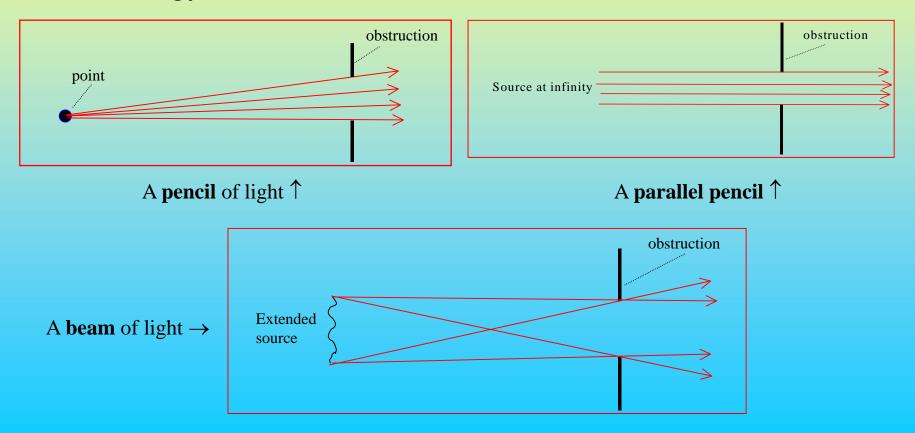
Light Science

A course by

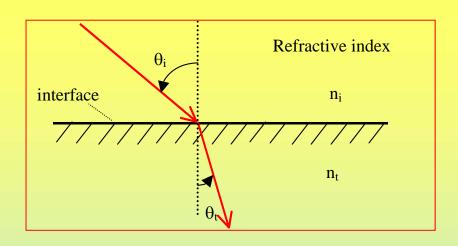
Dr John S. Reid

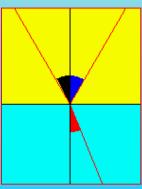

Department of Physics University of Aberdeen

Light Science

- Optics has seldom been more relevant than it is today
 - design of cameras, holograms, telescopes, spectacles, surveying instruments ...
 - design of lab optical instruments: microscopes, spectrometers, ...
 - Fibre-optic communication and the new electronics
 - new laboratory techniques: confocal microscopy, fluorescent molecular marking,
 - > optics of natural phenomena

Straight-line Propagation

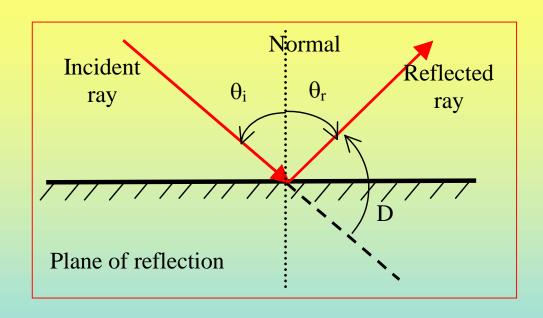

- Definitions of Rays, Pencils, Beams
 - A Ray of light is the direction of propagation of light energy

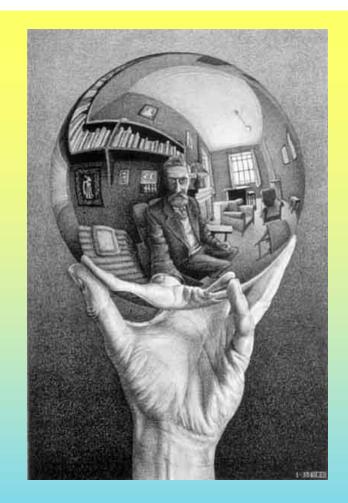

Rays or Waves?

- The relationship between rays and waves in optics is fascinating
 - ray/particle view: Newton & Einstein
 - wave view: Hooke, Huygens, Fresnel, Maxwell
- We shall see that the fundamental properties of light can be described in both terms
- Light is light; the rest analogy

Refraction

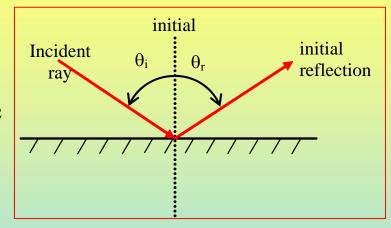
- Snell's law
 - $n_i \sin \theta_i = n_t \sin \theta_t$
 - the refractive index, n_x , of the medium x is related to the speed of propagation $v_x = c/n_x$ c is the speed of light in vacuum
 - e.g. $n_{air} = 1.0003$, $n_{glass} = 1.54$, $\theta_i = 45^{\circ}$ hence $\sin \theta_t = 0.4593$ and $\theta_t = 27.34^{\circ}$
 - >simulation of refraction

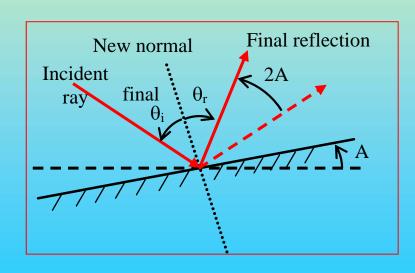



Examples of refraction in nature?

