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Abstract. Multi-Agent Learning (MAL) is a complex problem, espe-
cially in real-time systems where both cooperative and competitive learn-
ing are involved. We study this problem in the RoboCup Soccer Keepaway-
Takeaway game and propose Argumentation Accelerated Reinforcement
Learning (AARL) for this game. AARL incorporates heuristics, repre-
sented by arguments in Value-Based Argumentation, into Reinforcement
Learning (RL) by using Heuristically Accelerated RL techniques. We em-
pirically study for a specific setting of the Keepaway-Takeaway game the
suitability of AARL, in comparison with standard RL and hand-coded
strategies, to meet the challenges of MAL.

1 Introduction

Multi-agent Learning (MAL) is widely recognised as a complex problem and has
attracted much attention. Research on MAL roughly fall into two categories:
cooperative MAL, where multiple learning agents share the same goal (e.g. [5,
12,11, 15)), and competitive MAL, where different learning agents have different
or even opposite goals (e.g. [16,13]). Argumentation [7], studying the concept
of ‘good’ arguments among conflicting arguments, is widely viewed as a pow-
erful tool in solving conflicts and reaching agreement (see, e.g., [8]), and has
been successfully incorporated within learning [18,10]. We investigate the use
of argumentation in MAL where both cooperative and competitive learning are
involved, focusing on the RoboCup Soccer Keepaway-Takeaway (KATA) game,
an integration of two popular testbeds for MAL [21,14] where there are two
competing teams of agents, keepers and takers, collaborating within the teams.

We focus on Reinforcement Learning (RL), because it allows agents to learn
by interacting with the environment and has been shown to be a generic and
robust learning algorithm for MAL [19]. However, when both competitive and
cooperative learning are involved in a MAL, the effectiveness of RL could be
seriously reduced due to the instability of the environment [22]. To solve this
problem, we propose, in the context of KATA games, Argumentation Acceler-
ated RL (AARL), which incorporates Value-Based Argumentation [1] into RL by
using Heuristically Accelerated RL (HARL) techniques [3], so that, when making
decisions, agents rely not only on their interacting experiences with the environ-
ment, but also domain knowledge in the form of arguments. Further, we test the
effectiveness of AARL in the specific setting of 3-keeper-2-taker KATA games.



Concretely, we test AARL for keepers and takers against two different strategies
for each type of agent and perform a round-robin style experiment(where each
strategy meets all strategies in turn). Our experiments suggest that the AARL-
based strategies are competitive in terms of stability, average convergence time
and average optimal performance. This work is an extension of our previous work
on single-agent Argumentation-Based Reinforcement Learning (ABRL) [10].

The paper is organised as follows: Section 2 gives background. Section 3
describes how to apply AARL to TAKA games and Section 4 presents empirical
results. Section 5 describes related works and Section 6 concludes.

2 Background

First we give fundamentals of value-based argumentation. Then we describe
Markov Decision Process-RL, focusing on the SARSA (M) algorithm that we use,
followed by an introduction of HARL, by means of which we integrate arguments
into RL. Finally, we describe the RoboCup Soccer Keepaway-Takeaway games.

2.1 Argumentation Frameworks

An abstract argumentation framework (AF) [7] is a pair (Arg, Att) where Argis a
set of arguments and Att C Argx Argis a binary relation ((A4, B) € Attis read ‘A
attacks B’). S C Arg attacks B € Arg iff some member of S attacks B. S C Arg
is conflict-free iff S attacks none of its members. If S C Arg attacks all arguments
attacking B € Arg, then S defends B . Semantics of AFs are defined as sets of
“rationally acceptable” arguments (extensions), e.g. (given some F = (Arg, Att)
and S C Arg):

— Sis a complete extension for F iff S is conflict-free and S = {a|S defends a};
— S is the grounded extension for F iff S is minimally (wrt C) complete for F.

The grounded extension is guaranteed to be unique, consisting solely of un-
controversial arguments and being thus “sceptical”.

