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Musings on space elevators 

John S. Reid 

This is one of those pieces where I hope I’ll understand a bit more 
by the time I’m finished than I do now.  The space elevator concept 
starts off as a simple idea:  a geostationary satellite ideally orbits the 
Earth in a circular orbit above the equator in the same time as a 
point on the equator rotates.  Seen from the Earth, the satellite and 
the point below it are two fixed points.  Why not drop a line from 
the satellite to the Earth so that objects can be lifted up, just as a 
line can be dropped from the branch of a tree to the ground below?   
A nice sketch can be drawn.  The line represents the ‘space 
elevator’.  The ‘satellite’ is imagined as a space station, where space 
hardware can be assembled and rockets depart for other space 
destinations with less energy needed than from the surface of the 
Earth. 

That’s one beginning.  A second is to take inspiration from the 
athletics event of ‘hammer throwing’.  The athlete whirls around, 
stretching taut the cable to a heavy ball, before releasing it.  
Well, the Earth is whirling round, albeit sedately compared 
with the hammer thrower.  Shouldn’t we be able to use this 
effect to stretch an elevator cable?   

I’ve opened with two unanswered questions.  Unfortunately, 
the realities of physics knock the simplicity out of the idea.  
I’ll tread slowly, from first principles, which is how I like to 
tackle a problem.  First, though, what is the point of having 
an elevator?  Surely the energy required to raise 1 kg to the 
height of geostationary orbit against gravity is not reduced 
by having an elevator?  Indeed, it’s not.  The gravitational potential energy (PE) of 1 kg at 
distance R from a body of mass M is -GM/R.  Take G = 6.674×10-11 m3kg-1s-2; M = 
5.97×1024 kg; R = 6.378×106 m which gives the potential energy of 1 kg at the surface of the 
Earth as -62.5 MJ.  Raised to geostationary orbit it is -9.5 MJ.  Every means of transporting 
that 1 kg mass must provide the difference in energy, namely 53 MJ.  That’s a lot of energy 
to shift 1 kg.  Where the elevator wins is that no rocket is needed.  The rocket needs fuel to 
create thrust to hold it upright, as well as fuel for motion.  Getting 1 kg into geostationary 
orbit by rocket consumes very much more energy.  The rocket, or parts of it, are raised to 
considerable heights using a lot of fuel whose products are exhausted and a carcass and 
engine that is allowed to fall back to Earth without recovering any of the energy used to raise 
it. 

35786 km is an exceedingly long way, almost the circumference of the Earth.  Travelling at a 
respectable 100 km h-1, the journey will take a fortnight or so, without stops.  [Rockets do it 
in less than a day.  The need for a rocket to expend fuel simply to hold up its weight puts a 
high premium on making it go as fast as possible, so it uses as little fuel in simply supporting 
itself.]  It’s tempting to make the obvious assumption that elevator carriages could work in 
pairs, one going up as another is coming down.  The simplest of scenarios doesn’t work 
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because gravity at 35786 km above the surface of the Earth is only 2.3% of its value on the 
surface so a carriage at the top weighs only 2.3% of one at the bottom and won’t balance it. 
There need to be multiple carriages on the elevator, each linked to one coming down at a 
similar height.  

A fortnight getting there and some turn-around time implies about 20 full journeys per year, 
not a lot.  Suppose an elevator carriage can take up one tonne of goods and people (also not a 
lot.  Proponents argue for much more).   What energy source is needed?  1 tonne mass will be 
1 tonne wt (say 9.8 kN) for the early part of the journey.  Lifting it at 100 km h-1 (= 27.8 m 
s-1) requires a power input of 2.72 ×105 KJ s-1 or 272 KW.  Add on various inefficiencies in 
power conversion, etc. and 1 MW will be a ball-park figure for when the elevator carriage is 
close to the ground.  Multiple carriages moving up at once (as suggested above) will take 
many MW but that is within the compass of an electrical power ‘station’ or network of 
renewable sources. 

