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Abstract: In this report, a novel qualitative model learning (QML) framework named
QML-Morven is presented. QML-Morven is an extensible framework and currently in-
cludes three QML subsystems, which employ either symbolic or evolutionary approaches
as their learning strategies. QML-Morven uses the formalism of Morven, a fuzzy qual-
itative simulator, to represent and reason about qualitative models, and it also utilises
Morven to verify candidate models. Based on this framework, a series of experiments were
designed and carried out to: (1) verify the results obtained by the previous QML system
ILP-QSI; (2) investigate factors that influence the learning precision and minimum data
requirement for successful learning; (3) address the scalability issue of QML systems.
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1 Introduction

Quantitative modelling has been widely used to study complex dynamic systems across var-
ious fields. Quantitative models, often in the form of differential equations, provide insights
into the systems of interest, and numerical simulation based on such models offers precise
descriptions and reliable predictions of the behaviour of dynamic systems.

However, in many real-world systems, it is not always possible to build a reliable quanti-
tative model and thus perform numerical simulation. This is because of the lack of knowledge
about the system and imperfect data obtained from experiments. For instance, when mod-
elling some biological systems, on one hand little knowledge about these system is known from
literature; on the other hand only sparse and noisy data are available due to the experimental
limitations or the nature of the system. In these situations precise numerical parameters for
the quantitative model might not be obtained confidently, or the interactions between compo-
nents of the dynamic systems may not be completely understood. Quantitative models built
upon these situations are not meaningful and do not offer much insight into the system.

The limitations of quantitative modelling motivate the development of qualitative reason-
ing (QR) [41], an area of Artificial Intelligence devoted to the study of dynamical systems
at a qualitative level. The last three decades have seen significant developments in QR,
and many QR systems have been proposed to tackle a variety of problems under different
conditions. One branch of QR is qualitative simulation, an example of which is QSIM (Qual-
itative SIMulation) [29, 30]. Qualitative simulation starts from a qualitative model in the

1



form of qualitative differential equations [30] and can derive qualitative behaviours from this
model. Qualitative simulation makes it possible to analyse system behaviours without the use
of quantitative models, and it is also a complementary approach to quantitative modelling
approaches.

A qualitative simulation system assumes that qualitative models are available or can be
manually built from literature. However, in many cases because of the lack of knowledge and
data, even a qualitative model is not easy to construct directly from available knowledge.
This necessitates the use of qualitative model learning (QML), a branch of QR which involves
inferring qualitative models automatically from either qualitative or quantitative data. QML
is the inverse of qualitative simulation and has received an increasing amount attention within
the qualitative reasoning community during the last two decades.

QML can be deemed a subfield of system identification [31], for which the term Quali-
tative System Identification is sometimes used [46]. QML can also be treated as a Machine
Learning [33] problem, and consequently machine learning algorithms, such as Inductive Logic
Programming (ILP) [1] can be employed to induce hypotheses (qualitative models) from given
examples (qualitative data).

QML is a powerful tool for the study of dynamical systems across many disciplines, es-
pecially physics and biology [27]. It provides a new means of understanding the system and
is particularly useful in situations where little is known about the system, the knowledge is
incomplete, or the data available are sparse.

2 Related Work

Over the past two decades, several QML systems have been developed. For more information
about these QML systems and their applications, the reader is directed to a comprehensive
review by Pang and Coghill [38].

Among these QML systems the following are worth mentioning: GOLEM [35], GEN-
MODEL [15, 22], MISQ [28, 42], QME [52], QSI [46], and the more recent systems ILP-
QSI [13] and the incremental learning approach proposed by Srinivasan and King [50]. These
systems are briefly described in the rest of this section.

GOLEM is a general ILP system and when applied to learning qualitative models in [4],
it tries to construct qualitative models in the form of Horn Clauses [23] that can cover given
positive data, those behaviours that the system can demonstrate, and exclude hand-generated
negative data, those behaviours that a system cannot achieve. GOLEM employs a bottom-up
search strategy by iteratively generalising a most specific clause. GOLEM is not a complete
algorithm because a greedy hill-climbing heuristic search method is used. In addition, the use
of negative data when learning qualitative models is not realistic in real-world applications.
This is because it is only possible to observe the behaviours that a dynamic system can
achieve and impossible to determine what behaviours that the system cannot achieve unless
all behaviours of a system are known.

GENMODEL was probably the first special-purpose QML system able to learn from
positive data only. It employs a straightforwardly generate-and-test learning strategy: it first
generates all possible qualitative constraints and the constraints inconsistent with given data
will be removed. Then the remaining constraints are examined by a redundancy check, and
those redundant constraints are also removed. Finally the resulting constraints construct a
most specific model that covers all positive data. A later version of GENMODEL [22] makes
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use of dimensional information [2] to narrow down the generated search space. GENMODEL is
a complete algorithm and able to deal with noisy data to some extent because the introduction
of fault tolerance when checking the consistency of qualitative constraints against data. The
limitations of GENMODEL are (1) it cannot deal with hidden variables (the unobserved
variables in the experiments) and (2) it tends to generate overconstrained models.

MISQ employs a similar learning strategy to GENMODEL in its earlier version [28]. The
later version of MISQ [42] goes further than GENMODEL because it is capable of processing
incomplete knowledge and dealing with hidden variables by the use of the relational-path
finding algorithm [43]. MISQ even allows partially specified variables in a qualitative state,
which is useful when some of the measurements for some variables are missing. Given incom-
plete knowledge, MISQ may generate inconsistent constraint set, and it employs heuristics
to guide the search over the implicit model space indicated by the generated constraint set.
MISQ has the same limitation as GENMODEL: it tends to generate over-constrained models
even when complete information is provided.

QME (Qualitative Model Evolution) uses a modified genetic algorithm (GA) as its search
strategy. Candidate models are represented as binary trees, and the fitness of each candidate
model is evaluated by both positive and negative examples, which is a similar way to GOLEM.
The GA iteratively explores and exploits the search space in a beam search manner, until the
target models are found or the maximum number of generations is exceeded. The inherent
parallelism of GA makes the search more efficient. Up till now QME was the only existing
QML system that employed an evolutionary algorithm as its search strategy. The limitations
of QME are: (1) like GOLEM, QME uses negative examples; (2) for ease of implementation,
qualitative models in QME are simplified by, for example, ignoring corresponding values [29];
(3) The premature convergence of population may happen if the parameters of the GA are
chosen inappropriately.

QSI (Qualitative System Identification) is one of the most complicated QML systems and
possesses most of the desired features of a QML system. It employs a unique iterative search
strategy: it starts with building a very general model (termed a ’shallow’ model in QSI) using
given incomplete variables, then tries to find a more specialised model based on this ’shallow’
model in an iterative manner: the current intermediate model will be iteratively extended
by postulating new hidden variables and regenerating a deeper model containing these newly
postulated hidden variables, until it passes the so-called model depth test, in which the model
is simulated by the qualitative simulation engine QSIM [29, 30]. A major limitation of QSI
is that it requires the input data must be complete and consistent, otherwise it may generate
wrong models.

ILP-QSI is considered one of the state-of-the-art QML systems. It is an ILP-based QML
system having all the characteristics of the earlier QML systems, such as MISQ and QSI.
The learning algorithm of ILP-QSI is implemented within the ALEPH system [49], and is a
variant of the branch-and-bound algorithm [40]. In the model searching process, a Bayesian
posterior probability estimate [32] is used to evaluate candidate models, and the calculation
of this Bayesian function does not need negative data. ILP-QSI proposed the concept of
well-posed models to help the model searching. A well-posed model must satisfy pre-defined
syntactic and semantic constraints, and in the search process only well-posed models will be
evaluated, which significantly reduces the computational cost.

Srinivasan and King [50] proposed an incremental learning approach to QML, and the
resulting QML system, termed QML-IL in this report, is considered as an extension of ILP-
QSI. QML-IL makes use of a simple incremental decomposition strategy to decrease the
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computational complexity of ILP-QSI. The learning task is divided into several stages and
the decomposition is achieved by domain-specific knowledge. However, in each stage of the
learning, the set of variables and the number of constraints must be provided, which is not
always feasible. This becomes a major limitation of QML-IL. The automatic decomposition
strategy has been preliminarily studied in QML-IL, and further research on the adaptability
and scalability of the automatic decomposition algorithms needs to be carried out.

3 Motivations and Organisation of the Report

Although several QML systems have been developed over the last two decades, there still
remain a number of unsolved problems in this field: the first issue is the search strategy
utilised in order for a QML system to find the target model(s) from the model space. Most
existing QML systems employ symbolic approaches, which perform the search in a systematic
and deterministic manner. For instance, GENMODEL employed the simplest generate-and-
test method. The search could also be performed by employing evolutionary approaches,
which are non-deterministic. For example, QME employed a GA to fulfil the search task.