What natural phenomena are caused in whole or in part by refraction?

Reflection

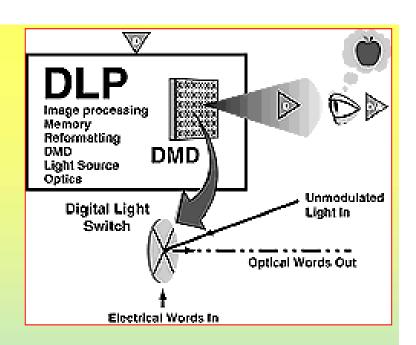

- The laws of reflection are
 - $\theta_{\rm r} = -\theta_{\rm i}$

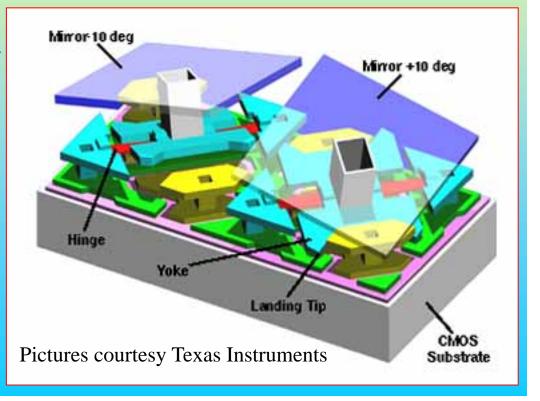

Courtesy: http://en.wikipedia.org/wiki/Image:Hand_with_Reflecting_Sphere.jpg

- ▶ the incident ray, surface normal and reflected ray are all in the same plane the *plane of incidence*
- Deviation, D, of a reflected ray: $D = 180^{\circ} 2\theta_i$

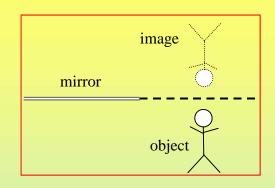
Optical Lever

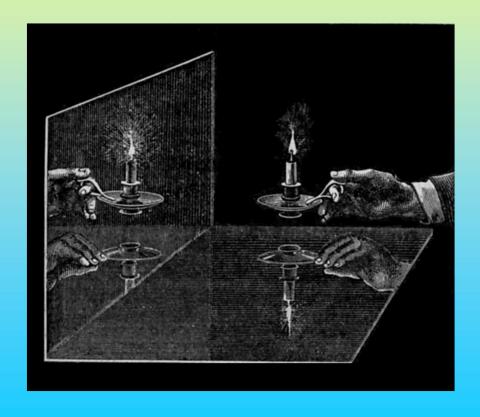
- Tilt a mirror through angle 'A' about an axis perpendicular to the plane of reflection
 - the change in angle of incidence can be written $\delta\theta_i$
 - $\triangleright \delta \theta_i = -A$
 - $\triangleright \delta D = -2 \times \delta \theta_i = 2A$
 - in words: the reflected beam twists through twice the twist of the mirror

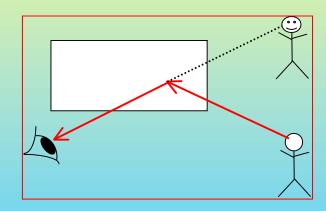




Optical lever example

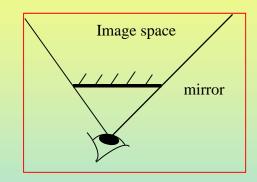

- The new generation of video projectors uses digital input to control the pixel illumination
- Each pixel is controlled by a moving mirror 16 µm square
 - resolution of 2048×1536 readily available
 - exceptional illumination





Plane Mirrors

- Where is the image?
 - as far behind the plane of the mirror as the object is in front



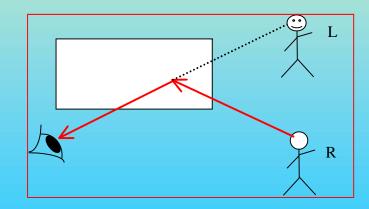
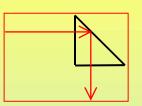
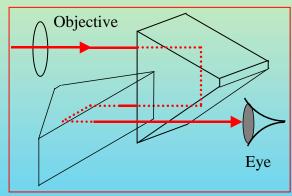


Image space and handedness

How much is seen in image space?