Can you hang a cable from a geostationary satellite?  Orbital motion has its own unfamiliar 
dynamics.  If an astronaut were to take a roll of cable outside a geostationary capsule and try 
to drop it, it wouldn’t unroll like it would do if dropped from a tree.  It would just keep 
orbiting with the capsule.  We need to look into the physics of what goes on in a rotating 
frame of reference.  My first picture was supposed to represent the equatorial plane, looking 
down from above the North Pole with the Earth rotating anticlockwise and a satellite rotating 
with it.  The rotation speed Ω is 7.52655×10-5 rad s-1; the rotation axis is pointing up out of 
the paper.  That’s the scene. 

I’ll begin by ignoring gravity.  Imagine the situation is out in 
space.  The blue circle is at a distance R in a frame of 
reference that is rotating at angular speed Ω.  ‘m’ is a mass at 
rest in the rotating frame at distance R.  In that frame we can 
apply Newton’s laws of motion provided we add an outward 
force from the centre of mΩ2R.  This force is often called the 
centrifugal force.  If you like the idea, you can think of a 
rotating frame as having its own ‘quasi-gravity’.  This quasi-
gravity is zero at the centre and increases linearly with 
distance away from the centre - rather different from our own 
familiar gravity.  I’ve suggested this by shading the circle.  
The quasi-gravity has strength mΩ2R at distance R. 

The mass m can be hung in quasi-gravity from the centre of rotation by a cable.  If the cable 
is light (has negligible mass) then when you look at the forces acting on cable and mass 
(within the dashed rectangle) if the mass is at rest, there must be an equal and opposite force 
to the centrifugal force (mΩ2R) at the origin to hang up the mass.  If the origin is something 
fixed and solid, then the mass m is just like a mass hanging from a tree branch, only in quasi-
gravity.  If the cable is not light (and an elevator cable in practice is going to be millions of 
tonnes), then the mass of all its elements will contribute quasi-weight and the total force 
needed to hold up the cable and the mass will be the sum of all the quasi-weights.  If the 
cable has mass ρ per unit length, then for the mathematicians the extra force on the origin due 
to the cable mass will be ∫ 𝜌𝜌𝑅𝑅0 Ω2𝑟𝑟d𝑟𝑟 =  ρΩ2R2/2.  A real elevator cable is likely to have a 
mass per unit length that varies along its length, making the answer more complicated. 
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Now let’s put the Earth at the centre of rotation and add Newtonian gravity, Fgrav, centred on 
the axis of rotation, directed towards the centre and decreasing as the square of the distance 
from the centre.  Fgrav = GmMearth/r2.  With no motion in the rotating frame of reference 0 = –
Fgrav +mΩ2r for a mass m at distance r from the centre.  The – sign represents Newtonian 
gravity directed towards the centre.  The distance at which Newtonian gravity balances quasi-
gravity and there is no force on an object in the rotating frame of reference is the 
geostationary distance, call it rg.  Here, GmMearth/rg

2 = mΩ2rg.  It is the same distance for all 
masses.  Putting in the numbers for the Earth at the centre gives rg = 42160 km from the 
centre of the Earth.  The figure in the first sketch is from the Earth’s surface.  At this distance 
the two ‘gravities’ just balance.  You have to go a lot further out before quasi-gravity has 
increased to the strength of Newtonian gravity on the Earth, i.e. quasi-gravity equals the 
weight of something on Earth.  This distance is about 1.84 million km, approaching 5 times 
as far away as the Moon. 

With the cable mass per unit length ρ, then at distance r along the cable, the combination of 
Newtonian gravity and quasi-gravity gives unit length of cable an ’outward weight’ (i.e. like 
the pull on the hammer thrower) of ρΩ2r - GρMearth/r2.  This must be counteracted by the 
anchor on the Earth.  If the result of adding up the pull from the whole cable is negative, the 
Earth must push back.   

I’ll include a digression here that may or may not help!  Imagine yourself standing on 
bathroom scales, on the equator for simplicity.  The scales push back on your feet and you 
might think that the amount they have to push back is equal to your weight.  It’s actually not 
quite your weight.  The difference between your weight (mg) and the reaction of the scales is 
a force turning you around once in a sidereal day.  If I do this with a mass of 90 kg, and I am 
standing on the equator, the force needed to rotate me on a radius of about 6.38×106 m once 
in 86,164 seconds is about 3 N or 0.35% of my weight. At the risk of getting seriously 
distracted, this isn’t the only reason why the scales may not show true weight.  The buoyancy 
of the air space I occupy, say 0.1 m3, provides an upward force of about 1 N.  The 
atmosphere hasn’t yet come into our story. 