The scalability issue may arise when symbolic approaches are used to search large-sized
model spaces, resulting from incomplete knowledge and the complexity of the real-world prob-
lems. Symbolic approaches may be very time consuming and even intractable when dealing
with complicated models. For instance, when applying ILP-QSI to learn the qualitative model
of a real-world biological pathway, the glycolysis pathway, it took several months of compute
time on a computer cluster to finally find 35 possible models [13]. One can imagine situations
in which QML systems using symbolic approaches are applied to learning more complicated
biological pathways and other complex dynamic systems. There has been some effort to
address the scalability problems of QML: for instance, the use of an incremental learning
approach by QML-IL [50]. However, as mentioned in Section 2 the incremental learning ap-
proach highly depends on domain knowledge to divide the learning task into several stages,
and the research on automatic decomposition of a learning task is still ongoing.

One promising approach to tackle the scalability issue is to make use of evolutionary
algorithms. QML is essentially a search and optimisation problem, that is, to find the best
model(s) from the model space to explain the data. Evolutionary algorithms have proven
their effectiveness in various large-scale search and optimisation problems, and consequently
one can come up with the idea of applying them as search strategies to QML. QME is the first
attempt: it fulfils the learning task by employing a GA. But QME was not systematically
tested on complicated large-scale problems. Furthermore, as mentioned in Section 2, like
GOLEM, QME needs negative data to learn the models, which is not realistic in real-world
applications. So one of the goals in this report is to develop an evolutionary QML system
that is scalable to problems of various complexity and can also learn from only positive data.
On the other hand, considering the accuracy of symbolic approaches for solving medium-sized
problems, we have a more ambitious goal: to develop a QML system which can make use of
both the symbolic and evolutionary approaches to meet different requirements.

The second issue is the minimum data requirement (termed the kernel subsets in ILP-
QSI [13]) for successful learning. It is of interest to investigate what kind of data and how
many data can lead to inferring the right model, because in real-world problems it is often
impossible to obtain complete qualitative data. In ILP-QSI, through power set experiments,
it was discovered that there exist kernel subsets, each of which is a subset of the complete
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qualitative states (described later in Section 4.2). Each of the kernel subsets and any of
its supersets can lead to successful learning. A further investigation through solution space
analysis [11, 9], an analysis technique which relates qualitative states to the critical points
via the isoclines of the system 1, reveals that the states in the kernel subsets tend to cover
different branches of behaviours in the envisionment (described later in Section 4.2) graph.
In this report we want to go further by exploring two key factors that influence the kernel
subsets and learning precision: hidden variables (the unobserved variables) and specification
of state variables (the variables that cause the changes of other variables).

The final issue is about the model formalism used in a QML system. Most existing QML
systems use the QSIM [30] formalism to represent qualitative models. Although QSIM is a
well-developed simulation engine, it lacks flexibility: qualitative variables in QSIM are in the
form of magnitude-derivative pairs. It is not convenient to represent the behaviour of the
higher derivatives of a dynamical system. In addition, we expect that fuzzy sets [54] will be
integrated in qualitative model learning so that the developed QML system has the potential
to deal with fuzzy data; a QML system using QSIM cannot easily achieve this. This motivates
us to use a novel model formalism, Morven (detailed in Section 4), to represent qualitative
models.

In this report we present solutions to the above three issues by means of a novel QML
framework: QML-Morven. The rest of the report is organised as follows: In Section 4 the Mor-
ven formalism and a Java implementation of Morven is briefly introduced. The background
and implementation details of QML-Morven are presented in Section 5. This is followed
by the report of a series of experiments performed by QML-Morven in Section 6. Finally
Section 7 concludes the report and explores possible future work.

4 The Morven Formalism and JMorven

4.1 The Morven Formalism

QML-Morven employs the Morven formalism to represent qualitative models. The Morven
framework [10] is a constraint-based fuzzy qualitative simulator, and its development is largely
based on FuSim [47], Predictive Algorithm (PA) [53], and Vector Envisionment(VE) [34].

As in PA, qualitative constraints in a Morven model are distributed over multiple differ-
ential planes. The 0th differential plane contains the constraints, which can represent a model
used for numerical simulation. The constraints in a higher differential plane are obtained by
differentiating the corresponding constraints in the preceding differential plane.

As in VE, qualitative variables in Morven are in the form of variable length vectors. The
first element in the vector is the magnitude of the variable, the ith (i > 1) element is the
(i-1)th derivative. The modeller can include as many derivatives as necessary.

As in FuSim, qualitative variables in Morven take their values from fuzzy quantity spaces,
which are composed of fuzzy numbers in the form of fuzzy four-tuples [47]. Morven also
employs the same fuzzy arithmetic operations as defined in FuSim to calculate the algebraic
constraints using the fuzzy quantity spaces. However, in QML-Morven the fuzzy mechanism
is not used, and consequently fuzzy numbers degenerate into interval numbers in the form of
(a, b), where a, b are real numbers (including −∞ and +∞) and denote the lower bound and

1Critical points of a dynamic system are those where at least one derivative of the state variables is zero.
The isoclines are contours of critical points.

5



Figure 1: The Single Tank System

Table 1: The Morven Model for the Single Tank System

Differential Plane 0
C1 : Function (dt 0 qo, dt 0 V) (qo = k ∗ V )
C2 : sub (dt 1 V, dt 0 qi, dt 0 qo) (V ′ = qi − qo)
Differential Plane 1
C3 : Function (dt 1 qo, dt1 V) (q′

o
= k ∗ V ′)

C4 : sub (dt 2 V, dt1 qi, dt1 qo) (V ′′ = q′
i
− q′

o
)

upper bound of an interval number, respectively. Accordingly the fuzzy arithmetic operations
become interval arithmetic operations.

The single tank system shown in Figure 1 is used as an example to demonstrate how
Morven is used to represent qualitative models. The quantitative model for a linear version
of this system is as follows:

qo = k ∗ V ,
dV/dt = qi − qo,

where V is the volume of the liquid in the tank, qi is the inflow, qo is the outflow, and k
is a positive constant coefficient determined by the cross sectional area of the tank and the
density of the liquid.

The corresponding Morven model is shown in Table 1. This model is composed of four
constraints, C1 to C4, and the corresponding quantitative relation for each constraint is shown
on the right hand side in the brackets. Here the label dt means derivative, and the integer
immediately following it indicates which derivative of the variable (0 means the magnitude).
For variable V , the magnitude, the first and second derivatives are used; for variable qo and
qi, only the magnitude and the first derivative are used.

The primitive sub in Constraints C2 and C4 stands for the subtraction relation. The
primitive Function in Constraint C1 and C3 has the same definition as that in FuSim. It
represents the function relation between two variables and can have arbitrary mappings, which
is a generalisation of the M+ and M− constraints in QSIM. If all the qualitative variables
(including their magnitudes and derivatives) use the signs quantity space, which is shown in
Table 2, the mappings of the Function in constraint C1 and C3 are given in Table 3, in which
“1” stands for the existence of a mapping between variables A and B.
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Table 2: The Signs Quantity Space

Quantity Range
negative(-) (−∞, 0)
zero(0) 0

positive(+) (0, ∞)

Table 3: Function Mappings Under the Signs Quantity Space

Function(A,B) negative zero positive
negative 1 0 0
zero 0 1 0
positive 0 0 1

4.2 JMorven

JMorven [6, 7] is a Java implementation of Morven, and it is tailored and embedded in QML-
Morven as a model verification component. Candidate models generated by QML-Morven
will be simulated by JMorven and the output will be compared against given data.

The output of JMorven for a qualitative model could be either an envisionment containing
all possible qualitative states and their legal transitions, or a behaviour tree which is part of
the envisionment. A qualitative state is a complete assignment of qualitative values to all
qualitative variables of the system. One possible qualitative state of the single tank system
described by Morven is shown in Figure 2. In this figure the assignment V =< pos, zer, zer >
means that the magnitude of V is positive, the first and second derivatives are zero (all values
are taken from the signs quantity space). It is similar for the assignments of qi and qo.

5 QML-Morven

In this section, we introduce the QML-Morven framework. The name given to this framework
indicates that Morven is adopted to represent qualitative models. Furthermore, Morven serves
as a model verification component within the framework. In the rest of this section, first some
background knowledge will be given, then three framework instances of QML-Morven, QML-
GENMODEL, QML-BKFC, and QML-CSA, will be described.

V=<pos, zer, zer>
qi=<pos, zer>
qo=<pos,zer>

Figure 2: A Qualitative State of the Single Tank by Morven
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5.1 Background Knowledge

5.1.1 First-Order Canonical Forms

In this report, the qualitative models to be learnt are specified to be in first-order canonical
form. This means that for all constraints in the 0th differential plane, only the magnitude
and first derivative of a variable can appear as arguments. As any higher order system can be
represented as a set of first-order systems by introducing more variables, this specification is
reasonable. In addition, the first-order form is also required by the causal ordering constraint,
which will be described in Section 5.1.3.

5.1.2 Exogenous Variables, System Variables, and State Variables

Exogenous variables in a dynamical system are those variables determined from outside the
model, and all the non-exogenous variables are referred to as system variables. For instance,
in the single tank system shown in Figure 1, variable qi is an exogenous variable, and variable
V and qo are system variables. State variables are those directly affected by the action of
integration in a dynamical system [53], and consequently, they are the only variables whose
first derivatives can appear in the 0th differential plane of a model in the first-order canonical
form.

5.1.3 Causally Ordered Models

The theory of causal ordering has been publicly debated in the qualitative reasoning com-
munity (See [24, 18, 25] for details). In this report, the concept of causally ordered models
basically follows the description given by Wiegand [53] and Iwasaki et al. [26].