Every reflection changes the handedness of the image


Examples

 A 90° prism - is there a change in handedness of the image?

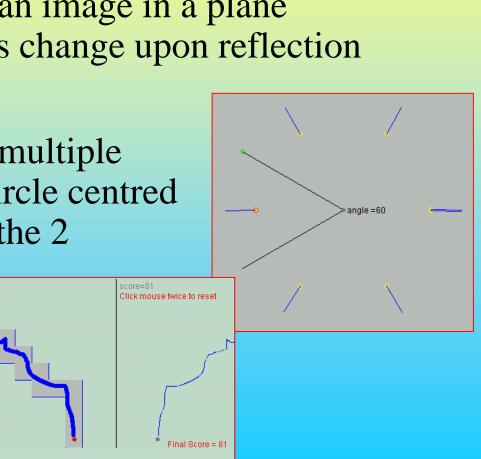
image

- How many reflections are there in the prisms of traditional binoculars?
- An overhead projector has only one mirror. Why do written overheads not appear as mirror reflected writing?

Lens

Is the image in a lens a different handedness from the object?

Java applet Simulations

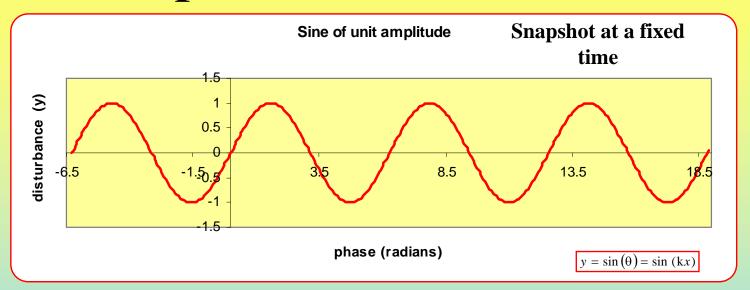

Mirror reflection

shows the location of an image in a plane mirror and handedness change upon reflection

Inclined mirrors

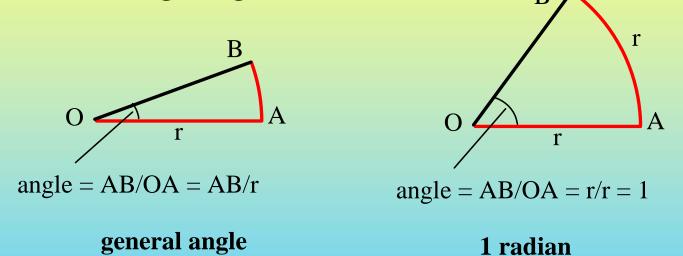
 shows the creation of multiple reflections around a circle centred on the intersection of the 2 inclined mirrors

Mirror game

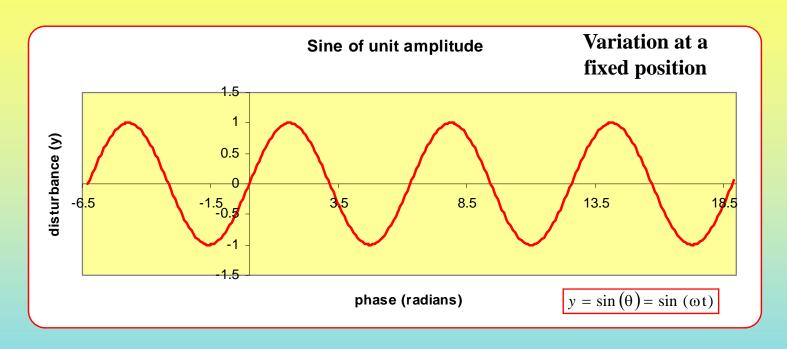

Waves

Joseph Fourier

- The phenomena of interference,
 diffraction, and polarisation are
 very naturally described in terms of waves
- Very common phenomena such as straightline propagation, refraction and reflection can also be described in terms of waves
- Fourier (1768 1830) first realised that all complex wave forms could be described in terms of a sum of sine waves