In some contexts, the attack relation is not enough to decide what is ratio-
nally acceptable, and the “values” promoted by arguments must be considered.
Value-based argumentation frameworks (VAFs) [1] incorporate values as well as
preferences over them into AFs. The key idea is to allow for attacks to succeed
or fail, depending on the relative worth of the values promoted by the compet-
ing arguments. Given a set V' of values, an audience Valpref is a strict partial
order over V (corresponding to the preferences of an agent), and an audience-
specific VAF is a tuple (Arg, Att, V, val, Valpref), where (Arg, Att) is an AF and
val : Arg — V gives the values promoted by arguments. Valpref, the audience, is
a strict partial order over V. We denote (X,Y") € Valprefby X >, Y.

In VAF, Valpref is taken into account in the definition of extensions. The
simplification of an audience-specific VAF is the AF (Arg, Def), where (A, B) €
Def iff (A, B) € Att and val(B) %, val(A). (A, B) € Defis read ‘A defeats B’.
Then, (acceptable) extensions of a VAF are defined as (acceptable) extensions of



its simplification (Arg, Def). We refer to (Arg, Def) as the simplified AF derived
from (Arg, Att, V, val, Valpref).

2.2 Markov Decision Process

The Markov Decision Process (MDP) is one of the most widely used model for
RL and has several variants [22]. An MDP is a tuple (S, A, T, R), where S is
the state space, A is the action space, T(s,a,s’) = Pr(s’|s,a) is the transition
probability of moving from state s to state s’ by executing action a, and R(s, a, s')
gives the immediate reward received when action a is taken in state s, moving
to state s’. In many real problems, e.g. RoboCup Keepaway/Takeaway games
(see Section 2.4), actions may take variable amount of time. In these cases,
Semi-MDP [4] are used to model temporally-extended courses of actions. We
use the SMDP version of SARSA()) [22] learning algorithm extended, in order
to improve the learning speed, with replacing eligibility traces [20], outlined as
Algorithm 1 below.

Algorithm 1 SARSA()) with replacing eligibility traces (adjusted from [22])

Initialise Q(s,a) arbitrarily for all states s and actions a
Repeat (for each episode):
Initialise e(s,a) = 0 for all s and a
Initialise current state st
Choose action a; from s; using the e-greedy policy
Repeat until s; is the terminal state:
Execute action a:, observe reward r; and new state s;41
Choose a¢y1 from s;41 using the e-greedy policy
§ 1t +7Q(8t41, ar41) — Q(st, ar)
e(se,ar) « 1
For all s, a:
Q(s,a) + Q(s,a) + ade(s, a)
e(s,a) < yXe(s,a)
St < St+1; At < Q41

In this algorithm, Q(s,a) € R represents the value of performing action a
in state s. « is the learning rate, v is the discount factor governing the weight
placed on the future rewards, e represents eligibility traces, which store the
credit that previous action choices should receive for current rewards, while A
governs how much credit is delivered back to them. e-greedy is a widely used
(action-selection) policy, which selects the action with highest Q(s, a) value for
a proportion 1 —¢ of the trials;for the other € proportion, actions will be selected
randomly. Formally, this policy is defined as:

_ [ argmax,, Q(st,ar) ifg<e
m(se) = {amndom otherwise 1)

where ¢ is a random value uniformly distributed over [0, 1]. Grqndom is an action
randomly chosen among all those available in state s;.



2.3 Heuristically Accelerated RL

HARL [3] is a way to solve a MDP problem by explicitly incorporating heuristics
within RL. By using HARL, a learning agent’s choice of actions is influenced so
that more promising actions are more likely to be performed. HARL influences
a RL process by overriding the action-selection policy. For example, if we are
using the e-greedy policy (see Equation 1) in the original RL, by using HARL,
the policy will be changed as:

7 (s,) = {argmaxw [Q(st,a:) + He(st,a:)] ifg<e -

Arandom otherwise

where Hy(st,a) is the heuristic function which is defined by the domain ex-
pert. For a state-action pair (s¢, a;), the higher the value of H;(st,a;), the more
promising performing action a; in state s;. As for ¢ and €, they have the same
meaning as in Equation 1. Note that HARL only provides the more promising
state-action pairs with higher priority to be explored, but does not change the
convergence of the original RL algorithm [2]. The heuristic function H; can be
defined a priori or at any moment during learning, and can be updated at any
time throughout learning. Later in Section 3.3, we will give the argumentation-
based definition of HARL.

