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Light Science

 Optics has seldom been more relevant than it is 
today
design of cameras, holograms, telescopes, 

spectacles, surveying instruments …
design of lab optical instruments: microscopes, 

spectrometers, …
fibre-optic communication and the new electronics
new laboratory techniques: confocal microscopy, 

fluorescent molecular marking, ….
optics of natural phenomena



Straight-line Propagation
 Definitions of Rays, Pencils, Beams

A Ray of light is the direction of propagation of light 
energy
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Rays or Waves?

 The relationship between rays and waves in 
optics is fascinating
ray/particle view: Newton & Einstein
wave view: Hooke, Huygens, Fresnel, Maxwell

 We shall see that the fundamental 
properties of light can be described in both 
terms
 Light is light; the rest analogy



Refraction

 Snell’s law
ni sini = nt sint

the refractive index, nx, of the medium x is 
related to the speed of propagation vx= c/nx

c is the speed of light in vacuum
 e.g.  nair = 1.0003, nglass = 1.54,  i = 45°

hence sint = 0.4593 and t = 27.34°
simulation of refraction
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Examples of refraction in nature?

 What natural phenomena are 
caused in whole or in part by 
refraction?



Reflection

 The laws of reflection are
r = -i

the incident ray, surface normal and reflected ray are 
all in the same plane - the plane of incidence

 Deviation, D, of a reflected ray: D = 180 - 2i
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Optical Lever

 Tilt a mirror through angle ‘A’ 
about an axis perpendicular to the 
plane of  reflection
the change in angle of incidence 

can be written i

i = -A
D = -2i = 2A
in words: the reflected beam twists 

through twice the twist of the 
mirror
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Optical lever 
example

 The new generation of 
video projectors uses 
digital input to control the 
pixel illumination

 Each pixel is controlled 
by a moving mirror 16 
m square
 resolution of 20481536 

readily available
exceptional illumination Pictures courtesy Texas Instruments
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Plane Mirrors
 Where is the image?

as far behind the plane of the 
mirror as the object is in front



Image space and handedness

 How much is seen in 
image space?

 Every reflection 
changes the 
handedness of the 
image

Image space
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Examples
 A 90º prism - is there a change in 

handedness of the image?
 How many reflections are there in the 

prisms of traditional binoculars?
 An overhead projector has 

only one mirror.  Why do 
written overheads not appear 
as mirror reflected writing?
 Is the image in a lens a different 

handedness from 
the object?

Objective 

Eye 

Lens image



Java applet 
Simulations

 Mirror reflection
 shows the location of an image in a plane 

mirror and handedness change upon reflection
 Inclined mirrors
 shows the creation of multiple 

reflections around a circle centred 
on the intersection of the 2 
inclined mirrors

 Mirror game



Waves

 The phenomena of interference,
diffraction, and polarisation are 
very naturally described in terms of waves
 Very common phenomena such as straight-

line propagation, refraction and reflection
can also be described in terms of waves
 Fourier (1768 - 1830) first realised that all 

complex wave forms could be described in 
terms of a sum of sine waves

Fourier
Joseph



Sine of unit amplitude
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Snapshot of a sine wave

 A wave disturbance (y) propagates in one direction 
(x)
amplitude: midline - peak disturbance, A
wavelength: repeat distance, 
angular wavenumber: 2/, k measured in (rad) m-1

phase: argument of the sine term, measured in radians. i.e. 
 or (kx) above



Digression on radians

 Radians are the natural unit to use for 
measuring angles

 For a complete circle, 2 radians  360º
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Disturbance of a passing sine wave

 Periodic displacement produced by a wave
period: repeat time, T, measured in s
frequency: no. of repetitions s-1, f or  in Hz
angular frequency: 2,  in rad s-1
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Working with sine waves

 Putting together the variations in space and time 
for a sine wave gives the relationship:

.
 At a fixed time, t1, this looks like y = sin(kx - ), 

where the constant  = t1

example plot:
 y = sin( - /2)
 compared with y = sin(), 

the trace has moved to the 
right

 tkxAy  sin
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Successive sine waves of 
decreasing phase

 The phase of y = sin(kx - t) decreases as time 
goes on

 Snapshots of the wave starting with the red curve 
show it moving to the right (in the +x direction)