Snapshot of a sine wave

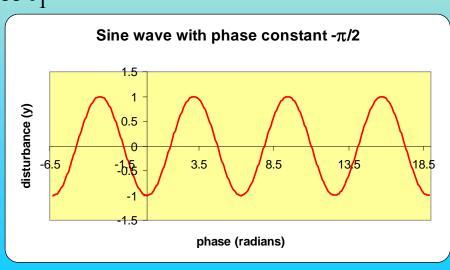
- A wave disturbance (y) propagates in one direction
 (x)
 - **amplitude**: midline peak disturbance, A
 - **wavelength**: repeat distance, λ
 - ▶ angular wavenumber: $2\pi/\lambda$, k measured in (rad) m⁻¹
 - **phase**: argument of the sine term, measured in radians. i.e. θ or (kx) above


Digression on radians

 Radians are the natural unit to use for measuring angles

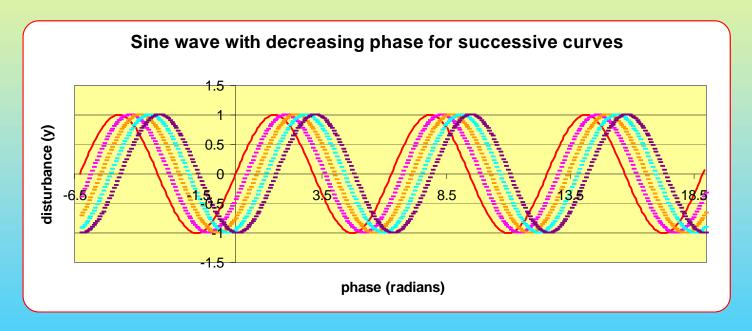
• For a complete circle, 2π radians = 360°

Disturbance of a passing sine wave


- Periodic displacement produced by a wave
 - **period**: repeat time, T, measured in s
 - **Frequency**: no. of repetitions s^{-1} , f or v in Hz
 - **>angular frequency**: $2\pi\nu$, ω in rad s⁻¹

Working with sine waves

 Putting together the variations in space and time for a sine wave gives the relationship:


$$y = A\sin(kx - \omega t) .$$

- At a **fixed time**, t_1 , this looks like $y = \sin(kx \phi)$, where the constant $\phi = \omega t_1$
 - > example plot:
 - $y = \sin(\theta \pi/2)$
 - compared with $y = \sin(\theta)$, the trace has moved to the right

Successive sine waves of decreasing phase

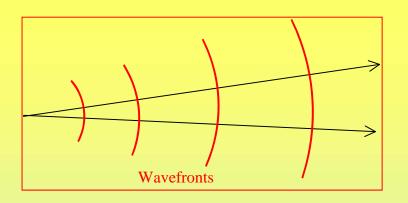
The phase of $y = \sin(kx - \omega t)$ decreases as time goes on

 Snapshots of the wave starting with the red curve show it moving to the right (in the +x direction)

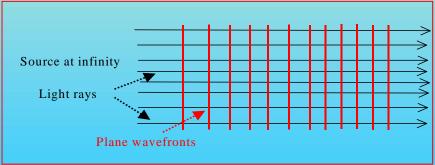
The speed of a wave

- The speed of a wave is determined by the motion of a point of constant phase
 - represent the speed by v:

$$v = \frac{\omega}{k} = \lambda f$$


The wavelength in vacuum: $\lambda_{vac} = \frac{c}{f}$

$$\lambda_{vac} = \frac{c}{f}$$


The wavelength in a medium of refractive index n is less than the wavelength in vacuum

$$\lambda_{med} = \frac{\mathbf{v}}{f} = \frac{c}{nf} = \frac{\lambda_{vac}}{n}$$

Wavefronts

- Wavefronts are surfaces of constant phase
 - wavefronts show successive crests or troughs of a propagating wave
 - wavefronts from a point source expand as spheres
 - from a distant source, they are 'plane waves'
- Wavefronts are perpendicular to rays

Huygens' Principle

Christiaan Huygens
was able to explain
how waves propagate
in his far-sighted
book *Treatise on Light*, published in
1690

DE LA LVMIERE.

Où font expliquées

Les causes de ce qui luy arrive

Dans la REFLEXION, & dans la REFRACTION.

Et particulierement

Dans l'etrange REFRACTION

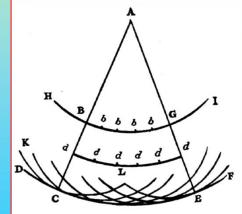
DV CRISTAL DISLANDE.

Par C. H. D. Z.

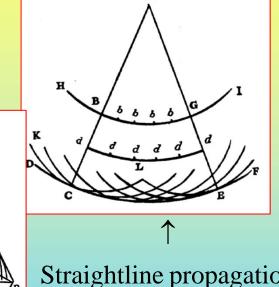
Avec un Discours de la Cause

DE LA PESANTEVR.