In a causally ordered model, system equations are considered to be directional in the sense
that on the left-hand side of an equation there is only one variable and its value is determined
by the variables on the right-hand side. So variables on the right-hand side are deemed as
the causes of the left-hand variable.

Since exogenous variables are not determined by any system variables, they cannot appear
on the left-hand side of any system equations. State variables cause the changes of other
system variables, consequently the magnitudes of state variables cannot appear on the left-
hand side of any equation. In addition, according to the definition of state variables, the
first derivative of a state variable must appear in one and only one system equation, and its
position is on the left-hand side of this equation.

A causally ordered model also requires:
All the system equations are rearranged into an ordered sequence e1, e2, ......, en, such

that for any equations ei and ej, if (i<j), the left-hand variable of ej does not appear in the
right-hand side of ei. [53]

In the case of QML-Morven models, qualitative constraints are deemed to be system
equations, and if the qualitative constraints in the 0th differential plane are arranged to be
causally ordered, constraints in higher differential planes are also causally ordered.

The model shown in Table 1 is an example of a causally ordered model. The causal
relations of this model are illustrated in Figure 3. In this figure, the arrow links two variables,
and the variable at the end point of the arrow “depends” on the one at the start point. The
dashed line denotes the integration relation.
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Figure 3: Causal Relations in the Single Tank System

Table 4: Mdec Mappings

Function(A,B) negative zero positive
negative 0 0 1
zero 0 1 0
positive 1 0 0

5.1.4 Minc and Mdec Constraints in QML-Morven

Because most of the existing QML systems employ the QSIM formalism, in order to compare
the learning results of QML-Morven with those obtained by these QML systems, and also for
simplifying the learning tasks, the function constraints in QML-Morven have to be specialised.
Two functional constraints were introduced to QML-Morven: Minc and Mdec. Minc is defined
as the function constraint with the mappings described in Table 3, and Mdec is defined as the
function constraint with the mappings shown in Table 4.

M+(A,B) in QSIM is equivalent to the conjunction of the following two function relations
in QML-Morven:

Minc (dt 0 A, dt 0B),
Minc (dt 1 A, dt 1B).

Note the first Minc constraint specifies the corresponding values and the second one de-
scribes that the signs of the derivatives must be the same. These two constraints should
appear in the 0th and 1st differential plane respectively. Similarly, M−(A,B) in QSIM is
equivalent to the following two constraints:

Mdec (dt 0 A, dt 0B),
Mdec (dt 1 A, dt 1B).

5.1.5 Inconsistent Constraints and Consistency Checking

Inconsistent constraints are any qualitative constraints in the 0th differential plane that are
inconsistent with the qualitative data provided and consequently fail to pass the consistency
checking (described in the next paragraph). In QML-Morven, as each constraint Ci in the 0th
differential plane may have corresponding constraints in the higher differential planes, which
are obtained by successively differentiating Ci, we say Ci is a consistent constraint if and only
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if both Ci and its differentiated constraints in the higher differential planes are consistent
with the data.

The consistency checking examines whether a given Set of Qualitative States, SQS, is
consistent with a given Qualitative Constraint, QC, in the 0th differential plane and its dif-
ferentiated constraints in the higher differential planes. For each qualitative state QS in
SQS, the consistency checking works as follows: (1) Extract the qualitative values of all the
variables in QC and its differentiated constraints in the higher differential planes from QS.
(2) If QC and its differentiated constraints are Minc or Mdec constraints, check whether the
extracted values are consistent with the value mappings in all these function constraints. If
QC and its differentiated constraints are arithmetic constraints, check whether the extracted
values are consistent with the arithmetic operation in these constraints.

After checking all the states in SQS, if the proportion of the states that are consistent
with QC to all the qualitative states in SQS is smaller than a given threshold η (0 < η ≤ 1),
QC is considered to be inconsistent with SQS. The threshold η reflects the noise tolerance:
the bigger the value, the less tolerant of noisy qualitative data the consistency checking is.

5.1.6 Conflict Constraints

Two qualitative constraints conflict if they fall into any of the following three categories:
a. Logical Conflict: Two qualitative constraints contradict each other. For example, the

following two constraints are logically conflicting:

Minc (dt 1X, dt 0 Y ),
Mdec (dt 1X, dt 0 Y ).

b. Redundancy: Two qualitative constraints in the same model describe the same relation.
For example, the following two constraints are redundant if they appear in the same model:

Minc (dt 0X, dt 0 Y ),
Minc (dt 0 Y, dt 0X).

c. Dimensional Inconsistency: The same variable has two different dimensions in two
qualitative constraints. For example, if Hid0 is a hidden variable and the dimension of
variables a and b is different from that of variables c and d, the following two constraints are
dimensionally inconsistent:

Sub (dt 0 Hid0, dt 0 a, dt 0 b),
Sub (dt 0 c, dt 0 Hid0, dt 0 d).

5.1.7 Conflict Set of a Constraint

Given a set of qualitative constraints SC , if C1 ⊲⊳ C2 is used to represent the fact that C1
and C2 are conflicting, the conflict set for a constraint C1 in SC is defined as:

ConflictSetSC (C1) = {Ci|Ci ∈ SC , C1 ⊲⊳ Ci} (1)

5.1.8 Multiple Conflict Relations

A conflict may involve more than two constraints. Consider the following three qualitative
constraints:
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Minc (dt 0Hid0, dt 0Hid1),
sub(dt 0 Hid0, dt 0 a, dt 0 b),
sub(dt 0 a, dt 0 Hid1, dt 0 d).

Here the hidden variables Hid0 and Hid1 have the same dimension derived from the second
and third constraints. But if there is no gain or amplifier in the system, the first constraint
requires Hid0 and Hid1 must have different dimensions. In this situation the above three
constraints conflict if they appear in the same model.

5.1.9 Defining Constraints

The defining constraint for a variable with a specified derivative (or variable/derivative for
short) is the qualitative constraint in which this variable/derivative appears on the left-hand
side.

For instance, constraint sub (dt 1 X, dt 0 Y, dt 0 Z) is a defining constraint for the
first derivative of variable X. All derivatives of an exogenous variable and the 0th derivative
(magnitude) of a state variable do not have defining constraints.

5.1.10 Referring Constraints

A referring constraint of a variable/derivative is the constraint in which this variable/derivative
appears on the right-hand side. For example, Sub(dt 0 Y, dt 0 X, dt 0 Z) is a referring con-
straint of both the 0th derivative of variable X and the 0th derivative of variable Z.

5.1.11 Dependency Set of a Constraint

For a given variable/derivative, all its referring constraints depend on its defining constraints
in a causally ordered model. If constraint C1 depends on C2, then this relation is denoted
by C1 → C2.

Given a set of qualitative constraints CS , the dependency set for a constraint C1 is defined
as:

DependencySetCS(C1) = {Ci|Ci ∈ CS , C1 → Ci} (2)

For example, the dependency set of constraint sub (dt 0 X, dt 0 Y, dt 0 Z) may contain
the following two constraints: Minc (dt 0 Y, dt 0 A) and Minc (dt 0 Z, dt 0B).

In a causally ordered model, a constraint is not allowed to appear before any of its depen-
dency constraints, because only after the defining constraint of a variable/derivative appears,
can other constraints refer to this variable/derivative.

5.1.12 Well-posed Models

The well-posed model constraints in QML-Morven are basically the same as those defined
in ILP-QSI [13]. A well-posed model must satisfy the following constraints: (a) Size: The
model size, defined as the number of constraints in the 0th differential plane, must be within
the given range. (b) Completeness: The model must include all given variables. (c) Logical
consistency : No conflicting or redundant constraints. (d) Dimensional Consistency : Each
variable has the same dimension in all constraints in which it appears. (e) Language: A
model has to satisfy the given language constraints, such as he number of instances of any
qualitative relation in the model must be below some pre-specified limit. Detailed discussion
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is given by Camacho [8]. (f) Connection: All system variables should appear in at least two
constraints. (g) Singularity : No disjoint sub-models. (h) Causal Ordering : The model can
be causally ordered. (i) Coverage: The model can cover all the given data.

As QML-Morven uses multiple differential planes, only qualitative constraints in the 0th
differential plane need to be checked by the well-posed model constraints.

5.1.13 The Defining Constraint Theorem and Corollary

After the introduction of the concept of well-posed models and the definition of defining
constraints, in this section we present the defining constraint theorem and its corollary for
well-posed models.

Theorem 1. In the 0th differential plane, a well-posed model must include one, and only
one, defining constraint for each of the system variables with either the 0th or first derivative.

Proof. Suppose X is a system variable in the model. If X is a state variable, according to
the definition of state variables, there must be a defining constraint for the first derivative
of X. Otherwise, because the first derivative of X cannot appear on the right-hand side of
any constraints, and non-state variables do not have first derivatives in 0th differential plane,
there will not be any derivatives in the whole model. This is contradictory to the dynamical
system assumption.

If X is not a state variable, and the model does not include any defining constraint for the
zero derivative of X, then no referring constraints for X can be included in the model, resulting
in the exclusion of X from the model. This is contradictory considering the completeness
principle of well-posed models, stating that the model must include all the system variables.