2.4 RoboCup Soccer Games

RoboCup Soccer is an international project which aims at providing an exper-
imental framework in which various technologies can be integrated and evalu-
ated!. In order to facilitate RL research in this application, two simplified tasks
have been developed: the Keepaway game [21], and the Takeaway game [14].
The basic settings of these games are the same: N +1 (N € N, N > 1) keep-
ers are competing with N takers on a fixed-size court. Keepers are trying to
keep possession of the ball within their team for longer time, whereas takers are
trying to win possession. The games consist of a series of episodes: at the start
of each episode, the keeper in the top-left corner holds the ball, while all other
keepers are on the right. All takers are initially in the bottom-left corner. An
episode ends when the ball goes off the court or any taker gets the ball, and a
new episode starts immediately with all the players reset.

In Keepaway, only the keeper holding the ball is learning. All the other
keepers and takers are playing in accordance with hand-coded strategies. In
Takeaway, however, all takers are learning independently while all keepers are
playing in accordance with hand-coded strategies. So Takeaway is a cooperative
MAL problem whereas Keepaway is a single-agent learning problem which takes
place in a multi-agent scenario. In this paper, we endow both keeper and takers
with learning ability, and we call a game with N + 1 learning keepers and N
learning takers a N-Keepaway-Takeaway (N-KATA) game.

! See http://www.robocup.org/ for more information.



In the RoboCup simulation platform, only primitive actions and coordinate
positions are available. However, RL cannot effectively use this low-level infor-
mation in Keepaway [21] or Takeaway [14]. So macro actions were proposed
originally by [21] for Keepaway, and then adjusted by [14] for Takeaway. In
particular, there are 2 macro actions for Keepaway:

HoldBall(): stay still while keeping the ball;

PassBall(s): kick the ball towards keeper Kj;
and 2 macro actions for Takeaway:

TackleBall(): move towards the ball to tackle it

MarkKeeper(:): go to mark keeper K;, i # 1

where K; represents the ith closest keeper to the ball - so that K is the
keeper in possession of the ball. Takers are indexed in the same way. When a
taker marks a keeper, the taker blocks the path between the ball and that keeper.
Thus, a taker is not allowed to mark the ball holder, and the action set in N-
Takeaway consists of N + 1 actions. In addition, state variables are proposed
by [21] to facilitate the state representation in Keepaway games. In particular,
a state is represented by a state vector which consists of elements, known as
state variables, that can be directly used in the agent’s decision making. The
state variables for the Keepaway games are shown in Table 1. For example, the
distances between takers and the ball holder are state variables, because the
holder could use this information to decide when to pass the ball and where to
pass the ball. As we can see, all state variables are collected in the perspective
of the ball holder, because the ball holder is the only learner in Keepaway. We
call these state variables holder-oriented.

Most existing research on Takeaway uses the holder-oriented state variables
(e.g. [14,17,6]). However, a taker’s self-oriented state variables would be more
helpful. Also, since multiple takers are learning independently in Takeaway, the
state variables should also facilitate coordination between takers. We combine
taker’s self-oriented and some holder-oriented state variables, and use the new
state variables in Table 2. Later in Section 5 we will show that compared with
the learning takers that use the holder-oriented state variables, the takers using
our new state variables have significantly better performance.

3 Argumentation for RoboCup Soccer

In Section 3.1 we give arguments and values for keepers and takers. Then, in
Section 3.2, we define the defeat relationship among arguments, by taking the
ranking of values into account. As a result, we instantiate VAFs (seen in Sec-
tion 2.1) for keepers and takers. Acceptable arguments (in the grounded exten-
stion) for these VAFs recommend actions. Finally, in Section 3.3, we integrate
this action recommendation into RL by using HARL techniques.

3.1 Arguments and Values

Arguments are of the form:



State Variable(s)

Description

dist(Ki, C),
i€ [1,N +1]

Distance between keepers and
the centre of the court.

Distance between takers and
the centre of the court.
Distance between K7 and the
other keepers.

Distance between K7 and the

diSt(Tj, C),
j €1, N]
diSt(Kl, Ki),
i€[2,N+1]
diSt(Kl, Tj),

J € [1, N]|takers.
min dist(K;,T;), Distance between K; and its
J€lLN] closest taker
i€[2,N+1] '
min _ang(K;, Tj), The smallest angle between
JE[L,N]

K; and the takers with vertex
at K.
Table 1. State variables for learning keeper K; in a N-KATA game. (i, €N).

i€[2,N+1]

con(A) IF pre(A)
where con(A) (the conclusion of A) is the recommended action and pre(A) (the
premise of A) describes under which conditions argument A is applicable.