Sine wave with decreasing phase for successive curves

-1.5

-1

-0.5

0

0.5

1

1.5

-6.5 -1.5 3.5 8.5 13.5 18.5

 phase (radians)

di
st

ur
ba

nc
e 

(y
)



The speed of a wave

 The speed of a wave is determined by the 
motion of a point of constant phase
 represent the speed by v:

.
 The wavelength in vacuum:
 The wavelength in a medium of refractive 

index n is less than the wavelength in 
vacuum
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Wavefronts

 Wavefronts are surfaces of constant phase
wavefronts show successive crests or troughs of 

a propagating wave
wavefronts from a point source expand as 

spheres
 from a distant source, 

they are ‘plane waves’

 Wavefronts are 
perpendicular to rays

Wavefronts
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Huygens’ 
Principle

 Christiaan Huygens 
was able to explain 
how waves propagate 
in his far-sighted 
book Treatise on 
Light, published in 
1690



Huygens’ Principle
1) Take the wavefront at some time.
2) Treat each point on the wavefront as the 

origin of the subsequent disturbance.
3) Construct a sphere (circle) centred on each point 

to represent possible propagation of the 
disturbance in all directions in a little time.

4) Where the confusion of spheres (circles) overlap, 
the possible disturbances all come to nought

5) The common tangent of the system of spheres 
(circles) defines the new wavefront a little time 
later

6) Starting with the new wavefront, the   
construction goes back to step 2 to see where the 
wavefront reaches a little later on; and so on..

16951629
HuygensChristiaan



Prediction of Snell’s law 
and law of reflection

 Huygens’ own diagrams 
from his Traité de la lumière

npropagatio neStraightli


Reflection


Refraction  



Simulations of Huygens’ principle

 Advancing waves 
both reflected and 
refracted

 Alternative view

nspr.htm/phe/huygelter.fendtcity.de/wa-home.a:http
:courtesy java

htmlopagation.agation/prujava/prop.ac.uk/ntn//www.abdn:http
:courtesy java



Electromagnetic waves

 Light consists of electromagnetic waves
 EM waves consist of periodic variations of 

electric field and corresponding variations of an 
accompanying magnetic field
in most ordinary materials, the 

electric field is at right angles 
to the direction of propagation
 such waves are called transverse

the magnetic field is usually at 
right angles to the electric field, 
and is also transverse

 See the simulation m/emwave.htlter.fendtcity.de/wa-//home.a:http
:courtesy java



Fraction of light reflected & 
transmitted

 Conservation of energy tells us 
that all the incident energy goes 
into reflection, absorption or 
transmission

 The fractions of light reflected and   
transmitted from a transparent surface                    
were predicted by Fresnel in the early                     
19th century

R, fraction 
reflected 

T, fraction  
transmitted 

A, fraction 
absorbed 

1 

1TA R 

Augustin Fresnel 1788 - 1827



The optical 
path length
 Definition
the optical path length (OPL) in any small 

region is the physical path length multiplied by 
the refractive index

 In a medium, generally use the optical path 
length instead of the actual path length
e.g. time of propagation, t
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The number of wavelengths in a 
given path P1P2

 If the path is in vacuum, then 
the number of wavelengths in 
the length P1P2 is /vac

 If the path is in a medium, then the no. of 
wavelengths is:   /medium = OPL/ vac

 The phase change along the path is therefore 
2OPL/vac = OPLkvac

 These results will be useful later 

P1 P2 





Fermat’s Principle

 Of all the geometrically possible paths that 
light could take between point P1 and P2, the 
actual path has a stationary value of the OPL
 Simulation 1; simulation 2

16651601
FermatdePierre
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Equal angles 

sin1 = 2sin2 

1
2 

Digression

 The burning tepee problem
a brave working 20 m from a 

river sees his tepee on fire.  It is 
60 m downstream and 60 m 
from the river.  What is his 
shortest path to take a bucket of 
water to the tepee?
 Fermat’s principle!

if he can only run at half speed 
carrying the bucket of water, is 
this the fastest path?
 no!