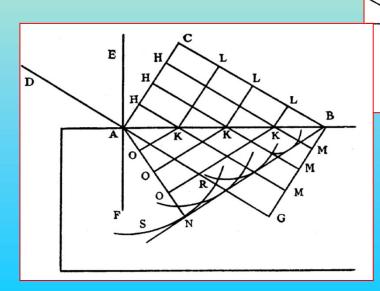
Chez PIERRE VANDER AA, Marchand Libraire.
MDCXC.


Huygens' Principle

- 1) Take the wavefront at some time.
- 2) Treat each point on the wavefront as the origin of the subsequent disturbance.
- 3) Construct a sphere (circle) centred on each point to represent possible propagation of the disturbance in all directions in a little time.


Christiaan Huygens
1629–1695

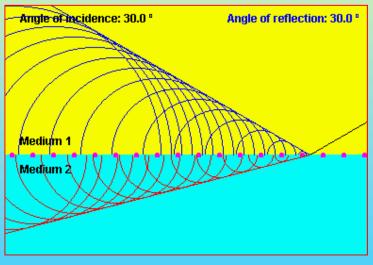
- 4) Where the confusion of spheres (circles) overlap, the possible disturbances all come to nought
- 5) The common tangent of the system of spheres (circles) defines the new wavefront a little time later
- 6) Starting with the new wavefront, the construction goes back to step 2 to see where the wavefront reaches a little later on; and so on..



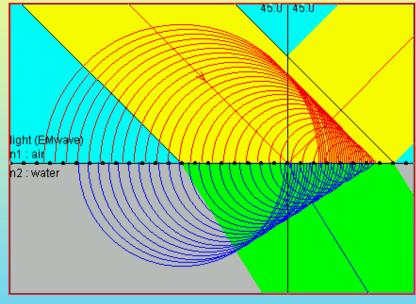
Prediction of Snell's law and law of reflection

Huygens' own diagrams from his Traité de la lumière

Straightline propagation



Reflection

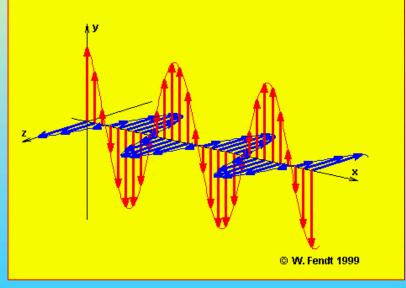

← Refraction

Simulations of Huygens' principle

Advancing waves both reflected and refracted

Alternative view

java courtesy:

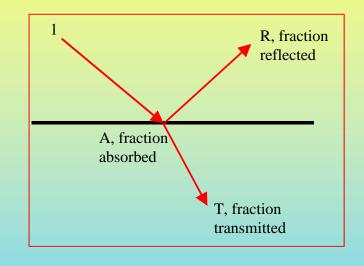

http://www.abdn.ac.uk/ntnujava/propagation/propagation.html

java courtesy:

http://huygenspr.htm

Electromagnetic waves

- Light consists of electromagnetic waves
- EM waves consist of periodic variations of electric field and corresponding variations of an accompanying magnetic field
 - in most ordinary materials, the electric field is at right angles to the direction of propagation
 - such waves are called *transverse*
 - the magnetic field is usually at right angles to the electric field, and is also transverse
- See the <u>simulation</u>

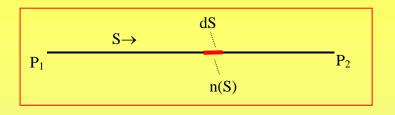


java courtesy:

http://home.a-city.de/walter.fendt/emwave.htm

Fraction of light reflected & transmitted

 Conservation of energy tells us that all the incident energy goes into reflection, absorption or transmission



$$R + A + T = 1$$

The fractions of light reflected and transmitted from a transparent surface were predicted by Fresnel in the early
 19th century

Augustin Fresnel 1788 - 1827

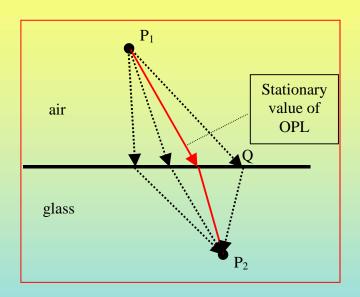
The optical path length

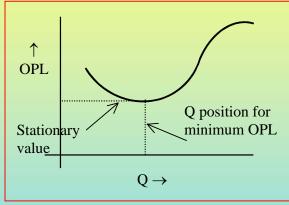
$$d (OPL) = n(s) dS$$

$$\therefore OPL = \int_{P}^{P_2} n(s) dS$$

- Definition
 - the optical path length (OPL) in any small region is the physical path length multiplied by the refractive index
- In a medium, generally use the optical path length instead of the actual path length
 - e.g. time of propagation, t