Arguments and values for keepers. For the learning keeper, we use the same
arguments as described in [10], which are designed based on a successful hand-
coded strategy for the keeper described in [21]:

— HD: HoldBall() IF 1Lm<n dist(K1,T;) > 7
<<

— F(i): PassBall(i) IF 12111<n dist(K;,T;) > 15
<<

— O(i): PassBall(i) IF 1£r11<n ang(K;,T;) > 15
<<

where ¢,7 € N. We say that these arguments belong to the keeper K;. Note
that the thresholds used above, i.e. 7 and 15, are proposed based on empirical
results or thresholds used in the hand-coded strategy. Overall, there are 2V 4 1
candidate arguments for K; 2. These arguments can be interpreted as:

— HD: hold the ball because all takers are “far”
taker and K is larger than 7;

— F(i): pass the ball to K; because K; is “far”: the distance between K; and
the K is larger than 15;

— O(%): pass the ball to K; because K; is “open”
all the takers, with vertex at Ky, are over 15°.

: the distance between each

: the angles between K; and

The arguments are promoting values:

— RM: reduce the risk of teammates being marked;
— RI: reduce the risk of the ball being intercepted;
— RT: reduce the risk of the ball being tackled;

2 HD generates one argument. F(i) and O(i) generate N arguments each.



State Variable(s)

Description

dist(K;, Me),

Distance between keepers

j€[2,N]

i € [1, N 4 1]|and myself.

dist(T;, Me), Distance between other tak-

j € [2, N]|ers and myself.

ang(K;, Me), The angle between the free

i € [2, N 4 1]|keepers and myself, with
vertex at Ki.

dist(K;, K1), Distance between K; and
i € [2, N + 1]|the other keepers.

dist(T;, K1), Distance between K; and

the other takers.

min ang(K;, Tj),

The smallest angle between

K; and the takers with ver-
tex at K.

Table 2. State variables for learning taker Th in a N-KATA game. State variables of
other takers can be obtained similarly. (¢, j €N). The top 3 rows describe self-oriented
variables, and the others describe variables about the keepers relative layout.

JEMLN]
i€2,N+1]

where valHD) = RM, val(F(i)) = RT and val(O(i)) = RI with RM >,
RI >, RT. Note that in standard Keepaway, takers are always trying to tackle
the ball. All arguments and values described above are designed based on this
assumption. However, in KATA games, takers can not only tackle the ball, but
also mark keepers. In other words, these arguments and values inevitably have
errors when applied to KATA games. In Section 4, we will make a deeper analysis
of the effects of this imperfect domain knowledge on the learning performance.

Arguments and Values for Takers. As for takers, the arguments should not only
instruct takers to compete with keepers, but also coordinate takers. We propose
the following categories of candidate arguments that belong to the taker Tj:

— T,TK: TackleBall() IF j = arg 1125{] dist(K1,T;)

. . - X >
O(i): MarkKeeper(i) IF in, ang(K;, Ty) > 15

. =0 ‘ S
(2 MarkKeeper(i) IF in dist(K;,Ty)>15
A(i): MarkKeeper(i) IF j = arg 1% ang(K;, Ty)
C(i): MarkKeeper(i) IF j = arg 1@1}{[ dist(K;,Ty)

):
):

where ¢, j,t € N. For T,0(i), T;F (i), T;A(3), T,C(i), i € {2,--- ,N + 1}, be-
cause K; cannot be marked. The intuition behind these arguments is as follows:

— T, TK: T} should tackle the ball if Tj is the closest to the ball holder (K7)
among all the takers;

— T;0(i): T; should mark keeper K; if K, is quite “open”
K; and all the takers, with vertex at K, are over 15°;

— T;F(i): T; should mark keeper K; if K; is “far”: its distances to all takers
are larger than 15;

: the angles between



— TjA(i): T; should mark keeper K; if the angle between T; and K;, with
vertex at K, is the smallest;
— T;C(3): T; should mark keeper K if T} is closest to K.