Implications of Fermat’s Principle

 Fermat’s principle can be used to deduce 
straight-line propagation, Snell’s law and 
the law of reflection
 The reversibility of light rays
if a ray propagates from P1 to P2 along a 

particular path, then light goes from P2 to P1
along the reverse path

 All paths through a lens 
from object point to image 
point have the same OPL

 

Object pt Image pt 



Departures from 
Geometrical Optics

 Diffraction: the propagation of light 
around obstacles and the spreading out of 
light through apertures
 Interference: the cancellation or addition 

of light waves
 Quantisation of illumination: Light 

energy arrives in bundles called photons

Diffracted energy

energy



Photons
 Photons are the central concept 

in quantum optics

 Photons have energy, E, that 
depends on the light’s frequency, 
through Planck’s constant, h

 Photons have momentum, p, 
that depends on the wavelength 
of light

hE 

 /hp

1947 -1858 
Planck Max

Louis de Broglie 
1892 - 1987



Total internal reflection
 There is a progressive rise in the intensity 

of internal reflection with increasing angle 
of incidence i
limit occurs when 
t = 90º , i.e. sin t = 1.0

the corresponding angle 
of incidence is known as 
the critical angle c
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Total internal reflection - 2

 Total internal reflection occurs for all 
angles of incidence  c

 Examples
reflecting prisms
fibre optics
light guides (illuminated fountains, motorway 

signs, etc.).

Less output than input
(discuss)

Total internal reflection
if c < 45, i.e. n > 2½



Simulations including total 
internal reflection

 Torchlight under water

 Reflection of a fish

 Image seen by a fish



The Evanescent wave
 A phenomenon of ever 

increasing application
 Must the light wave be zero in the low 

refractive index medium?
not for insulating materials

 By creating a tiny gap between 
2 media, you can frustrate total
internal reflection and obtain a 
controlled amount of transmission into an 
adjacent material

 Evanescent wave of exponentially 
decreasing amplitude 

Total internal reflection

boundary 

 Light propagated across tiny gap 

Partial internal reflection 

boundary 
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glass 

glass 



Evanescent 
wave 

application

 Total internal reflection fluorescence
 Detects very small concentrations of 

specific proteins, drugs, DNA etc.

 A sensor molecule 
binds with a protein 
coating the internal 
optically flat surface 
of flow tube

 Fluorescence of 
bound protein 
excited by evanesc. 
wave and detected

comectrospec. www.bioel:courtesy



Fibre optics

 Original patents to John Logie Baird        
in 1930s
fibre bundles can be coherent or incoherent

individual fibres have 
a structure like this
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Fibre optic advantages
 Bundle for transmission of images

flexible
long
little loss
simple construction

 For communications
closed circuit
long-life
not subject to electrical interference
very high bandwidth (subject to refractive dispersion and

propagation dispersion)
disadvantage: repeaters may be needed

com www.cirl.:courtesy Figs
fibre Multimode

~60 m

fibre mode Single

~8 m



Dispersion
 Variation of refractive index with wavelength
Cauchy’s empirical formula

there is not one universal 
curve for all materials

standard wavelengths are 
denoted by Fraunhofer’s letters:
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Fraunhofer letter Origin Wavelength nm
C Red hydrogen 656.27
D Na yellow 589.4
d He yellow 587.56
F Blue hydrogen 486.13

1857 - 1789   
Cauchy      

Louis-Augustin



The Abbe number, Vd

 A single parameter to measure dispersion
the larger the dispersion, the 

smaller the Abbe number
optical glasses are displayed 

on an nd/Vd graph
 note the naming of glasses:

e.g. BK7 517642 means
nd = 1.517; Vd = 64.2

from nd and Vd you can
calculate n at all wavelengths

phenomena that depend   
on dispersion
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The 
Spectrometer
 Uses dispersion 

to show the 
spectrum of a 
light source
 Components are: the slit, collimator, prism, 

telescope, with various adjustments and scales
 Each frequency component of the spectrum 

appears as a spectral line



The achromatic doublet

 Unchecked dispersion will 
kill the performance of all 
lens based optical instruments
 The key to controlling the effect was found by 

John Dollond in 1758 - the achromatic doublet
the diverging component is made 

from a glass of higher dispersion
a weaker diverging component is 

able to cancel out the dispersion 
of the positive component without cancelling out its 
power

1 2

component 1
n1

component 2
n2



The achromatic doublet at work
 A 4-element 

camera lens 
looking at an object 
at  off to left

 Calculated focal 
length of the lens 
for the spectrum of 
colours, shown 
vertically from 400 
nm (violet) to 800 
nm (near infra-red) Winlens'' using Diagrams

doublet separated doublet


