect similar interactions 
to take place due to the rapid succession of the prime and the 
target. Indeed, we found that the more related an incongruent 
prime was to the target, the more it interfered with the pro-
cessing of the target. The similar set of findings across differ-
ent tasks indicate that the distance between representations 
affects behaviour. We propose a more nuanced and general 
rule incorporating the finding that interactions between rep-
resentations depend on task requirements and argue that the 
distance between the distractors and the target boundary (not 
the target itself) is an important determinant of outcomes. 
Cohen and colleagues did not manipulate task requirements 
and hence their findings can be easily accommodated by the 
more specific rule about the distance between target and dis-
tractors. However, when task requirements change from one 
level of categorisation to another, as in our study, the distance 
to the target representation is not enough to explain category 

interference and the distance to task boundary must be taken 
into consideration.

4.4 | Category interactions in language

Interactions between objects and their categories have been 
studied quite extensively in the language domain, primarily 
using the picture–word interference (PWI) paradigm. PWI is 
a Stroop-like task (Starreveld & La Heij, 2017) where par-
ticipants are usually asked to name a visual image while a 
distractor word is presented simultaneously. Different stimuli 
(pictures, line drawings, words), response modalities (oral or 
manual responses), and temporal windows (varying time in-
tervals between the two stimuli) have been employed. Most 
studies, however, ask participants to name an object, unlike 
in our experiments, where the task was to categorise images. 
Typically, these studies have shown that a distractor word 
interferes with picture naming when image and word are re-
lated (e.g., a picture of a bird with the word cat) compared 
to when they are not related (e.g., a picture of a bird with the 
word table) (e.g.,La Heij & van den Hof, 1995; Lupker, 1979; 
Rosinski, 1977). On the other hand, recent studies have found 
that the interference effect caused by a related distractor word 
could be reversed when the word belonged to a different cat-
egory (e.g., the word nest instead of cat) or when it was a 
subcategory of the expected response (such as seagull) (e.g., 
Costa, Alario, & Caramazza, 2005; Kuipers et al., 2006).

Several mechanisms have been proposed to account 
for these PWI results. The most dominant proposal cur-
rently invoked is the response exclusion hypothesis (Mahon 
et al., 2007). In their paper, the authors review several studies 
and report new data showing that the priming effect depends 
on (a) whether the distractor satisfies response-relevant crite-
ria (if it contains features of the target such as being a verb or 
being an animal) and (b) distractor relatedness (how seman-
tically close it is to the target). If both related and unrelated 
distractors share the same response-relevant criteria with the 
target, the related distractor facilitates target responses more 
than the unrelated one. However, if the related distractor sat-
isfies response-relevant criteria and the unrelated distractor 
does not, then the related distractor interferes with the re-
sponse more than the unrelated one. As such, our results are 
consistent with Mahon et al.'s (2007) proposal. When both 
primes share the same response as the target, as in the case 
of related and unrelated congruent primes in Experiment 2, 
the related prime facilitated target processing, although this 
effect was weak. On the other hand, when the related prime 
satisfies a response-relevant criterion and the unrelated prime 
does not, as is the case of a non-bird animal and a car prime in 
Experiment 1, the related prime (non-bird animal) interfered 
with target processing. The difference between our model 
and Mahon and colleague's hypothesis is that our results 
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show that the interference caused by distractors depends on 
the distance of the distractor to the task boundary, whereas 
their proposal implicitly accords with the dependence of per-
formance on the distance between two objects. It is possible 
that the importance of the boundary was not visible in PWI 
paradigms since in naming tasks the boundary is not often 
manipulated but set at the basic-level (Hantsch, Jescheniak, 
& Schriefers, 2009, i.e., participants name a bird image as 
a bird, not as an animal or an owl, but see 2012; Kuipers 
et  al.,  2006; Kuipers & La Heij,  2012). Importantly, using 
drift diffusion analysis, we find that interactions between vi-
sual or semantic categories take place not only at the response 
selection stage (as proposed by Mahon et al., 2007) but also 
during perceptual and decisional processes. Additionally, we 
suggest that the amount of interaction has a clear origin: it 
depends on the neural organisation of the brain.

We should note that there are a few studies in the language 
domain that are more directly comparable to ours, such as 
those that used a picture–picture paradigm. These have re-
ported that naming a picture presented shortly after a related 
distractor picture had no effect on naming speed (Damian & 
Bowers, 2003; Navarrete & Costa, 2005). This suggests that 
the task, naming versus categorising as in our study, affects 
the direction of the interaction between categories. One pos-
sibility is that in a naming task, the interaction takes place 
during language processing (lexical and phonological stages), 
not during visual processing. An alternative could be that the 
absence of effect in these picture–picture naming studies is 
the result of an interference between visual categories (as we 
found) and a facilitation from additional later stages involved 
in naming.

One of the rare studies using a categorisation task in a 
PWI paradigm (Lupker & Katz, 1981) found similar results as 
we report here. In their study, Lupker and Katz (1981) asked 
participants to respond “yes” or “no” whether an image was 
a dog while a distractor word was presented simultaneously. 
Participants responded to a dog target picture the fastest when 
the picture was presented with the word dog (486 ms), slower 
with a non-animal name (truck, 506  ms), and the slowest 
when the word was another animal name (cat, 523 ms). In 
our study, both prime and target were pictures such that the 
involvement of language processing was minimal. Indeed, 
this type of task can also be performed by monkeys (Thorpe 
et al., 1996), indicating that language is not necessary. This 
raises the question about how comparable the mechanisms 
that explain Lupker and Katz's (1981) results are to ours. It 
is possible that distractor words automatically produce visual 
representations (similar to imagery) that could then interfere 
with the representation of a target picture in the ITC. Indeed, 
it has been shown that concrete words interfere with target 
naming more than abstract words (Lupker,  1979) and that 
categorical interference in PWI paradigms seems to be cor-
related with an increase of activity in the middle temporal 

gyrus (Diaz et al., 2014). Other neuroimaging studies have 
also shown evidence that a word activates the referent's visual 
object representation in the occipito-temporal cortex (Kumar, 
Federmeier, Fei-Fei, & Beck, 2017; Simanova, van Gerven, 
Oostenveld, & Hagoort, 2010). Another possibility, brought 
forward by Carlson et al.  (2014), is that the ITC might not 
just be a visual area but might also be involved in represent-
ing conceptual information. As they show in their study, the 
semantic relationships among words match with the repre-
sentation of object similarity in the ITC.

4.5 | Conclusion

In this study, we show that visual object categories are auto-
matically and rapidly processed and influence the processing 
of a following object. The interactions between two represen-
tations depend on the task and the semantic distance between 
them. When the two objects are from different task-relevant 
categories (incongruent), the distractor interferes with the 
processing of the target object, not just at the response se-
lection stage but during the accumulation of evidence. The 
amount of this interference depends centrally on the distrac-
tor's distance to the task category boundary and increases the 
closer the incongruent object is to the boundary. We argue 
that these results are the direct consequence of the brain or-
ganisation and suggest that this principle can be used to de-
scribe category interactions in multiple domains of cognition.
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