Overall, in a N-KATA game, there are 4N?+ N arguments for takers®. These
arguments are promoting values:

— VT: The ball should be tackled as quickly as possible;

— VO: If the ball holder decides to pass, it is very likely to pass the ball to an
“open” keeper;

— VF: If the ball holder decides to pass, it is very likely to pass to a keeper
far from all takers;

— VA The taker with the smallest angle to a keeper is most likely to intercept
the ball passed to that keeper;

— VC: The taker closest to a keeper can mark it most quickly.

We set val(T,; TK)=VT, val(T;0(i))=VO, val(T;F(:))=VF, val(T; A7) =
VA, val(T;C(i))=VC. Further, we set VI>, VA =,VC>, VO>, VF. Note
that, for simplicity, we assume the same ranking of values throughout the game,
but our technique can be applied with value rankings that change over time.

Applicable arguments. The arguments given so far are candidate arguments that
may not be applicable at all times. Indeed, in KATA games, the environment
is constantly changing and in each state, an agent has to select the applicable
arguments by checking all candidate arguments to see whether their premises
hold true in that state. Since takers need to coordinate, we assume that each
taker is aware of all other takers’ applicable arguments.”

For example, consider the scenario in Figure 1. With respect to the learning
keeper, since the distances between all takers and K7 are larger than 7, the
argument HD is applicable. Also, because the distance between K3 and K is
larger than 15, F(3) is applicable. The premises of other candidate arguments
are not satisfied in this scenario, so they are not applicable. Similarly, we get the
applicable arguments for takers: 79 TK, T1A(2), T1A(3), T1C(2), ToC(3).

3.2 Defeat Relation and Simplified AF's

For any two arguments P and @, val(P) = V4 and val(Q) = Va, P defeats @ iff
V1 >, V5 and one of the following two conditions holds:

— P and @ belong to different agents but recommend the same action (i.e.
con(P) = con(Q));

3 Indeed, for taker Tj, T;TK gives 1 argument and the other four categories of argu-
ments each give N arguments.

4 V1 =, Va stands for (Vi >, Vo) A (Va >, V1)

® This is in line with all existing research on Keepaway/Takeaway games, building
upon the assumption that an agent is aware of all agents’ locations and the ball’s
location, i.e. each agent has a perfect world view.
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Fig. 1. A scenario of 2-KATA. The size of the court is 40 x 40.

— P and @ belong to the same agent but recommend different actions (i.e.

con(P) # con(Q)).

Given the applicable arguments and the defeat relation, we obtain simplified
AFs (see Section 2.1) for keepers and takers. For example, consider again the
scenario in Figure 1. For the keeper, HD and F(3) belong to the same agent but
support different actions, and the value promoted by HD: RM, is more preferred
than the value promoted by F(3): RT, so HD defeats F(3). The simplified AF
for keeper and takers are shown in Figure 2(a) and Figure 2(b), respectively.

3.3 Argumentation Accelerated RL (AARL)

We use the grounded extension (see Section 2.1) to select the recommended
action for each agent, because this extension is always unique and, as a result,
will not recommend different actions to an agent. For example, consider again
the scenario in Figure 1. The grounded extension of the keeper’s argumentation
framework is {HD}, so the recommended action for K; is HoldBall(). The
grounded extension of the takers’ argumentation framework is {77 TK}, so T is
recommended to TackleBall(). Note that the grounded extension of takers does
not include arguments belonging to T>. This means that given the current state
and our domain knowledge no action is recommended to 7. Note that in some
scenarios, the grounded extension can be empty, which means that based on the
current domain knowledge, there is no convincing enough recommendation can
be drawn in this scenario. So additional domain knowledge should be added;
otherwise, no actions are recommended and agents will choose actions solely
based on the values of each state-action pairs (Q-values, see Section 2.2)

AARL amounts to integrating these recommended actions into RL by using
HARL (see Section 2.3) to give these actions higher probabilities to be explored.
Because all the arguments and values are designed based on the domain knowl-
edge and are not updated during learning, we define the heuristic function a
priori and keep it fixed throughout the learning. In particular, we set the heuris-
tic function of agent A; as:

H(s,a)= {g if a is recommended to A;

otherwise



T, A2 T,C(2)

HD—F3) T,CR)«—>TA(3)«— T,TK
(a) (b)

Fig. 2. Simplified AFs for Figure 1: for keeper(2(a)) and takers (2(b)).

where an action a is recommended to A; iff a is recommended by an argument in
the grounded extension of A;’s simplified AF. Because all Q-values are initialised
as 0, the heuristic value for the recommended action is the value of 7. If an agent
does not have any recommended actions, then it uses the standard e-greedy
policy (see Section 2.2). Note that the heuristic function, states and actions
have no time index, because they can be applied to any state-action pair.