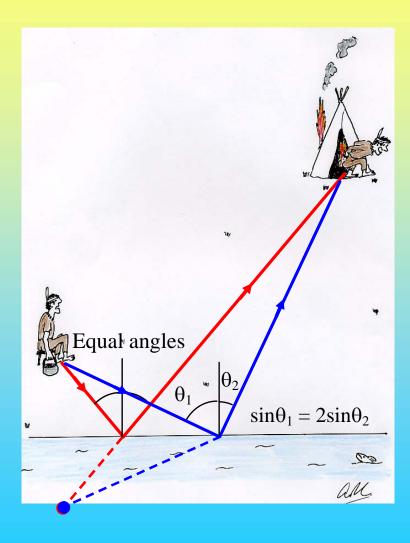
$$dt = \frac{dS}{v(s)} = \frac{n(S)dS}{c} = \frac{d(OPL)}{c}$$
$$\therefore t = \frac{OPL}{c}$$


The number of wavelengths in a given path $P_1 \rightarrow P_2$


• If the path is in vacuum, then the number of wavelengths in the length P_1P_2 is ℓ/λ_{vac}

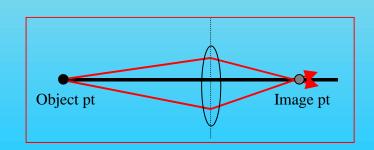
- If the path is in a medium, then the no. of wavelengths is: $\ell/\lambda_{\text{medium}} = \text{OPL}/\lambda_{\text{vac}}$
- The phase change along the path is therefore $2\pi \times OPL/\lambda_{vac} = OPL \times k_{vac}$
- These results will be useful later

Fermat's Principle

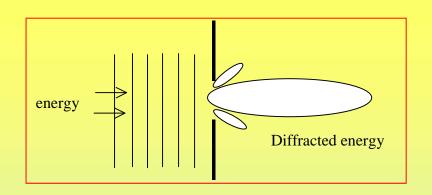

Pierre de Fermat 1601–1665

- Of all the geometrically possible paths that light could take between point P₁ and P₂, the actual path has a stationary value of the OPL
- Simulation 1; simulation 2

Digression


- The burning tepee problem
 - ▶ a brave working 20 m from a river sees his tepee on fire. It is 60 m downstream and 60 m from the river. What is his shortest path to take a bucket of water to the tepee?
 - Fermat's principle!
 - if he can only run at half speed carrying the bucket of water, is this the fastest path?

• no!



Implications of Fermat's Principle

- Fermat's principle can be used to deduce straight-line propagation, Snell's law and the law of reflection
- The reversibility of light rays
 - if a ray propagates from P_1 to P_2 along a particular path, then light goes from P_2 to P_1 along the reverse path
- All paths through a lens from object point to image point have the same OPL

Departures from Geometrical Optics

- Diffraction: the propagation of light around obstacles and the spreading out of light through apertures
- Interference: the cancellation or addition of light waves
- Quantisation of illumination: Light energy arrives in bundles called *photons*

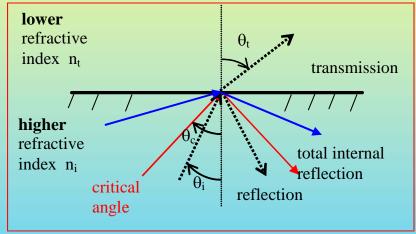
Photons

Photons are the central concept in quantum optics

Max Planck 1858 - 1947

Photons have energy, E, that depends on the light's frequency, through Planck's constant, h

E = h v


Photons have momentum, p, p
 that depends on the wavelength of light

 $p = h/\lambda$

Total internal reflection

- There is a progressive rise in the intensity of internal reflection with increasing angle of incidence θ_i
 - limit occurs when $\theta_t = 90^{\circ}$, *i.e.* $\sin \theta_t = 1.0$
 - The corresponding angle of incidence is known as the *critical angle* θ_c

$$n_i \sin \theta_c = n_t \sin 90^\circ$$
 Snell's law

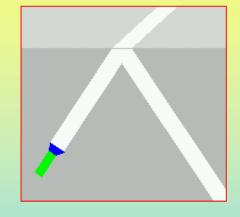
$$\therefore \sin \theta_c = \frac{n_t}{n_i} = \frac{1}{n} \text{ if } n_t = 1$$

$$\therefore \theta_c = \sin^{-1}(1/n) \quad n \text{ is the refractive index of the incident light medium}$$