So a well-posed model must include at least one defining constraint for each of the system
variables (either its 0th or first derivative). On the other hand, if a model includes more than
one defining constraint for the same variable, it cannot be causally ordered. Consequently
Theorem 1 is sound. �

Based on Theorem 1, together with the definition of model size, we have the following
corollary:

Corollary 1: The size of a target model equals to the number of system variables (includ-
ing hidden variables) in the model.

The above theorem and corollary will be used later by QML-Morven to reduce the size of
the search space.

5.2 QML-GENMODEL

Having described the background utilised by all instantiations of QML-Morven, we now de-
scribe the three framework instances of QML-Morven. The simplest framework instance is
QML-GENMODEL. QML-GENMODEL employs a similar search strategy to GENMODEL [14,
22] and also requires the same assumptions as GENMODEL to obtain a unique most specific
model: It is assumed that (1) the complete qualitative states are available; (2) there are no
hidden variables; (3) the dimensional information for all variables is known.

In practice GENMODEL can be used to infer a simple dynamic system when all its
variables are identified and the system behaviours are relatively simple and easy to measure
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qualitatively. There are three phases in QML-GENMODEL, data pre-processing, model space
generation, and constraint filtering. They will be described in detail below.

5.2.1 Data Pre-processing

QML-Morven can directly take as input qualitative data. QML-Morven can also deal with
raw quantitative data by reusing the Q2Q (Quantitative to Qualitative data transformation)
component in ILP-QSI. In this Q2Q component, the central difference approach [48] is used to
estimate the first and second derivatives of a quantitative variable. Then a Blackman filter [3]
is used to smooth the estimated first and second derivatives. Finally the smoothed first and
second derivatives are converted to qualitative values according to the given quantity space.

5.2.2 Model Space Generation

In this phase, given all possible types of qualitative constraints (including Minc and Mdec

constraints and arithmetic constraints), all known variables and their derivatives, and the di-
mensions of all these variables and their derivatives, first all possible qualitative constraints in
the 0th differential plane are generated, which are all the combinations of the constraint types
and variables. Then all the generated constraints are checked for dimensional consistency so
that all the dimensionally inconsistent constraints are filtered out.

After generating constraints in the 0th differential plane, constraints in the ith differential
plane are obtained by differentiating the corresponding constraints in the (i-1)th differential
plane (i>0). Finally all the generated constraints in all differential planes constitute the
initial model space, denoted IMS .

5.2.3 Learning Strategy

Similar to GENMODEL, each constraint in the IMS will be checked for consistency with
all the given qualitative states by the consistency checking described in Section 5.1.5. All
the inconsistent constraints will be filtered out from IMS, resulting in a new constraint set,
denoted FMS (Filtered Model Space). After all the inconsistent constraints have been filtered
out, a further redundancy check will remove all the redundant constraints in the FMS . Finally
a most specific model is obtained.

Based on the description of this section and Section 5.2.2, the pseudo code of QML-
GENMODEL is given in Figure 4.

5.2.4 An Example: Learning the Single Tank System

Learning the single tank system described in Figure 1 and Table 1 is used to demonstrate
the learning process of QML-GENMODEL. Suppose the following information is given (1)
all variables and their dimensions; (2) the inflow was steady and positive, and four states
were provided, as shown in Table 5; (3) four constraint types were given: Minc, Mdec, sub,
and add. The first three constraint types have been described in previous sections, and the
add constraint stands for the qualitative addition, for instance, add (dt 1 A, dt 0 B, dt 0 C)
means A′ = B + C.

Based on the given information, QML-GENMODEL first generates all 48 possible con-
straints in the 0th differential plane, and 20 of them are dimensionally consistent. These 20
constraints and their corresponding constraints in the 1st differential plane constitute the
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FUNCTION QML-GENMODEL()
INPUT:

1. QD : Qualitative data;
2. Constraint Repotoire;

// All possible types of qualitative constraints
3. All known variables, and their dimensional information;

BEGIN
Step 1 : Initial Model Space Generation, obtain IMS

// as described in Section 5.2.2
Step 2 : Constraint Filtering

FMS={};
FOR each constraint C1 in IMS
BEGIN

IF C1 is consistent with QD

FMS= FMS+ C1 ;
END IF

END FOR
Step 3 : Redundancy check on FMS ;
RETURN FMS ; // a most specific model

END

Figure 4: The Pseudo Code of QML-GENMODEL

Table 5: States Used for Learning the Single Tank System

State ID V qi qo

0 <pos , neg , pos> <pos , zer> <pos , neg>

1 <pos , zer , zer> <pos , zer> <pos , zer>

2 <zer , pos , neg> <pos , zer> <zer , pos>

3 <pos , pos , neg> <pos , zer> <pos , pos>
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Table 6: One Possible Model Obtained by QML-GENMODEL

0th Differential Plane 1st Differential Plane
Minc (dt 0 V, dt 0 qo) Minc (dt 1 V, dt 1 qo)
sub (dt 1 V, dt 0 qi, dt 0 qo) sub (dt 2 V, dt 1 qi, dt 1 qo)

IMS. Then the IMS is filtered by the constraint filter, and only 3 constraints (in the 0th
differential plane) are consistent with all four qualitative states: (a) Minc (dt 0 V, dt 0 qo), (b)
Minc (dt 0 qo, dt 0 V ), and (c) sub (dt 1 V, dt 0 qi, dt 0 qo). A redundancy check on these three
constraints will remove Constraint (a) or Constraint (b), and one possible model is listed in
Table 6. Finally the qualified constraints in different stages are listed in Table 7.

5.2.5 Summary

QML-GENMODEL is a re-implementation of GENMODEL within the QML-Morven frame-
work. The introduction of QML-GENMODEL is illustrative because many infrastructure
modules it utilises are described in detail, and these infrastructure modules are also utilised
by the other two framework instances, namely QML-BKFC and QML-CSA.

QML-GENMODEL can generate a unique most specific qualitative model, provided that
all the variables are identified and complete qualitative data are available. However, in
most cases, the existence of hidden variables and incomplete data is unavoidable. QML-
GENMODEL may produce an over-constrained model if incomplete data are provided. The
existence of hidden variables will increase the size of the model space and result in many possi-
ble models. In particular, when both hidden variables and incomplete data exist, the learning
task will be more difficult. In the next two sections, two framework instances aiming to deal
with incomplete data and hidden variables, QML-BKFC and QML-CSA, are introduced.

5.3 QML-BKFC

QML-BKFC allows the existence of hidden variables and incomplete data. On the other hand,
QML-BKFC makes use of the well-posed model constraints as described in Section 5.1.12 to
narrow the range of candidate models.

QML-BKFC performs the same data preprocessing as QML-GENMODEL and has a sim-
ilar model space generation process. For the learning strategy, rather than the simple redun-
dancy check utilised in QML-GENMODEL, QML-BKFC first calculates the conflicting and
dependent relations of the constraints in the model space and partitions the model space ac-
cordingly. Then it employs an efficient backtracking algorithm with forward checking (BKFC)
to search in this partitioned model space and extract all possible models. The details of QML-
BKFC are as follows:

5.3.1 Model Space Generation

The model space generation is similar to that in QML-GENMODEL, but there are three
differences:

(a) In QML-BKFC, users can specify the maximum number of hidden variables. For in-
stance, if this number is 3, QML-BKFC will generate three possible hidden variables, denoted
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Table 7: Constraints in Different Stages of QML-GENMODEL

Constraint Constraints Dimensional Dimensional &
ID Consistency Data Consistency
1 Minc (dt 0 V, dt 0 qo)

√ √

2 Minc (dt 1 V, dt 0 qo)
√

3 Mdec (dt 0 V, dt 0 qo)
√

4 Mdec (dt 1 V, dt 0 qo)
√

5 Minc (dt 0 V, dt 0 qi)
√

6 Minc (dt 1 V, dt 0 qi)
√

7 Mdec (dt 0 V, dt 0 qi)
√

8 Mdec (dt 1 V, dt 0 qi)
√

9 Minc (dt 0 qo, dt 0 V)
√ √

10 Minc (dt 1 qo, dt 0 V)
11 Mdec (dt 0 qo, dt 0 V)

√

12 Mdec (dt 1 qo, dt 0 V)
13 Minc (dt 0 qo, dt 0 qi)

√

14 Minc (dt 1 qo, dt 0 qi)
15 Mdec (dt 0 qo, dt 0 qi)

√

16 Mdec (dt 1 qo, dt 0 qi)
17 Minc (dt 0 qi, dt 0 V)

√

18 Minc (dt 1 qi, dt 0 V)
19 Mdec (dt 0 qi, dt 0 V)

√

20 Mdec (dt 1 qi, dt 0 V)
21 Minc (dt 0 qi, dt 0 qo)

√

22 Minc (dt 1 qi, dt 0 qo)
23 Mdec (dt 0 qi, dt 0 qo)

√

24 Mdec (dt 1 qi, dt 0 qo)
25 sub (dt 0 V, dt 0 qo, dt 0 qi)
26 sub (dt 1 V, dt 0 qo, dt 0 qi)

√

27 add( dt 0 V, dt 0 qo, dt 0 qi)
28 add( dt 1 V, dt 0 qo, dt 0 qi)