Returning to the theme of the cable, even though the weight of a section of the cable 
decreases with increasing distance from Earth, for many thousands of km this weight will still 
be much larger than its quasi-weight.  The quasi-weight won’t support the cable.  If the cable 
is extremely long, then quasi-gravity, which increases with distance away, will finally 
become dominant as ordinary gravity weakens and ultimately will be enough to support the 
whole cable.  The Earth will then have to pull, like the hammer thrower, to maintain the 
cable.  How long a cable is needed so that the Earth’s push turns into pull?   

Let the cable stretch from a point S on the equator of the Earth (distance 6378000 m) to a 
point at distance X.  Again for the mathematicians, the total pull for a cable from S to X is 
∫ �ρΩ2𝑟𝑟 − G𝜌𝜌Mearth

𝑟𝑟2
�dr𝑋𝑋

𝑆𝑆   = ρΩ2(X2 – S2)/2 – GρMearth (1/S – 1/X).  This clearly depends on 
the mass of the cable per unit length.  Setting the pull as zero gives a cubic equation to find X 
that does not involve the density of the cable.  If you want to try it yourself, Ω2 = 
5.3175×10-9; GMearth = 3.9844×1014.  My answer is near 144000 km from the surface.  This is 
well beyond the geosynchronous distance.  If we take a ball-park figure of one tonne per 
metre (1000 kg m-1) for the cable density, our cable stretching this far will have a mass of 144 
megatonnes.  Even at 100 kg m-1 the cable will have a mass of about 14.4 Mt.  Wow!  The 
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figure is so large I thought at first I must have made a mistake.  If so, I can’t spot it.  A well-
publicised suggestion is to terminate the cable on Earth on a floating platform which can 
exert neither push nor pull.  For this to work the cable of uniform thickness needs to be 
143750 km long.  Alternatively, it could be loaded with megatonnes of mass nearer the Earth.  
Tapered cables will give different figures.  Speak of the tail wagging the dog!  It will never 
work, not least because reality isn’t as stable as theory. 

If the cable were to be terminated at the geosynchronous distance of 35786 km, at 100 kg m-1 
its mass will be 3.5786 Mt.  Its total Newtonian weight will be 5.405×105 tonnes weight but 
some of this will be cancelled by its quasi-weight.  Nevertheless it would still exert a weight 
on the ground of 4.840×109 N, which converts to 493900 tonnes weight.  The slow rotation 
speed of the Earth means that the centrifugal force, or quasi-weight, hasn’t had much 
cancelling effect on Newtonian weight over that length. 

So what’s special about the geostationary distance?  What it has going for it is that attaching 
a space station at this distance doesn’t load the cable.  However, to relieve the weight of the 
cable on the Earth it needs to be loaded well past this distance.  Many web pages talk about 
‘anchoring the cable’ with a distant mass.  An anchor is what holds a boat firmly to the 
seabed, or what holds the cables of a suspension bridge to the adjacent rock.  No way is a 
cable with a substantial mass at the end ‘anchored’ in space.  Since mass is needed at the end 
of a cable, then it makes sense to me to put the space station further out than the 
geostationary distance.  The figures just given suggest that the mass needed is huge, well 
beyond anything that mankind can launch this century. 

Even the theoretical figures given so far send the message that the Earth is not the ideal place 
for a space elevator!  It gets worse when you think about some practicalities.  What’s the 
cable to be made of?  How long a cable can you hang up before the top is stretched to 
breaking point by the hanging weight below?  The relevant concept is ‘tensile strength’ 
usually measure in MPa.  If you can stop it unrolling, you may have difficulty hanging up a 
30 m roll of cheap toilet paper by the first sheet, though in fairness to the paper it has been 
perforated to allow it to tear.  Hanging a cable of length ‘x’ and density ρ, its weight will be 
ρgx per unit cross-section and if this exceeds the tensile strength then the cable will snap.  
Selecting some tensile strengths, steel rope might just support a 25 km length, spider silk 75 
km, polypropylene rope 5 km (rounded figures).  Is it possible to develop a bulk material with 
the necessary tensile strength?  This is a serious challenge. 