4 Empirical Results

Our learning algorithm is shown in Algorithm 1) We use the same setting as in
[21] for SARSA()) and we set n = 2. For the learning keeper, we use the same
rewarding scheme as in [21]:

r = CurrentTime — LastActionTime

where r is the reward, CurrentTime is the time when a keeper holds the ball
or an episode ends, and LastActionTime is the time when a keeper selected the
last action. As a result, if the last action was HoldBall(), the reward r must be
equal to the duration of an episode; if the last action was PassBall(), then the
farther the target keeper is, the larger the reward will be. So, roughly speaking,
this reward system is distance-oriented: passing the ball to farther keepers is
more encouraged. For takers, the reward is 10 for the last cycle® of each episode
and —1 for all the other cycles. In order to prevent possible oscillations of the
strategy, a taker updates its policy and makes new decisions every 5 cycles (called
a trail). We conduct one experiment on each combination of strategies. All the
experiments are done in RoboCup Soccer Simulator v15.1.07. The hand-coded
strategies of keepers are described in [21] (see Section 3.1), and we design a
hand-coded strategy for the takers, s.t. takers who have a recommended action
would perform it; otherwise, they will tackle the ball.

The performances of different combinations of keeper’s and takers’ strategies
are shown in Figure 3. Both keepers and takers have 3 strategies, namely the
SARSA(\)-based strategy, the AARL-based strategy and hand-coded strategy.
The SARSA())-based strategy can be viewed as the most “random” strategy, be-
cause it uses the standard e-greedy action selection policy and randomly searches

5 In the RoboCup Soccer Simulator, each second is divided into 20 equal-length time
slots, called cycles.
" http://sourceforge.net/projects/sserver/
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Fig. 3. Performances of different learning algorithms for 2-KATA games on a 40 x 40
court. Each curve represents the performance of a single test. Note that when both
keepers and takers are using the hand-coded strategies, the performance is stable and,
as a result, we present its average value here (the straight line in 3(c)).



the action space in the early learning stage. Thus, its performance is most un-
predictable. On the other hand, the hand-coded strategy can be viewed as a fully
argumentation-instructed strategy, because all agents’ actions are strictly con-
strained by the results of the simplified AFs. Hence, the performance of the hand-
coded strategy is most predictable and stable. The AARL-based strategy can be
viewed as half-random-half-argumentation-instructed, with the arguments used
the same as for the hand-coded strategy. Hence, there are 9 combinations overall.
We evaluate the performance of each combination in 3 aspects:

initial performance (IP): episodes’ average duration in the first hour of learning;
convergence time (CT): how long time does a strategy need to converge;
optimal performance (OP): optimal performance of a strategy.

The performance of each combination, in terms of these 3 properties, is shown
in Table 3. Note that for a keeper’s strategy, the higher IP and OP, the more
successful the strategy. However, for takers, a successful strategy should have
lower TP and OP. For both keeper’s and takers’ strategy, the shorter CT, the
better the strategy. We suggest the following conjectures:

1. When a single learner is competing with a group of learning agents, it is better
for the single learner to use the random strategy, but for the learning group to
use the argumentation-instructed strategy. This is because the group of learners
are learning independently, so their emergent behaviours can be hardly predicted
and, as a result, any domain knowledge for the single learner would be helpless.
Instead, if the single learner is using heuristics, its behaviour is easier to predict.
On the other hand, the heuristics would help the group of learning agents to
predict the single learning opponent’s behaviour more quickly.

2. The AARL-based strategy has the best overall performance, in terms of the
stability, average convergence speed and average optimal performance. This is
because AARL can be viewed as a tradeoff between the SARSA-based strategy
and the hand-coded strategy, so it has the advantages of both.