Total internal reflection - 2

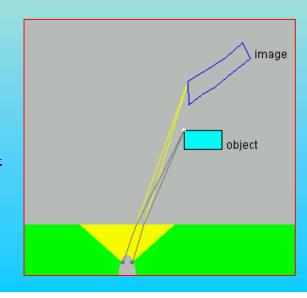
■ Total internal reflection occurs for all angles of incidence $\geq \theta_c$

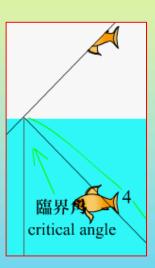
- Examples
 - >reflecting prisms
 - Fibre optics
 - light guides (illuminated fountains, motorway signs, etc.).


Total internal reflection if $\theta_c < 45^\circ$, i.e. $n > 2^{1/2}$

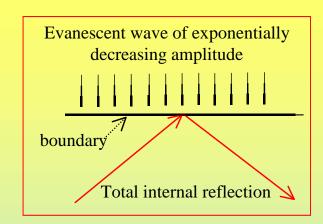
Less output than input

(discuss)


Simulations including total internal reflection

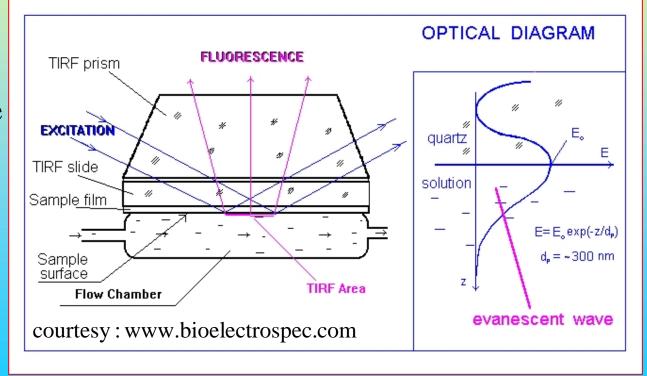

Torchlight under water

Reflection of a fish


Image seen by a fish

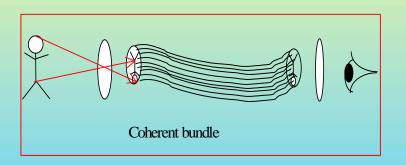
The Evanescent wave

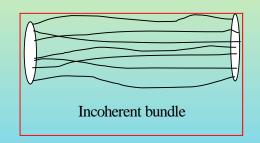
- A phenomenon of ever increasing application
- Must the light wave be zero in the low refractive index medium?
 - >not for insulating materials
- By creating a tiny gap between 2 media, you can *frustrate* total internal reflection and obtain a controlled amount of transmission into an adjacent material

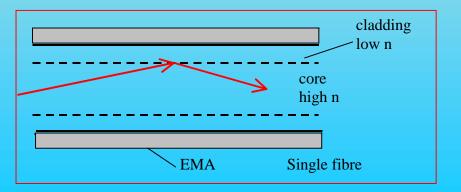

Light propagated across tiny gap

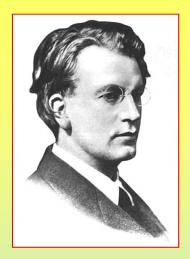
glass

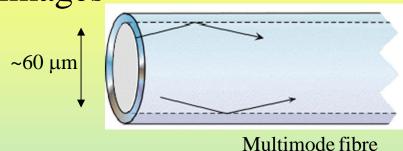
- Total internal reflection fluorescence
- Detects very small concentrations of specific proteins, drugs, DNA etc.
- Evanescent wave application

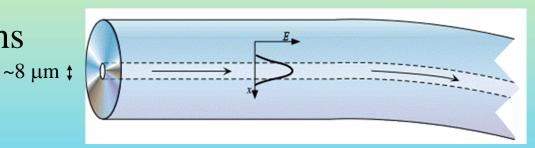

- A sensor molecule binds with a protein coating the internal optically flat surface of flow tube
- Fluorescence of bound protein excited by evanesc. wave and detected