√

29 sub (dt 0 V, dt 0 qi, dt 0 qo)
30 sub (dt 1 V, dt 0 qi, dt 0 qo)

√ √

31 add (dt 0 V, dt 0 qi, dt 0 qo)
32 add (dt 1 V, dt 0 qi, dt 0 qo)

√

33 sub (dt 0 qo, dt 0 V, dt 0 qi)
34 sub (dt 1 qo, dt 0 V, dt 0 qi)
35 add (dt 0 qo, dt 0 V, dt 0 qi)
36 add (dt 1 qo, dt 0 V, dt 0 qi)
37 sub (dt 0 qo, dt 0 qi, dt 0 V)
38 sub (dt 1 qo, dt 0 qi, dt 0 V)
39 add (dt 0 qo, dt 0 qi, dt 0 V)
40 add (dt 1 qo, dt 0 qi, dt 0 V)
41 sub (dt 0 qi, dt 0 V, dt 0 qo)
42 sub (dt 1 qi, dt 0 V, dt 0 qo)
43 add (dt 0 qi, dt 0 V, dt 0 qo)
44 add (dt 1 qi, dt 0 V, dt 0 qo)
45 sub (dt 0 qi, dt 0 qo, dt 0 V)
46 sub (dt 1 qi, dt 0 qo, dt 0 V)
47 add (dt 0 qi, dt 0 qo, dt 0 V)
48 add (dt 1 qi, dt 0 qo, dt 0 V)
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“Hid0”, “Hid1” and “Hid2”, where the prefix “Hid” indicates they are hidden variables. (Note
the resulting models do not necessarily include all the hidden variables, because it is possible
that a model containing a subset of given hidden variables is good enough to explain the
data.) When generating the model space, these hidden variables will be taken into account.

(b) As QML-BKFC aims to find models that can be causally ordered (one of the well-posed
model constraints), the generation of the following two kinds of qualitative constraints should
be prevented: (b.1) constraints in which the magnitude or first derivative of an exogenous
variable appears on the left-hand side; (b.2) constraints in which the magnitude of a state
variable appears on the left-hand side.

(c) In the succeeding dimensional consistency checking, hidden variables in the constraints
will not be considered as their dimensions are unknown.

5.3.2 Constraint Filtering

As in QML-GENMODEL, the generated IMS will be further filtered by the consistency
checking, and the FMS is obtained. The size of the FMS may be very large and often
contain conflicting constraints. The reasons are twofold: (1) the constraint filter cannot filter
out any constraints containing hidden variables. (2) Fewer constraints are filtered because of
incomplete data. So it is not always possible to extract a unique model from FMS by simply
removing the redundant constraints, as in QML-GENMODEL.

5.3.3 Calculation of the Conflict Set and Dependency Set

First we define FMS0 as a set that includes all constraints in the 0th differential plane in
FMS . In this phase, for each constraint Ci in FMS0 , its conflict set (defined by Formula (1)
in Section 5.1.7) is as follows:

ConflictSetFMS0 (Ci),

and the dependency set (defined by Formula (2) in Section 5.1.11) is as follows:

DependencySetFMS0 (Ci).

These two sets will be calculated and the results are recorded for later use.

5.3.4 Constraint Set Partition

FMS0 is divided into several subsets, each of which contains all the defining constraints
(defined in Section 5.1.9) of either the magnitude or first derivative of the same system
variable. DS is a set that takes each of these subsets as an element, denoted as DS= {Si}
( i=1 to N), and N is the number of system variables (including hidden variables). For any
two elements in DS , |Si| ≤ |Sj | if i < j. For example, in the single tank system, when qo is
a hidden variable, denoted Hid0, the subset for variable Hid0 will include the following three
constraints:

Minc( dt 0 Hid0, dt 0 V),
Mdec( dt 1 Hid0, dt 0 V),
Mdec( dt 1 Hid0, dt 0 qi).

In the above constraints, the first is a defining constraint of the magnitude of Hid0, and
the other two are defining constraints of the first derivative of Hid0.
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5.3.5 Backtracking with Forward Checking

The basic idea of QML-BKFC is: for each subset Si in the partitioned DS , select only one
constraint, thus construct a model, then check the validity of this model. The correctness
of this selection is guaranteed by Theorem 1 described in Section 5.1.13. To achieve this,
a backtracking algorithm with forward checking (details of which can be found in [45]) is
employed to perform a systematic search in DS in a depth-first manner.

5.3.6 Search Modes

To deal with hidden variables, users are provided with two search modes: full and half search
modes. In the half search mode, QML-BKFC will find the models in which the number of
hidden variables is equal to the given maximum number of hidden variables. While in the
full search mode, given the maximum number of hidden variables n, the resulting model
will include at most n hidden variables. The full search mode can be implemented easily
by modifying DS as follows: for each Si in DS which contains the defining constraints for
a hidden variable, an “empty” constraint φ is appended to it: Si = Si

⋃
{φ}. The current

partial model will not change if an “empty” constraint is added to it.
The pseudo code for QML-BKFC is given in Figure 5. In this algorithm, for a constraint

Cj in the partial model PM, ConflictsCount[j] is used to record the number of constraints in
PM that conflict with Cj . The function CheckPartialModel (Cj, PM) checks the consistency
when constraint Cj is added into PM . This function only checks the multiple conflicting
relations, because the forward checking has already ensured that there are no binary conflict
relations in PM. In the next paragraph, the implementation of CheckCompleteModel (PM)
will be presented.

5.3.7 Well-posed Model Checking

CheckCompleteModel (PM) will check all the well-posed model constraints which are not
considered in CheckPartialModel (Cj ,PM). In order to identify a non-well-posed model with
the minimum computational effort, the more easily a constraint can be checked the earlier it
should be checked. For instance, the model size and model completeness should be checked
first, the causal ordering and coverage test should be checked last. The checking for three of
the well-posed constraints is detailed as follows (the other constraints are the same as those
in ILP-QSI):

(1) Model Size: in ILP-QSI, the model size has to be pre-specified. Corollary 1 tells us that
this is equal to the half search mode in QML-BKFC, in which the number of hidden variables
is determined, and hence the model size. If the full search mode is selected, only the range
of the model size is provided. In this situation, the model size constraint in QML-Morven is
more relaxed than that in ILP-QSI.

(2) Causal Ordering: A causal ordering algorithm based on [53, 26] has been implemented
to automatically examine whether a candidate model can be causally ordered. Note that for
efficiency reasons this algorithm does not try to rearrange the constraints.

(3) Coverage Test: The coverage test is fulfilled by a tailored JMorven. In this tailored
JMorven, the module which can generate the envisionment [6] is modified to make it capable
of being intensively and continually called. When a candidate model is submitted to this
tailored JMorven, all possible qualitative states for this model will be generated. It is not
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FUNCTION QML-BKFC()
INPUT:

FMS0={C1,C2,. . ., Cn} // n is the number of constraints
DS={S1, S2,. . . SN} // DS is the partitioned search space

BEGIN
PM={}; // The partial model, initially set to be empty
Integer[] ConflictsCount= new Integer[n];
ConflictsCount [1]=ConflictsCount [2]..... =ConflictsCount [n]=0 ;
BackTrackingFC(1, ConflictsCount);

END FUNCTION // function QML-BKFC
FUNCTION BacktrackingFC(Integer i, Integer[] ConflictsCount)
BEGIN

IF (i==N+1) exit; // the exit of the recursion
FOR EACH Constraint Cj in Si DO
BEGIN

IF ( ConflictsCount [j]>0) // Cj conflicts with PM
Continue;

END IF
DirtyMark={}; // record the conflict set of Cj

IF (CheckPartialModel (Cj, PartialModel))
BEGIN

FOR EACH Constraint Cx in ConflictSetFMS0(Cj)
BEGIN //Set the conflict counts
ConflictsCount [x]++; DirtyMark+= {x};

END FOR
PM= PM+Cj ;
IF(i <N+1)

BacktrackingFC(i+1,LeagalValue);
END IF
IF (i==N)

CheckCompleteModel (PartialModel);
END IF
FOR EACH integer x in DirtyMark
BEGIN //restore the conflict counts

ConflictsCount [x]--;
END FOR

PM= PM-Cj ;
END IF // IF CheckPartialModel ()

END FOR // FOR EACH Constraint Cj in Si

END FUNCTION

Figure 5: The Pseudo Code of QML-BKFC
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necessary to calculate the legal transitions among the generated states, because only the states
themselves are used for learning.

If the given maximum number of hidden variables are very big, there may exist some
large-sized candidate models. The qualitative simulation performed by JMorven might be
computationally expensive for these large-sized models compared with other well-posed model
checking modules, so the coverage test is arranged as the last module performed in the well-
posed model checking. Only the qualitative model that satisfies all the other well-posed model
constraints can be tested for coverage. If a model satisfies all well-posed model constraints,
it will be recorded. More than one well-posed model may be found in an experiment.

5.3.8 Summary

QML-BKFC employs a symbolic and deterministic approach to systematically search in the
model space, and it is a complete algorithm in the sense that it can find a well-posed model if
one exists (or report correctly if there is no well-posed model). The efficiency and complete-
ness of QML-BKFC, together with the more relaxed assumption it allows (hidden variables
and incomplete data), make it capable of performing systematic experiments under different
conditions, that is, different hidden variables and different incomplete data given. These
experiments will be described in detail in Section 6.