If the cable is long enough so that it just stretches out, 
exerting no force on its anchor on the ground (144,000 
km as calculated above for a uniform cross section) then 
what is the tension along the cable?  The tension ‘T’ is 
the force needed at any point to hold it together across an 
imaginary cut.  The force on any side of the cut is the 
sum of the Newtonian gravity and the quasi gravity if the Earth itself is exerting no pull or 
push.  At distance r from the centre of the Earth, this will be ρΩ2(r2 – S2)/2 – GρMearth (1/S – 
1/r) in magnitude.  To convert to Pascals (or MPa), we need to divide by the cross-sectional 
area.  That will be another figure taken out of the air but if we have a linear density of 100 kg 
m-1 and a supposed volume density of 1000 kg m-3 (a bit light for a solid but it may have a 
fancy construction) then the cross section will be 0.1 m2.  The next figure shows how the 
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tension changes along the 
cable, reaching a maximum at 
the geostationary distance.  
With the figures above, this 
maximum is 48400 MPa.  
Given that any design needs to 
have a considerable safety 
margin to allow for 
manufacturing flaws, 
degradation and unexpected 
stress, then at the moment 
we’re out of options. 

All the above just refers to a 
naked cable, without any loading of carriages, engines to propel them vertically at 100 km h-1 
(or whatever speed), and goods.  To put it in perspective, my ‘lightweight’ option of 100 kg 
m-1 (or 100 tonnes per km, if you prefer) is the same mass as a typical pair of railway tracks 
(without the sleepers).  This still requires launching megatonnes of mass and I suspect it is 
too little. 

What can possibly go wrong? 

There are a raft of issues not covered in the basic physics I’ve looked at.  The Earth is orbited 
by the Moon and that will produce an additional variable gravitational effect depending on 
where it is in relation to the cable.  Anyone who has even hung up a rope knows that it takes 
little for the free end to wobble around.  The effect of wave disturbances on the cable needs 
to be taken into account.  Will 
they introduce any instability in 
its position?  Another physical 
issue of a different kind is that 
the cable will go right through 
the Van Allen belts.  The inner 
belt extends to about 6000 km, 
the outer one to 60,000 km so 
the adjacent diagram is not to 
scale.  Both belts are home to 
highly energetic ionising 
radiation, produced ultimately by interaction between the solar wind and the Earth’s magnetic 
field.  Spending days trundling through them in a carriage is not a healthy option for would-
be astronauts.  The radiation damage for the cable and components immersed in these belts 
for decades will be potentially serious. 

A cable 100,000 km long and 0.5 m wide has a cross-sectional area of 50 million square 
metres, 50 square km if you prefer.  That’s a lot of area to be hit by space debris, satellites, 
meteorites or even planes.  A satellite or debris in low earth orbit (say 1000 km high) circles 
the Earth in about 90 minutes; the cable takes almost 24 hours, so the low earth orbiting 
object is travelling about 16 times faster, over 8 km s-1.  If you like comparisons, a one kg 
piece of debris travelling at 8 km s-1 has the same kinetic energy as a 5 tonne elephant 
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travelling at over 100 m s-1.  I suspect the cable wouldn’t stand a chance.  The lower part of 
the cable also has to stand up to the very worst the weather can throw at it. 

What will happen if the cable snaps?  The hammer thrower’s ball flies off when released, 
carrying the comparatively weightless chain initially in a straight line before its trajectory 
curves downwards due to gravity.  The situation of the cable is different.  In fact the question 
is worthy of an undergraduate exam paper.  First, an easier question to answer, if you want to 
try your hand, is what will happen to a carriage that becomes 
detached?  If the carriage is on the portion of the cable nearer the 
Earth, it will be travelling slower than it would be in circular orbit.  
Looked at from the Earth, at distance r from the centre it is 
circulating with a speed of v = Ωr.  Assuming it misses the cable 
then it will fall into an elliptical orbit whose apogee is the starting 
point.  Its initial velocity v determines its angular momentum h 
about the centre of the Earth and its initial distance and speed 
determine its energy E.  From E and h the orbital parameters of 
eccentricity ‘e’ and semi-major axis ‘a’ can be found (see my piece 
on Orbits of Satellites, Moons, Planets and Spacecraft).  In 
particular, the closest point to the Earth is the perigee distance of the orbit, namely a(1 – e).  
If this is less than the radius of the Earth plus 100 km or so for atmospheric clearance, then 
the carriage will become a blazing meteorite in the sky.  This will happen if the carriage is 
less than 25,300 km from the surface.  At this distance the orbit has an eccentricity of 0.644 
and a semi-major axis of 18,174 km. 

