6

The evolution of stars

Hubble Deep Field HST • WFPC2 PRC96-01a · ST Scl OPO · January 15, 1996 · R. Williams (ST Scl), NASA

Timescales

- Stars recycle matter
- No naked eye stars have disappeared
- Many stars have a variable light output

The Glowing Eye of NGC 6751 in Aquila courtesy NASA

Hertzsprung-Russell diagram

Ejnar Hertzsprung (1873 – 1967)

Courtesy Kuhn & Koupelis fig 12.17

Henry Norris Russell (1877 – 1957) Courtesy Margaret Olson, grand-daughter

Stellar evolution

Stars spend most of their life converting hydrogen to helium

End game involves moving up and right

10⁴

Fig 14.21 Courtesy Kuhn & Koupelis

Planetary

nebulae

Final state is a white dwarf

Fusing hydrogen

Proton - proton chain reaction results:

4 protons + 2 electrons \rightarrow helium + 6 γ + 2 ν

Hydrogen \rightarrow Helium

- Loss of mass is about 0.7% (26.7 MeV per reaction)
 - using E = mc^2 , energy available for 1 kg of hydrogen converted is 6.3×10^{14} J

Carbon cycle

- An alternative way of converting hydrogen to helium
- Faster than the proton-proton chain for stars more massive than 1.5 $\rm M_{\odot}$
- Responsible for the short lives of massive stars
 - carbon 12 is converted by fusion and β⁺ decay to nitrogen 15 before being recovered, along with helium 4

Fig 14.3 courtesy Kuhn & Koupelis

The beginning of the end

- Gravitational collapse
- Temperature increase
- Hydrogen fusing shell
- Expansion

Fig 14.9 Courtesy Kuhn & Koupelis

A look ahead

- A → B becoming a red giant
 - inevitable for stars 0.4 $\rm M_{\odot}$ to 4 $\rm M_{\odot}$
- At B, the 'helium flash' for our sun

Fig 14.10 Courtesy Kuhn & Koupelis

Helium to carbon

- Essential for life
- Short life of beryllium makes this difficult
- Carbon 12 nuclear resonance helps

Figs 14.12 and 4.13 Courtesy Kuhn & Koupelis

Abundance of elements

- Formation abundance is dictated by conditions within the cores of dying stars
- Elements on Earth were formed in more than one star
- $10^8 \text{ K} \approx 10^4 \text{ eV}$
 - elements can be created in particle accelerators

Source: http://www.cfa.ustc.edu.cn/course/CHAISSON/AT421/IMAGES/AACHDEI0.JPG

The final red-giant phase

- ~100 million years for our Sun
- Red-giants are not intrinsically stable

Fig 14.14 Courtesy Kuhn & Koupelis

- escape velocity $v^2 = 2GM/r^2$
- ~ 40 km s⁻¹
- substantial continuous emission of matter
- pulses of emission create *planetary nebulae*

NGC 2392 Eskimo nebula in Gemini ~ 5000 LY away

Courtesy HST: http://dayton.hq.nasa.gov/IMAGES/SMALL/GPN-2000-000882.jpg

NGC 6543 Cat's eye nebula in Draco ~ 3000 LY distant

Courtesy HST: http://grin.hq.nasa.gov/IMAGES/SMALL/GPN-2000-000955.jpg

in the

Stingray nebula in Ara ~ 18,000 LY distant

Courtesy HST: http://grin.hq.nasa.gov/IMAGES/SMALL/GPN-2000-001372.jpg

NGC 2346 Butterfly wing in Monoceros ~ 2000 LY distant

Courtesy HST: http://grin.hq.nasa.gov/IMAGES/SMALL/GPN-2000-000902.jpg

M57 Ring nebula in Lyra ~ 2000 LY distant

Courtesy HST: http://dayton.hq.nasa.gov/IMAGES/SMALL/GPN-2000-000964.jpg

Twin jet nebula in Ophiucus ~ 2100 LY distant

Courtesy HST: http://grin.hq.nasa.gov/IMAGES/SMALL/GPN-2000-000953.jpg

NGC 6369 Little Ghost nebula in Ophiucus ~3000 LY distant

Courtesy HST: http://www.jpl.nasa.gov/images/wfpc/wfpc_110702_browse.jpg

White dwarves

- White dwarves in M4
- ~ 12.5 billion years old
- Bottom right HST
 8 day exposure
 of a region ~ 1
 LY across
 - white dwarves are circled in blue

HST

Courtesy HST: http://www.jpl.nasa.gov/images/wfpc/white_dwarf_stars_browse.jpg

NOAO

 White dwarf reaches
 Chandrasekhar
 limit

Supergiants

- Massive stars create supergiants
- E.g. Betelgeuse

Fig 15.2 Courtesy Kuhn & Koupelis

Evolution of a 15 solar mass star

Table 15-2

The Evolution of a 15-Solar-Mass Star

Element Fused	Fusion Products	Time	Temperature
Hydrogen	Helium	10,000,000 years	4,000,000 K
Helium	Carbon	>1,000,000 years	100,000,000 K
Carbon	Oxygen, neon, magnesium	1000 years	600,000,000 K
Neon	Oxygen, magnesium	A few years	1,000,000,000 K
Oxygen	Silicon, sulfur	1 year	2,000,000,000 K
Silicon	Iron	A few days	3,000,000,000 K

Table 15.2 courtesy Kuhn & Koupelis

Type II supernova

- Collapse of iron core
- Protons → neutrons
 + neutrinos
- Rebound wave creates heavy elements + disperses ~ 5 M_☉
- Crab nebula
 - ~ 6500 LY
 - supernova visible by daylight in 1054

The Crab Nebula in Taurus (VLT KUEYEN + FORS2)

Neutron	Table 15-5 Courtesy Kuhn & Koupelis A Typical Neutron Star Courtesy Kuhn & Koupelis		
ctarc	Mass	1.5 solar masses	
Stal S	Diameter	20 km (width of a small city)	
	Density	$10^{15} \mathrm{g/cm^3}$	
	Temperature	10,000,000 K	

- The remnant core of a type II supernova explosion
- Between 1.4 and 3 M_{\odot}
- Too small to be seen in a telescope

Pulsars

 Discovered by Jocelyn Bell in 1967

Fig. 15.13 Courtesy Kuhn & Koupelis

← Image of the crab pulsar in X-rays by Chandra probe Source: http://chandra.harvard.edu/photo/0052/0052_xray_lg.jpg

Black holes, again

Cygnus X-1 graphic, a binary with a massive B0 giant and a black hole

- Black holes are the end game of supermassive stars
- Cores greater than about 3 M_{\odot} are too massive to form neutron stars
 - neutron degeneracy pressure cannot support the weight
- The core collapses to a black-hole
 - a 5 M_{\odot} black-hole has a Schwarzschild radius of 15 km
 - this is not much smaller than a neutron star
 - Cygnus X-1, the first X-ray star discovered, behaves as a binary with one component a black hole

The end of PX2512 lectures

Hubble Deep Field HST • WFPC2 PRC96-01a · ST Scl OPO · January 15, 1996 · R. Williams (ST Scl), NASA