5.4 QML-CSA

As mentioned in Section 3, QML is essentially an optimisation problem, that is, to find the
best qualitative model that can explain the data. QML-BKFC can achieve this when dealing
with small and medium-sized model spaces. However, scalability issues will arise when QML-
BKFC is applied to solve large-sized complicated problems. This makes it necessary to employ
more effective algorithms to learn complicated models.

QML-CSA is proposed to address the scalability problem. It utilises the clonal selection
algorithm (CSA) [17] to search in the model space. In addition, under the conditions of
incomplete data and hidden variables, the model search space may be highly multimodal
because there may exist multiple models that satisfy all the well-posed model constraints,
and the optimisation version of CSA [17] is particularly suitable for searching in this kind of
search space.

Except for the core search algorithm, the processes in QML-CSA, including the Model
Space Generation, Constraint Filtering, Calculation of Conflict Set and Dependent Set and
Constraint Set Partition are the same as those in QML-BKFC. In the rest of this section, we
will describe the modified CSA search strategy for searching the qualitative model space. It
is pointed out that an earlier version of QML-CSA and some preliminary experimental results
were presented by Pang and Coghill [36].

In order to make CSA suitable for learning qualitative models, three key issues must be
considered: the antibody encoding strategy, hyper-mutation and affinity evaluation. These
issues are described below:

5.4.1 Antibody Encoding Strategy

When applying CSA to qualitative model learning, the target models to be found are treated
as the antigens, and the antibodies stand for candidate models. Considering the structure
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Figure 6: Antibody Encoding

of the partitioned search space DS described in Section 5.3.4, to better make use of the
information indicated in DS , an integer encoding strategy is adopted.

The antibody is composed of several slots, each of which corresponds to a different subset
Si in DS . Each slot is assigned to an integer, which indicates a qualitative constraint selected
from the corresponding subset. The correctness of this encoding strategy is guaranteed by
Theorem 1 and Corollary 1. In addition, to avoid the antibody getting trapped in a local
optimum for an intolerable time, a survival time counted by generations is associated with
each antibody. If an antibody exceeds its survival time, it will be replaced by a randomly
generated antibody.

Figure 6 shows an example of the antibody encoding for a dynamical system. Suppose
there are three known variables in this system: A, B and C. A is the exogenous variable, B
is a state variable. There is also one hidden variable Hid0. In this figure, the constraints in
bold will be selected to compose a candidate model.

5.4.2 Hyper-Mutation

The hyper-mutation is also modified due to the modification of the antibody encoding. For
each slot in the antibody, its value will be replaced by a randomly generated integer with a
high probability. The range of this randomly generated integer is from 1 to N, and N is the
number of the constraints in the corresponding subset Si. This means each constraint in the
model will be replaced by another constraint in the same defining subset Si. Each mutated
antibody can be seen as belonging to a neighbourhood of the original antibody.

5.4.3 Affinity Evaluation

A scoring system based on the well-posed model constraints was set up to evaluate the affinity
of an antibody. The more and better a model satisfies the well-posed model constraints, the
higher score it will get.

For example, for the Model Conflicts criterion, if there is no conflicting constraint in
the model, a full weighted score will be added to the affinity value. Otherwise, the score is
calculated as follows:
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ConflictScore = W1 ∗ (1−
NC

NM

). (3)

In the above formula, W1 is the weight, and the weights for all the criteria are currently
the same. NC and NM are the number of conflicting constraints and the total number of
constraints in the model, respectively. The scores for other constraints can be calculated in a
similar way. Finally the affinity score equals to the sum of all these calculated scores.

Because of the relatively expensive computational cost of the causal ordering check and
coverage test, the coverage test will be performed only if all other constraints are satisfied, and
the causal ordering check will be performed only if all other constraints except the coverage
constraint are satisfied.

5.4.4 Algorithm Description

The steps of QML-CSA for learning qualitative models are basically the same as for the
original optimisation version of CSA. Note the termination condition of the algorithm differs
for different experiments, which will be described in Section 6.2 and Section 6.4 respectively.

Step 1: Initialization Parameter Setting: Set the values of the following parameters:
the hyper-mutation probability ρ; maximum running time MaxTime; maximum generation
MaxGen; population size PopSize; clonal size ClonalSize; survival time for each antibody
SurviveTime.

Repertoire Initialization: Randomly generate PopSize antibodies to construct the
initial antibody repertoire (population). Initialise the Memory Pool, which records the newly
found well-posed models.

Step 2: Evolutionary Iteration
While (termination conditions are not satisfied), iterate the following steps:
Step2-1 Selection: All the antibodies in the population are selected for further operations.
Step2-2 Clonal Expansion: Each antibody in the population is cloned for ClonalSize

copies, and all these copies are stored to a temporary population tempPop.
Step2-3 Hyper-Mutation: All the antibodies in the temporary population undergo the

hyper-mutation. Note one copy is kept unchanged for each of the original antibodies.
Step2-4 Affinity Evaluation: for each antibody in tempPop, calculate the affinity.
Step2-5 Update Memory Pool: Record the newly found well-posed models.
Step 2-6 Re-selection: After evaluation, PopSize best antibodies are selected from the

tempPop, forming a new generation of antibody repertoire. If an antibody’s survival time
exceeds the SurviveTime, it will be replaced by a new randomly generated antibody.

5.4.5 Summary

QML-CSA is the only QML system that utilises an evolutionary algorithm to learn qualitative
models from positive only data. (QME [52] cannot fulfil the learning tasks without negative
data.) As CSA is not a complete algorithm, we need to investigate its reliability under
different circumstances. The experiments performed to evaluate the reliability and scalability
of QML-CSA will be detailed in Section 6.2 and Section 6.4.
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6 Experiments to Evaluate QML-Morven

In this section, QML-Morven will be assessed by analysing the results obtained from per-
forming a series of experiments. First, the experimental testbed is described in Section 6.1.
Second, in Section 6.2 QML-Morven is compared directly with ILP-QSI by means of the same
experiments. Third, the scalability of QML-CSA is explored in Section 6.4.

6.1 Experimental Testbed: Compartmental Models

Compartmental models are chosen as the experimental testbed for two reasons: First, com-
partmental models are abstractions of many dynamical systems, and their applications have
been found in many disciplines, including biology [19], pharmacokinetics [44], epidemiology [5],
physiology [20], and ecology [21]. Second, because compartmental modelling is a more gen-
eral methodology, many de facto benchmarks in the qualitative reasoning community such
as the single-tank, U-tube, cascaded tanks and couple tanks systems [13], have analogous
compartmental models. By carrying out the experiments on these models, first we aim to re-
produce the same or consistent experimental results as obtained from previous QML systems,
especially ILP-QSI. More importantly, analysing the results of the experiments performed on
these general models will also benefit QML research in general.

A compartmental model is composed of several units and the flows of material (or the
transmission of energy) between these units. The features of the compartmental models are
listed as follows:

• Each unit is called a compartment, and the material in all compartments is homogeneous
(well-mixed).

• The volumes of all compartments are assumed to be constant.

• The material flowing into a compartment is assumed to be instantaneously mixed with
the material of the compartment.

• Compartmental models can also have input flows from outside and outflows to the
environment.

Figure 7 shows all the compartmental models to be investigated in this section. In this
figure, c1, c2, c3, and c4 stand for the concentrations in the compartments, and they are
also used to “label” the compartments; f12, f21, f23, and f34 denote the flows from one
compartment to another (“fij” stands for the flow from compartment i to compartment j );
u is the input flow; f20, f30, and f40 are the output flows (“fi0” stands for the outflow of
compartment i) to the environment. Each flow has a monotonically increasing relation with
the concentration of its source compartment (namely the compartment it starts from). For
instance, f12 will increase with the increase of c1. One exception is the input flow u, which
is an exogenous variable and determined from outside.

CM1 is a closed coupled system with bidirectional flows between the two compartments.
The U-Tube system presented in ILP-QSI [13] is a special case of model CM1. The U-Tube
system consists of a hollow tube in the shape of a U and liquid in the tube, as shown in
Figure 8. In this figure, the left and right tank of the U-Tube are labeled A and B, and the
levels of the liquid in these two tanks are denoted as levelA and levelB , respectively. Liquid
can flow freely from one tank to another, and the flow from Tank A to Tank B is denoted as
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Figure 7: Compartmental Models

Figure 8: The U-Tube System

flowAB. The following two reasons make the U-Tube a special case of model CM1: first, in
the U-Tube if the levels of water (levelA and levelB) correspond to the concentrations in CM1
(c1 and c2), and the flows are ignored, the possible qualitative states and the legal transitions
among these states in the U-Tube are the same as those in CM1; second, The U-Tube system
can be seen as a special CM1 model in which f12 is always equal to -f21.

In CM2 there is only one uni-directional flow from the left compartment to the right,
but with an input flow u and output flow f20. Similarly, the cascaded tanks system used in
ILP-QSI is an example of model CM2.

Based on model CM1, model CM3 has additional input and output. Model CM3 is often
used to represent metabolic systems, and its simplified version (the input flow u is assumed
to be zero and steady) has been qualitatively studied by Coghill et al. [12].