3. The AARL-based strategy is robust to errors in arguments. We can see that
when both sides are using hand-coded strategies, the average episode duration is
very high, which means that the keeper’s hand-coded strategy is better than the
takers’. However, with respect to takers, the performance of the AARL-based
strategy is always better than the SARSA-based strategy.

4. When a group of randomly learning agents are competing with a hand-coded
opponent, the convergence speed can be very slow, even slower than when the
opponent is using a learning strategy. The reason could be that when using the
AARL-based or the hand-coded strategy, the learning group have some coordi-
nation schemes so their group behaviours can converge faster; when both sides
are using learning strategies, they are pushing each other to achieve a Nash
Equilibrium[16] &, so the convergence time can by quicker.

8 The KATA game can be viewed as a zero-sum game because the goal of the two
sides are opposite. However, since our application and algorithm is very different



Keeper
SARSA AARL Hand-coded
SARSA 9.2, 15, 12.7]9.2, 22, 12.7]|13.9, > 60, unknown
Takers| AARL 7.9, 20, 12.3|8.1, 22, 12.0 12.3, 10, 10.2
Hand-coded|7.1, 30, 11.1|8.1, 21, 12.1 14.8, 0, 14.8
Table 3. Summary of performances. Each entry consists of three numbers (in seconds):
initial performance, convergence time and optimal performance.

5 Related Works

There is research on improving machine learning by argumentation. Mozina et
al. [18] proposed argumentation based machine learning, which combines argu-
ments with the original examples of CN2 algorithm to form argumented ex-
amples. The use of arguments significantly improves the performance of CN2.
However, the relationships between different arguments are not taken into ac-
count in their technique, which restricts the effect argumentation should have.
Also, the machine learning technique they considered, CN2, is supervised and
fundamentally different from RL. Research has also been devoted to incorporat-
ing domain knowledge into RL to improve its performance in Keepaway games.
For example, [6] used potential-based reward shaping in Takeaway games and
showed that the convergence time can be reduced and group performance can be
altered. However, their work does not explicitly consider the domain knowledge
representation. Moreover, under the same game settings, their average episode
durations are almost twice as long as ours.

With respect to cooperative RL, [5] distinguished and compared two forms of
multi-agent RL: independent learners (ILs), who only consider its own Q-values
when choosing actions, and joint action learners, who search the exponential
joint action space to maximise the sum of all agents’ Q-values. However, the
performance of these two learners are almost the same. Our agents can be seen
as ILs. [12] used coordination graph to restrain the coordination relationships
between actions. Actions are selected to maximise the sum of Q-values of only
related agents. So in order to know the Q-values of all related teammates, each
agent has to compute all these Q-values or get them by communication. This
technique is not suitable for real-time applications where computational time is
strictly constrained and communication is forbidden, e.g. Takeaway. Some have
also explored using Hierarchical RL (HRL) to guide coordination. For example,
[11] proposed Cooperative HRL, in which coordination is only learnt in prede-
fined cooperative subtasks (CSs), defined by domain experts as subtasks where
coordination would significantly improve the performance of the whole team.
[15] modelled the coordination among agents as coordination constraints and
used these to limit the joint action space for exploration. In all these HRL ap-
proaches, domain knowledge is in the form of hard constraints and the action
exploration is strictly constrained by them. Hence, the learning process cannot

from those in [16], we cannot guarantee a Nash Equilibrium can be achieved. The
difference between our research and [16] are discussed in Section 5.



correct errors contained in the domain knowledge and the performances of these
techniques, as a result, are highly sensitive to the quality of the domain knowl-
edge. Note that there are also research about using argumentation to coordinate
cooperative agents [9,23]. However, their agents do not learn.

For competitive RL, [16] proposed the minimaz-Q-Learning algorithm for
two-player zero-sum Markov game. Based on Littman’s work, [13] developed
a more general algorithm for n-player general-sum Markov games. Both these
approaches are guaranteed to converge to a Nash equilibrium under certain con-
ditions. However, in the Keepaway/Takeaway games, keepers and takers are
making decisions asynchronously, i.e. the keeper is making a decision at each
time slot whereas takers are making decisions every 5 time slots (see Section
4), and the actions of opponent(s) are difficult or even impossible to identify.
For these reasons, the payoff matrices, which are the bases of these approaches,
can hardly be built in Keepaway/Takeaway. Another fact worth mentioning is
that the application domains of all these cooperative/competitive RL techniques
above are simple problems, such as matrix games or ’grid world’ where there are
finite number of discrete states. However, KATA games are real-time large-scale
problems which take place in continuous space, and both cooperative learning
and competitive learning are involved. Thus, the application domain we are using
is more realistic and complex than most existing research.

