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Gravitation – if the Earth could see 
 

John S. Reid 
  
When we look at objects in the sky they appear at different magnitudes, partly because the 
objects themselves have intrinsically different brightnesses (the astronomers’ absolute 
magnitude) and partly because the light from distant objects fades as the inverse square of the 
distances they are away.  Gravity works in much the same way.  The gravitational force 
experienced by the Earth depends on the gravitational strength of the influencing body 
(determined simply by its mass) and on the inverse square of the distance it is away.  If the 
Earth could ‘see’ gravity in the same way we can see light, what kind of view would it get of 
our surroundings? 
 
It’s no surprise that the gravitationally brightest object in the sky is the Sun, for that holds us 
in our annual orbit.  Different visual magnitudes in astronomy are represented on the 
logarithmic magnitude scale, where a factor of 100 in visual brightness converts to 5 on the 
magnitude scale.  Hence a step of 2.512 in brightness corresponds to a step of 1 on the 
magnitude scale.  Remember that smaller numbers correspond to brighter objects.  The Sun 
has a visual magnitude -26.7; Venus at its brightest has a magnitude -4.4.  This implies that 
light from Venus is weaker than sunlight by a factor of 2.51222.3 = 8.3×108.  In comparison, 
Venus is gravitationally much stronger relative to the Sun’s ‘gravitational brightness’, as can 
be seen from the following numbers.   
 
The Sun is about 115 times the diameter of Venus and hence, other things being equal, one 
might expect it to be 1153 times more massive (since the mass of a sphere scales as the cube 
of its diameter).  Other things aren’t equal, though.  Venus is about 3.7 times the density of 
the Sun and, moreover, at its closest to Earth it is only 0.28 the distance to the Sun.  Hence 
gravitationally the Sun is stronger than Venus by 1153×0.282/3.7 = 3.22×104.  This is not 
nearly as much as the Sun is brighter than Venus.  In magnitude terms, this converts to a 
magnitude difference of 11.27.  Visually, this is about the difference between full moon and 
Sirius and is a smaller difference than between the Sun and Moon. 
 
Based on similar calculations, the adjacent table 
shows the ‘gravitational brightness’ compared with 
the Sun of the Moon and the planets at their nearest 
distances from Earth, and that of α Centauri, one of 
the nearest stars and one similar to our Sun, and the 
galactic centre.  I’ve taken as the ‘galactic innards’ a 
mass of 4×1010 solar masses at a representative 
distance of 25000 light years which are ball-park 
figures causing the whole solar system to rotate 
around the galactic centre in about 240 million 
years.  Remember that astronomical brightnesses 
have a larger number the less bright the object is.  
The black hole at the very centre of the galaxy in the 
constellation of Sagittarius is known as Sgr A* and 
has a mass of about 4.3×109 solar masses. 
 
Visually, full Moon has a brightness relative to the Sun of 14.2.  Gravitationally, Venus, 
Mars, Jupiter and Saturn are all brighter or as bright.  The Moon itself exerts a gravitational 

Body 
Gravitational 

brightness relative to 
the Sun 

Moon 5.5 
Mercury 15.6 
Venus 11.3 
Mars 14.2 

Jupiter 10.5 
Saturn 13.3 
Uranus 17.1 
Neptune 18.9 
α Centauri 27.2 

Galactic innards 19.5 
Sgr A* 21.9 
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force on the Earth almost 1% of the Sun’s force.  The ‘picture’ of the gravitational forces 
acting on the Earth is a very different one to the scene shown by light falling on the Earth. 
 
Conclusions 
 
It’s tempting to write off all distant objects except the combined effect of all the other stars 
towards the galactic centre as having no effect at all on the Earth.  Yet because of the huge 
mass of stars, even a pretty distant star does exert a force on the Earth that is quite a sensible 
number of Newtons.  In fact more or less every star in the Milky Way galaxy exerts a force on 
the Earth at least as big as the force that you or I exert, namely our weight.  Surely that can’t 
be right?  Get out your calculator and remember that Newton’s basic formula for the mutual 
gravitational attractive force F between Earth and a mass M is:      
F = 6.67×10-11×M×MEarth/(separation)2.   You can work out that a star of the same mass as the 
Sun at a distance of 1.34×105 light years exerts the same force on the Earth as a person of 50 
kg mass on the surface of the Earth.  Now that’s a sobering thought! 
 
Thinking about gravitational force, there is no reason to stop at the galactic centre.  Take the 
Andromeda galaxy with, say, at least 1012 solar masses, including dark matter, at a distance of 
2 million light years.  The gravitational force it exerts on the Earth is 2.2×1012 N, about the 
same as the weight of all 6 billion people on the planet if they were to stand in one giant field 
10 km square.  It’s a striking picture, perhaps verging on the silly, but it brings home that the 
gravitational force of the Andromeda galaxy is quite enough to have influenced the relative 
position of us and Andromeda over the 4.6 billion years of the Earth’s existence, which is 
why the Andromeda galaxy is part of the ‘local group’ of galaxies.  The local group of 
galaxies has identity because of the significant mutual gravitational influence of its members.  
In ‘gravitational brightness’ terms, the Andromeda galaxy is 25.5 magnitudes weaker than the 
Sun.  In comparison, Sirius, the brightest star in the sky, is 25.3 visual magnitudes weaker 
than the Sun.  Taking matters further, our local group is part of the Virgo galactic cluster, 
centred in the region of M87 at a distance of 50 million LY, for weaker but still valid reasons 
of the mutual gravitational influence of its members.  Gravity truly connects us to stars almost 
unimaginable distances away. 
 
Appendix 
 
If you want to try estimating magnitudes, m, yourself on some other examples, then if the 
gravitational force exerted by an object on the Earth compared with the force exerted by the 
Sun is x, then 1/x = 2.512m.   Hence log(1/x) =  m log 2.512, giving m = log(1/x)/log 2.512. 
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