At the geosynchronous distance, the carriage will have a circular orbit and keep up with the 
cable.  Beyond that the detached carriage will go into an elliptical orbit with its perigee at the 
point of departure, for it is ‘launched’ with a faster speed than a circular orbit at that distance.  
There will come a distance r when this equals the escape velocity (2GMEarth/r)½.   The 
distance is found when r3 = 2GMEarth/Ω2.  Putting in our earlier figures gives a value of r of 
53116 km.  A carriage coming adrift beyond that distance will go into orbit around the Sun. 

What about a break in the cable?  Broadly speaking, the part attached to the Earth will stay 
attached and hurtle towards the ground.  Will cable originally above 100 km burn up in the 
atmosphere as it re-enters?  I guess that depends on what it, and the carriages it has on it, are 
made of.  Will the remaining part stay in orbit?  I guess that depends on where the break is.  
If it’s beyond 53116 km from the centre of the Earth then the top part will leave Earth orbit.  
Any part of the cable remaining in some orbit will be a gigantic piece of space junk that has 
no useful purpose.  I can’t see any cable operator guaranteeing to remove a broken cable by 
any means.  Even burning up megatonnes of mass in the upper atmosphere is not an 
acceptable disposal option. 

The musing above hints that there is far more to a space elevator project than simply a cable 
in the sky.  There needs to be an operations control structure for using it; there need to be 
servicing, monitoring  and inspection routines and a means of repairing failure and damage to 
both cable and carriages; there need to be safety protocols and a means of rescuing stranded 
people, if people are going to be transported; there needs to be an end of life disposal plan for 
when it can not be maintained or fails irreparably.  As I pen this, media coverage is talking 
about a possible space elevator on Earth in mid 21st century.  I’ll be surprised if it happens at 
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all in the 21st century.  It’s a shorter challenge on Mars, though people haven’t even got there 
yet and Mars has two close-in moons.  Elsewhere in the solar system, Mercury and Venus 
rotate too slowly, amongst other impediments; asteroids generally have sufficiently weak 
gravity to make it not worthwhile, planets from Jupiter through to Neptune have no solid 
surfaces to stand on.  The Moon rotates slowly but at least the far side of the Moon is always 
on the other side from the Earth.  Most other moons are too much influenced by their planet 
to make a simple system work and there won’t be any human colonies there needing an 
elevator in the 21st century. 

The whole rationale for a space elevator is to save launching rockets to reach space.  Yet to 
even set up a space cable, megatonnes have to be launched a great distance into space.  The 
concept of a space elevator is easy to grasp and its usefulness isn’t in doubt.  Yet that is not 
enough to make it a reality.  It is the numbers involved that make reality an awesome 
challenge – numbers for length and strength, numbers for the stability of the structure, 
numbers for operations, safety and emergency response.  My take is that even if the 
technology could be developed in the coming decades, building a functioning space elevator 
is a capital-intensive project beyond the willingness of mankind to undertake at this time in 
history.  It makes more sense to me to wait until we have the technology to build a space 
elevator mainly from ingredients already in space.  That’s unlikely to be in the 21st century. 

 

Supplement on rotating frames of reference 

Newton’s laws of motion work fine in a steadily rotating frame of reference provided you 
include additional ‘forces’.  If an object is in equilibrium, as we hope a cable will be, then the 
only extra force needed is centrifugal force.  If an object is moving with velocity v, then an 
additional force comes into play, the Coriolis force.  This force is proportional to the speed of 
the object in the frame and the rotational speed of the frame, Ω.  It is directed at right-angles 
to the object’s velocity and is in a plane perpendicular to the rotation axis.  Textbooks give 
the full details.  For example, the Coriolis force on a carriage travelling up or down the cable 
at 100 km h-1 will exert a small force at right angles to the cable.  Another example of where 
the Coriolis force would come into play is if the end of a spooled cable in orbit is projected 
towards the centre of the Earth, it will move sideways because of the Coriolis force.   
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