Total Internal Reflection Fluorescence Flow Cell


Fibre optics


- Original patents to John Logie Baird in 1930s
 - Fibre bundles can be coherent or incoherent


individual fibres have a structure like this



Fibre optic advantages

- Bundle for transmission of images
 - **In the second of the second o**
 - long
 - little loss
 - > simple construction
- For communications
 - > closed circuit
 - long-life
 - not subject to electrical interference
 - very high bandwidth (subject to refractive dispersion and propagation dispersion)
 - disadvantage: repeaters may be needed

Figs courtesy: www.cirl.com

Single mode fibre

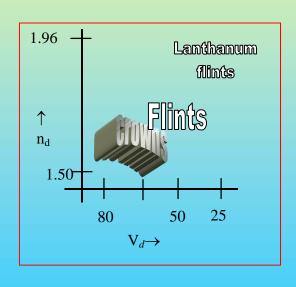
Dispersion

Augustin - Louis
Cauchy
1789 - 1857

Cauchy's empirical formula

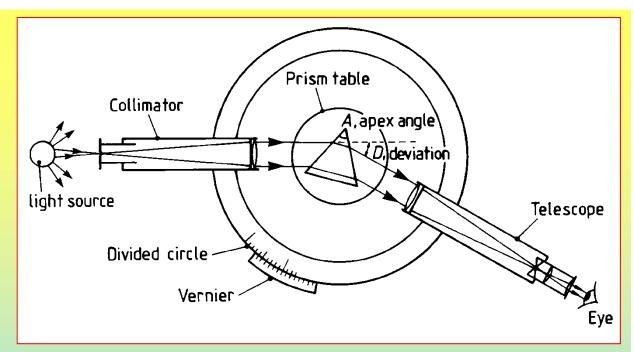
$$n_{\lambda} = n_0 + \frac{A}{\lambda^2} \left(+ \frac{B}{\lambda^4} + \dots \right)$$

- there is not one universal curve for all materials
- standard wavelengths are denoted by Fraunhofer's letter


dispersion				
1.68 -		Flint glass		
↑ n				
1.64 -	F d	n _C		
rs:	$\begin{array}{ccc} 400 \text{ nm} & \lambda \rightarrow \\ \text{violet} \end{array}$	700 nm		

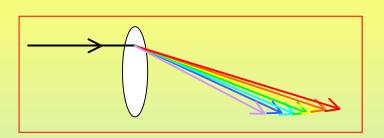
Fraunhofer letter	Origin	Wavelength nm
C	Red hydrogen	656.27
D	Na yellow	589.4
d	He yellow	587.56
F	Blue hydrogen	486.13

The Abbe number, V_d


- A single parameter to measure dispersion
 - the larger the dispersion, the smaller the Abbe number
 - on an n_d/V_d graph
 - note the naming of glasses: e.g. BK7 517642 means $n_d = 1.517$; $V_d = 64.2$
 - From n_d and V_d you can calculate n_{λ} at all wavelengths
 - phenomena that depend on dispersion

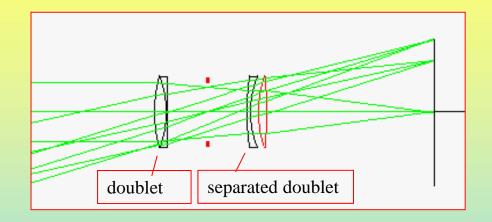
$$V_d = \frac{n_d - 1}{n_F - n_C}$$

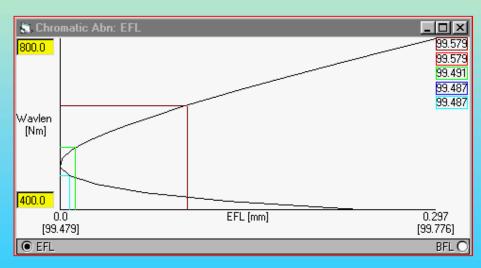
The Spectrometer


 Uses dispersion to show the spectrum of a light source

- Components are: the slit, collimator, prism,
 telescope, with various adjustments and scales
- Each frequency component of the spectrum appears as a spectral line

The achromatic doublet


 Unchecked dispersion will kill the performance of all lens based optical instruments



- The key to controlling the effect was found by John Dollond in 1758 - the achromatic doublet
 - the diverging component is made from a glass of higher dispersion
 - a weaker diverging component is able to cancel out the dispersion of the positive component without cancelling out its power

The achromatic doublet at work

- A 4-element
 camera lens
 looking at an object
 at ∞ off to left
- Calculated focal length of the lens for the spectrum of colours, shown vertically from 400 nm (violet) to 800 nm (near infra-red)

Diagrams using 'Winlens'