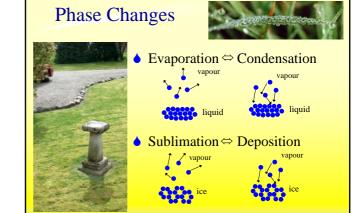

Water

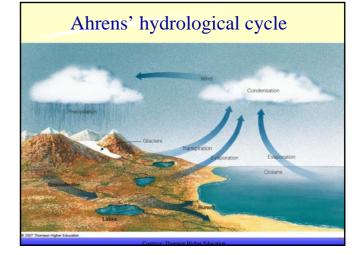
- ♦ 300 million tons of ice that fell as snow
- ♦ Atmospheric water exists in all 3 phases:
 - > vapour
 - ▶ liquid
 - > solid

Picture courtesy Global Marine Drilling, Newfoundla

Water in the Atmosphere


- 3 phases:
 - > vapour (gas)
 - liquid (drops)
 - > solid (ice)
- Most important difference between phases: amount of energy and motion of water molecules
 - remember latent heat

 $\begin{array}{c}
\text{H}_2\text{O} \\
\longleftrightarrow \\
0.3 \times 10^{-9} \,\text{m}
\end{array}$

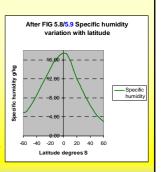

Solid, Liquid, Vapour

- Most solids are crystalline, with molecules ordered in a highly symmetric repeated pattern
 - the 3D arrangement in a solid is the one that minimizes the energy at a given temperature and pressure
- In liquids, molecules are still close together but move relative to each other
- In the vapour, even neighbouring molecules are many diameters apart

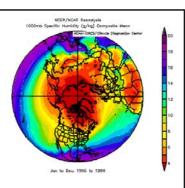
The Hydrological Cycle

- Circulation of water via the atmosphere [fig.
- 5.5/5.5/4.5] Total water vapour in atmosphere is equivalent to ~1 week's rainfall over world
 - > sea: **evaporation** (solar energy) 85% of water to atmosphere
 - > atmosphere: condensation (latent heat); precipitation
 - land: runoff to sea
 - direct evaporation from ground and lakes + transpiration from plants (15% water into atmosphere)

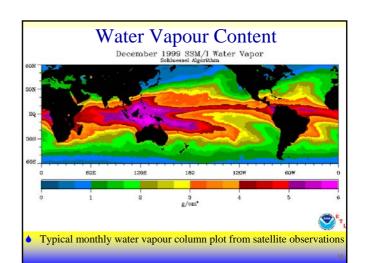
Measuring Water Vapour: Humidity


- ♦ Humidity is measured in several ways
- **♦ Specific humidity**: [page 109/113/89]

Specific humidity = $\frac{mass\ of\ water\ vapour}{total\ mass\ of\ air}$

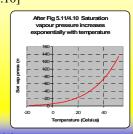

- ➤ e.g. specific humidity of 10 g kg⁻¹
- Parcels of air move along, or up and down, keeping more or less the same composition
 - > a parcel of air preserves its *specific humidity*

Average Specific Humidity


- Fig 5.9/5.9/4.9 shows that across the globe, averaged over the year, the specific humidity decreases from equator to pole
 - greater heat at equator evaporates more water
 - cooler polar air is saturated with less water vapour

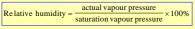
Graphic Example of Specific Humidity

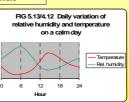
- Northern hemisphere 5 year average of specific humidity from satellite observations
 - > note the modifying influence of the continents


Vapour Pressure

- ◆ A measure of the amount of water vapour in the atmosphere is the pressure that the water molecules alone exert water vapour pressure [page 110/114/90]
- The fraction of pressure exerted by one gas in a mixture of gases depends on the fraction of molecules of the one gas
 - e.g. if the total atmospheric pressure is 1000 mb and there is 1% of water by number of molecules, then the *water vapour pressure* is 1% of 1000, i.e. 10 mb

Saturation Vapour Pressure


- Saturation vapour pressure is the maximum vapour pressure of water at a given temperature [fig. 5.12/5.10/4.10]
 - if any more water is added, condensation takes place

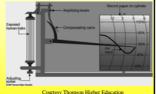


Relative Humidity

• The most common measure of water vapour in the atmosphere is **relative humidity** [p. 112/117/93]

- relative humidity is the % ratio of: content/capacity
- relative humidity is what we naturally sense
- if a packet of air cools, its relative humidity increases

Dew Point


- **Dew point** is the temperature to which a packet of air would have to be cooled for water vapour saturation to occur
 - dew point is useful in predicting how likely fog or cloud, or dew, is to form
 - the difference between air temperature and dew point is a measure of the relative humidity of air; the larger the difference, the smaller the relative humidity

Measuring Humidity

- A device that measures humidity is called a hygrometer; sometimes, a psychrometer
 - electrical sensor (met it earlier)
 - infrared remote sensor
 - ➤ hair hygrometer, 2.5% change in length from dry air to humid air

- > measurement by cooling to dew point
- Wet & dry bulb psychrometer (next slide)

Psychrometer

- Device consists of 2 thermometers, one with its bulb covered in a wick dipped in water
- ► Evaporation from the wet bulb cools one thermometer
- The amount of cooling depends on how far the dew point is below the air temperature
 - mines the relative

Dry bulb

10°C

10°C

Wet bulb

 A look-up table determines the relative humidity (and dew point)

Psychrometer Example

- - dry bulb temperature = 21°C
 - \triangleright wet bulb temperature = 16° C
 - \triangleright calculate **depression of wet bulb** as 21 16 = 5°C
- ♦ Look up Appendix D in Ahrens' textbook
 - tables show dry bulb temperature (downwards) and depression (horizontally)
 - \triangleright from table D.1, **Dew-point** = **13.5**°C
 - \triangleright from table D.2, **Relative humidity** = 60%
 - > note 21°C is between 2 rows: interpolation needed

Relative Humidity Calculations

- ◆ Table 1, page 117/122/98, gives the saturation vapour pressure of water for different temperatures
- What is the vapour pressure in a room at 21°C and relative humidity 50%?
 - \triangleright from table: sat. vap. press. at 21°C = 25 mb
 - \triangleright hence 50% of 25 mb = **12.5 mb**
- If the room cools to 8°C, will condensation appear on windows?
 - > at 8°C, sat. vap. press. = 10.9 mb; condensation ✓
 - (table shows that 12.5 mb is sat. vap. press. at 10.2°C)