6 Conclusions

We presented Argumentation-Accelerated RL (AARL) for the 2-KATA game.
This is a new approach to RL where domain knowledge is represented and organ-
ised as an argumentation framework. We implement AARL using the SARSA())
algorithm and conduct experiments in 2-KATA games. The results of our exper-
iments suggest that AARL is competitive with respect to stability, average con-
vergence time and average optimal performance. Further experiments are needed
to consolidate our conclusions.

This work is preliminary research on using arguments to solve multi-agent
cooperative-competitive learning. Since the arguments we are using (see Sec-
tion 3) are independent of any specific learning algorithm, we believe that our
approach can in principle be integrated within other learning algorithms (not
limited to RL) or within RL via other techniques (not limited to HARL). How-
ever, as we have mentioned in Section 3.1, the arguments we are using contain
obvious faults and have a huge space for improvement. So future work can be
done to try out our methodology with other learning methods and more sophis-
ticated arguments. In addition, since the conclusions are based on one specific
game and limited experiments, more experiments on more games should be per-
formed so as to test our conclusions more generally.

References

1. Bench-Capon, T.: Persuasion in practical argument using value-based argumenta-
tion frameworks. J. Log. Comput. 13(3), 429-448 (2003)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

. Bianchi, R.A.: Using heuristics to accelerate reinforcement learning algorithms (in

Portuguese). Ph.D. thesis, University of Sdo Paulo (2004)

Bianchi, R.A., Ribeiro, C.H., Costa, A.H.: Accelerated autonumous learning by
using heuristic selection of actions. Journal of Heuristics 14, 135-168 (2008)
Bradtke, S.J., Duff, M.O.: Reinforcement learning methods for continuous-time
markov decision problems. Advances in Neural Information Processing Systems 7,
393-400 (1995)

Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: The Proc. of AAAT (1998)

Devlin, S., Grzes, M., Kudenko, D.: Multi-agent, reward shaping for robocup keep-
away (extended abstract). In: Proc. AAMAS (2011)

Dung, P.M.: On the acceptability of arugments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321-357 (1995)

Fan, X., Toni, F.: Argumentation dialogues for two-agent conflict resolution. In:
Proc. of COMMA (2012)

Ferretti, E., Errecalde, M., Garcia, A.J., Simari, G.R.: An application of defeasible
logic programming to decision making in a robotic environment. In: LPNMR (2007)
Gao, Y., Toni, F., Craven, R.: Argumentation-based reinforcement learning for
robocup soccer keepaway. In: Proc. of ECAI (2012)

Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforce-
ment learning. Autonomous Agents and Multi-Agent Systems 13, 197-229 (2006)
Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In:
Machine learning international workshop then conference (2002)

Hu, J., Wellman, M.P.: Multiagent reinforcement learning: Theoretical framework
and an algorithm. In: Proc. of ICML (1998)

Iscen, A., Erogul, U.: A new perspective to the keepaway soccer: The takers (short
paper). In: Proc. of AAMAS (2008)

Lau, Q.P., Lee, M.L., Hsu, W.: Coordination guided reinforcement learning. In:
Proc. of AAMAS (2012)

Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Proc. of ICML (1994)

Min, H.Q., Zeng, J.A., Chen, J., Zhu, J.H.: A study of reinforcement learning in
a new multiagent domain. In: 2008 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (2008)

Mozina, M., Zabkar, J., Bratko, I.: Argument based machine learning. Artificial
Intelligence 171, 922-937 (2007)

Sen, S., Sekaran, M., Hale, J.: Learning to coordinate without sharing information.
In: Proc. of AAAT (1994)

Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces.
Machine Learning 22, 123-158 (1996)

Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup soccer
keepaway. Adaptive Behavior 13, 165-188 (2005)

Sutton, R., Barto, A.: Reinforcement Learning. MIT Press (1998)

Tambe, M., Jung, H.: The benefits of arguing in a team. AI Magzine 20(4), 85-92
(1999)