Models CM2 Ex2 and CM2 Ex3 are the extensions of model CM2 with three and four
compartments respectively. These two models are catenary compartmental models, in which
all compartments are arranged as a chain, and each compartment has connections to its two
adjacent neighbours only.
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Table 8: The JMorven Model for CM1

Differential Plane 0

C1: Minc (dt 0 f12, dt 0 c1)
C2: Minc (dt 0 f21, dt 0 c2)
C3: sub (dt 0 fx, dt 0 f12, dt 0 f21)
C4: Mdec (dt 1 c1, dt 0 fx)
C5: Minc (dt 1 c2, dt 0 fx)

Differential Plane 1

C6: Minc (dt 1 f12, dt 1 c1)
C7: Minc (dt 1 f21, dt 1 c2)
C8: sub (dt 1 fx, dt 1 f12, dt 1 f21)
C9: Mdec (dt 2 c1, dt 1 fx)
C10: Minc (dt 2 c2, dt 1 fx)

Finally, as an example, we give the JMorven model of CM1 with two differential planes
in Table 8, where fx stands for the netf low from compartment c1 to c2.

6.2 Performing Similar Kernel Subset Experiments to ILP-QSI

Model CM1, the U-Tube, and model CM2 are selected to perform the similar kernel subset
experiments as described by Coghill et al. [13]. As ILP-QSI used the QSIM representation,
the data provided to ILP-QSI for the kernel subset experiments are in the form of magnitude-
derivative pairs, for instance, the data shown in Table 10. In QML-Morven, this kind of data
is called the data of “one and a half” differential planes because the second derivatives of state
variables are not given (or explicitly given). As QML-Morven intends to repeat experiments in
ILP-QSI and compare the results, the training data used in this section are also in the format
of “one and a half” differential planes. Consequently in the model coverage test constraints
containing the second derivatives will not be considered. For instance, after constraints C9
and C10 in model CM1 shown in Table 8 are removed, the new model will generate exactly
the same data as the given ones, as listed in the first five columns of Table 9.

6.2.1 Experimental Method

(1) We use JMorven to simulate models CM1 and CM2 and obtain the envisionment.
(2) All non-empty subsets of the envisionment are presented to QML-Morven, and each

of these subsets is treated as the training data for an individual experiment. This results in
2N -1 different experiments, where N is the number of states in the envisionment.

(3) QML-BKFC is employed to perform all experiments, it works in full search mode,
and the maximum number of hidden variables is 1 for CM1 and 2 for CM2.

(4) For all the experiments in which the target model is successfully identified, the
corresponding sets of training data will be recorded as kernel subsets.

(5) Plot the curve of learning precision versus the number of states used. The learning
precision is defined as the proportion of the models in the result that are equivalent to the
correct model.

(6) Repeat Step 3 ∼5, but using QML-CSA instead of QML-BKFC. As the search spaces
for learning CM1 and CM2 are relatively small (given empty data, the size of the search space
is ∼ 105 for CM1 and ∼ 108 for CM2), the parameters of QML-CSA are set as follows: the
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Table 9: The Data Used for Learning the U-Tube and CM1

State ID c1 (levelA) c2 (levelB) f12 f21 fx(flowAB)
0 <zer , zer> <zer , zer> <zer , zer> <zer , zer> <zer , zer>

1 <zer , pos> <pos , neg> <zer , pos> ∗ <pos , neg> ∗ <neg , pos> †

2 <pos , neg> <zer , pos> <pos , neg> <zer , pos> ∗ <pos , neg>

3 <pos , zer> <pos , zer> <pos , zer> ∗ <pos , zer> ∗ <zer , zer> †

4 <pos , pos> <pos , neg> <pos , pos> ∗ <pos , neg> ∗ <neg , pos> †

5 <pos , neg> <pos , pos> <pos , neg> <pos , pos> ∗ <pos , neg>
∗ Data used to learn CM1 but not U-Tube
† Data used to learn U-Tube but not CM1

population size is 10 for CM1 and 100 for CM2. For both models CM1 and CM2, the clonal
size is 10, the surviving time of all antibodies is 100 generations, the maximum running time
is 60 seconds, and the hyper-mutation probability is 0.5. The termination conditions of the
algorithm are either the experiment exceeds the maximum running time or a false positive
model is found.

6.2.2 Experiments on Model CM1 and the U-Tube

For model CM1, suppose fx cannot be measured. The qualitative states obtained from the
envisionment are listed in the first five columns of Table 9. For the U-Tube, suppose levelA,
levelB , and flowAB can be measured, as shown in Table 9.

For learning these two models, both QML-BKFC and QML-CSA obtained the same learn-
ing precision and kernel subsets. The learning precision is shown in Figure 9, in which “CM1-
E1” indicates the learning precision of CM1.

For learning the U-Tube, the learning precision and kernel subsets obtained are exactly
the same as those obtained by ILP-QSI. The kernel subsets of learning the U-Tube are eight
pairs: (1,2) (1,3) (1,5) (2,3) (2,4) (3,4) (3,5) (4,5). The number in the pairs stands for the
State ID in Table 9. For learning CM1, the kernel subsets include only the first five pairs
of the above eight. This means for learning CM1, QML-Morven can successfully learn the
correct model from any of these five pairs and all their supersets.

Compared to the results of learning the U-Tube, one can see that the learning precision
of model CM1 is lower, and the kernel subsets obtained are fewer. This is because different
data are used for learning the U-Tube and CM1, as shown in Table 9, which results in the
observed behaviours of the U-Tube being more symmetric than those of CM1:

• For the U-Tube system, (a) when the level of fluid in one side is increasing, the level in
the other side must be decreasing, or both are steady; (b) when flowAB is positive and
decreasing, the flowBA (or -flowAB) must be negative and increasing, or both of them
are zero and steady.

• While in the case of CM1, although the first derivatives of c1 and c2 are always opposite
or both steady, and so are the first derivatives of f12 and f21, the magnitudes of the two
flows are not always opposite any more. (This means the magnitude of fx sometimes
cannot be determined. )

The more symmetric behaviours demonstrated by the U-Tube make it more likely to be
identified given incomplete data.

26



Table 10: The Envisionment States Used for CM2 Experiments

State ID c1 c2 f12 f20
0 <zer , pos> <zer , zer> <zer , pos> <zer , zer>
1 <zer , pos> <pos , neg> <zer , pos> <pos , neg>
2 <pos , zer> <zer , pos> <pos , zer> <zer , pos>
3 <pos , pos> <zer , pos> <pos , pos> <zer , pos>
4 <pos , neg> <zer , pos> <pos , neg> <zer , pos>
5 <pos , zer> <pos , zer> <pos , zer> <pos , zer>
6 <pos , zer> <pos , pos> <pos , zer> <pos , pos>
7 <pos , zer> <pos , neg> <pos , zer> <pos , neg>
8 <pos , pos> <pos , zer> <pos , pos> <pos , zer>
9 <pos , pos> <pos , pos> <pos , pos> <pos , pos>
10 <pos , pos> <pos , neg> <pos , pos> <pos , neg>
11 <pos , neg> <pos , zer> <pos , neg> <pos , zer>
12 <pos , neg> <pos , pos> <pos , neg> <pos , pos>
13 <pos , neg> <pos , neg> <pos , neg> <pos , neg>

6.2.3 Experiments on Model CM2

For model CM2, suppose the inflow u=<pos, zer>, which is the same assignment as used in
previous experiments on the cascaded tanks system performed by ILP-QSI, the qualitative
states obtained from the complete envisionment are listed in Table 10.

The kernel subsets and learning curve are exactly the same as those obtained by ILP-QSI:
The kernel subsets obtained are eight triples: (0,2,5) (0,2,7) (0,2,11) (0,2,13) (0,4,5) (0,4,7)
(0,4,11) (0,4,13). The learning precision is shown by the curve “CM2-E1” in Figure 10. As
the learning results have been analysed by Coghill et al.[13], we will not describe the details
of the analysis.

The experiments presented in this subsection demonstrated that QML-Morven could per-
form similar kernel subset and learning precision analysis to ILP-QSI. Furthermore, results
obtained are consistent with those from ILP-QSI.

6.3 Extension Experiments on Models CM1 and CM2

In the previous section we have performed similar experiments as in ILP-QSI. In this section,
we present a set of experiments for CM1 and CM2 designed to investigate the influence of
different hidden variables and different specifications of state variables. These experiments
are categorized as three conditions: omitting non-state variables, partially or not specifying
the state variables, and omitting state variables.

Table 11 shows the sets of experiments for CM1 and CM2. In this table, fx1 and fx2 stand
for the netflow of compartment c1 and c2, respectively. Experiments CM1-E1 and CM2-E1
have been reported in Section 6.2, and they are listed here for comparison. CM1-E6 is taken
as an example to illustrate the experimental conditions: in this experiment, fx, f12, and c1
are hidden variables, c2 is known as a state variable and we also hypothesise that another
hidden variable is a state variable. Some experiments are explained as follows: The difference
between CM1-E4.a and CM-E4.b is that in CM1-E4.b an additional hypothesis is added to
the background knowledge: we assume that there is no hidden relation (a constraint in which
all variables are hidden ones).

For each of the combinations, first complete states from the envisionment are presented
to QML-BKFC (the full search mode, but the maximum number of hidden variables is equal
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Table 11: Experimental Conditions for CM1 and CM21

Experiment Hidden Known State Success
ID Variables Variables

CM1-E1 fx c1, c2 Yes

CM1-E2 fx, f12 c1,c2 Yes

CM1-E3 fx,c1 c2 No

CM1-E4.a fx,c1 c2,Hidden No

CM1-E4.b fx,c1 c2,Hidden Yes 2

CM1-E5 fx, f12,f21 c1,c2 Yes

CM1-E6 fx,f12, c1 c2,Hidden No

CM1-E7 fx None Yes

CM1-E8 fx,f12 None No

CM2-E1 fx1,fx2 c1, c2 Yes

CM2-E2 fx1,fx2 None Yes

CM2-E3 fx1,fx2,f12 c1,c2 Yes

CM2-E4 fx1,fx2,f12 None No

CM2-E5 fx1,fx2,f12,f20 c1,c2 Yes

CM2-E6 fx1, fx2,c1 c2,Hidden Yes

CM2-E7 fx1, fx2,c1,f12 c2,Hidden No
1 Suppose in CM2 the inflow u=<pos,zer>.
2 with additional domain-specific knowledge.

to the actual number of hidden variables). If QML-BKFC can successfully identify the target
model, the succeeding kernel subset experiments will be carried out.

For experiments on models CM1 and CM2, the learning precision of the successful exper-
iments is shown in Figures 9 and 10, respectively.

For experiments on model CM1, the same learning precision and kernel subsets were
obtained in experiments CM1-E1, E2, E5, and E7. Experiment CM1-E4.b has different
learning precision because an additional assumption has been made, and its kernel subsets
only include two pairs: (1,3), (2,3).

For experiments on model CM2, CM2-E1, E3, E5, and E6 have the same learning precision
and kernel subsets. CM2-E2 has a lower learning precision and its kernel subsets are as follows:
(0,2,5) (0,2,7) (0,2,11) (0,2,13) (0,4,7) (0,4,5,6) (0,4,6,11) (0,4,6,13). The first five triples are
the same as those in CM2-E1. The last three sets are constructed by adding state 6 into the
remaining three triples in CM2-E1.

Some conclusions can be drawn based on all experiments reported in this section: (1)
The state variables are very important for learning. The learning task will become difficult
if some of them are hidden variables. (CM1-E3, CM1-E4, CM1-E6, CM2-E6, and CM2-E7)
(2) If a learning task cannot be successfully accomplished, more domain specific knowledge
can be added to facilitate the learning. Given enough information, it is still possible to learn
the target models, but the kernel subsets and learning precision may change. (CM1-E4.a,
and CM1-E4.b) (3) The specification of state variables is also a factor which influences the
learning. Partially or not specifying the state variables will result in a large search space
and may lead to unsuccessful experiments. (CM1-E3,E4,E8; CM2-E3, E4, E6) (4) Given
the correct number of hidden variables, and fully specifying the state variables, the non-state
variables have the least influence on learning. This can be seen from experiments CM1-E1, E2,
E5, and also from experiments CM2-E1, E3, E5. (5) If state variables are not specified, too
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Figure 9: The Learning Precision of Experiments U-Tube, CM1-E1, E2, E5, E7, and E4.b
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Figure 10: The Learning Precision of Experiments CM2-E1, E2, E3, E5, and E6
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Table 12: The Description of the Scalability Experiments

Experiment Hidden Num. Of Search
ID Variables States Space

CM2-Ex3-E1 fx3 68 6.95*108

CM2-Ex3-E2 fx2, fx3 48 4.81*1010

CM2-Ex3-E3 fx1, fx2, fx3 48 6.31*1011

CM2-Ex4-E1 None 500 6.55*104

CM2-Ex4-E2 fx4 340 4.22*1012

Table 13: Experimental Results of the Scalability Test

Experiment QML-BKFC QML-CSA QML-CSA
ID Run Time Best Run Time Average Run Time

(millisecond) (millisecond) (millisecond)

CM2-Ex3-E1 2,504,080 9,990 928,616

CM2-Ex3-E2 193,327,522 500,826 12,135,336

CM2-Ex3-E3 >604,800,000 42,060,168 205,663,188

CM2-Ex4-E1 34,858 6,281 6,554

CM2-Ex4-E2 >1,728,000,000 126,592,860 687,477,140

many hidden variables can lead to unsuccessful learning. This can be seen from experiments
CM1-E7, E8, and also from experiments CM2-E2, E4.

6.4 Scalability Test

In this section the scalability of QML-Morven will be investigated when learning complicated
models. QML-BKFC and QML-CSA were performed to learn models CM2 Ex2 and CM2 Ex3
shown in Figure 7, and their learning results were compared.

A series of experiments was designed, as shown in Table 12. In all these experiments: (1)
The data of one and a half differential planes were used for comparison with the experimental
results obtained from ILP-QSI; (2) All state variables were specified, and the complete data
were used. (3) fx1, fx2, fx3, and fx4 stand for the net flow of c1, c2, c3 and c4 respectively.
(4) It is also assumed that the correct number of hidden variables is given.

For QML-BKFC, the full search mode is adopted. For QML-CSA, the population size is
100 for CM2-EX4-E1 and 1000 for all other experiments, the clonal size is 10, the surviving
time for all antibodies is 1000 generations, and the hyper-mutation probability is 0.5. The
value of the hyper-mutation probability is a classical one used in the original CSA. The values
of other parameters in the experiments are determined according to the complexity of the
search space. For both framework instances, the termination condition is that the target
model is found.

The experimental results are shown in Table 13. In this table, experiments CM2-Ex3-E1
and CM2-Ex4-E1 were performed on a Dell PC with an Intel Pentium IV 3.0GHz CPU and
2GB RAM. Other experiments were tested on a computer cluster with 8 compute nodes (each
node has two Opteron 850 (2.4GHz) CPUs and 4GB RAM). For QML-CSA, each experiment
was executed ten times and the best and average performances were recorded. The details of
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Figure 11: The Ten Trials of QML-CSA for Each Experiment

the ten trials of QML-CSA for each experiment are shown in Figure 11.
From the results one can see that when learning models with large search spaces, compared

to QML-BKFC, QML-CSA demonstrates its scalability, especially in experiments CM2-Ex3-
E3 and CM2-Ex4-E2. In these two experiments QML-BKFC cannot find any solution within
the specified time, while QML-CSA can find the target model in a relative short time. The
high efficiency of QML-CSA is because it combines the random exploration and fine exploita-
tion when searching the model space, and these two mechanisms are provided by the clonal
expansion and hyper-mutation operators, as well as the problem-dependent affinity evaluation
function and the surviving time constraints for each antibody.

7 Conclusion and future work

In this report, we presented a novel qualitative model learning framework, QML-Morven.
QML-Morven can perform the same learning tasks as its predecessors such as ILP-QSI: learn-
ing from positive only data, utilising the well-posed model constraints to narrow the search
space, analysing the kernel subsets and learning precision, and dealing with hidden vari-
ables. Furthermore, QML-Morven is an extensible framework that consists of three QML
sub-systems, and it allows both deterministic and evolutionary approaches applied as learn-
ing strategies to learning under various situations.

More importantly, in this research a series of experiments have been performed with QML-
Morven to reveal the influence of two important factors on the learning: the specification of
state variables and hidden variables. The results obtained and the conclusions drawn from
these results offer an insight into the basic principles of qualitative model learning and may
make contributions to the future development of QML systems.

Finally the scalability of the QML system was addressed by employing an evolutionary
algorithm as the search strategy in QML-CSA and promising experimental results were ob-
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tained.
The three QML subsystems implemented within the QML-Morven framework are adapted

to a wide range of problems: QML-GENMODEL is employed to learn simple systems of which
all variables are identified and complete qualitative behaviours are obtained. QML-BKFC and
QML-CSA are utilised when there exist hidden variables and (or) only incomplete behaviours
are available. In addition, QML-BKFC is suitable for small and medium-sized problems,
and as a complete algorithm, it offers more precise search on the model space compared to
QML-CSA: QML-BKFC can guarantee to find a solution if one exists. On the other hand,
QML-CSA performs better on large-sized problems and addresses the scalability of QML.
These three QML subsystems make QML-Morven very flexible to various problems.

The future development of QML-Morven will involve the following: First, learn fuzzy
qualitative models. QML-Morven has the potential to learn fuzzy qualitative models because
the Morven framework employed by QML-Morven can represent such models and perform
fuzzy qualitative simulation. Second, learn models of more complex real-world problems. To
begin with, QML-Morven has been used to reconstruct qualitatively a biological pathway
[37]. Third, investigate the feasibility of other evolutionary and immune-inspired algorithms
for learning large-scale problems. Some pilot work [39] has been done to investigate how to
adapt the opt-AiNet [16, 51], an immune network algorithm, to qualitative model learning.
It has shown that at the current research stage the opt-AiNet approach to QML is very
promising and may outperform QML-CSA if more modifications are made to its operators in
the future. We expect that in the future more evolutionary and immune-inspired algorithms
will be adapted to qualitative model learning and the learning reliability and performance of
these algorithms will be further analysed and compared.
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