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Abstract. We study formal argumentation frameworks as introduced by Dung
(1995). We show that any such argumentation framework can be syntactically
augmented into a normal form (having a simplified attack relation), preserving
the semantic properties of original arguments.
An argumentation framework is in normal form if no argument attacks a con-
flicting pair of arguments. An augmentation of an argumentation framework is
obtained by adding new arguments and changing the attack relation such that the
acceptability status of original arguments is maintained in the new framework.
Furthermore, we define join-normal semantics leading to augmentations of the
joined argumentation frameworks. Also, a rewriting technique which transforms
in cubic time a given argumentation framework into a normal form is devised.

1 Introduction

Abstract argumentation frameworks, introduced by Dung [11], constitute a common
mechanism for studying reasoning in defeasible domains and for relating different non-
monotonic formalisms. General network reasoning models investigating the informal
logic structure of many social and economic problems instantiate Dung’s argumentation
frameworks, and therefore can be implemented based on an unifying principle.

This graph-theoretic model of argumentation frameworks focuses on the manner
in which a specified set A of abstract arguments interact via an attack (defeat) binary
relation D on A. If (a,b) ∈ D (argument a attacks argument b) we have a conflict.
A conflict-free set of arguments is a set T ⊆ A such that there are no a,b ∈ T with
(a,b) ∈ D. An admissible set of arguments is a conflict-free set T ⊆ A such that the
arguments in T defend themselves “collectively” against any attack: for each (a,b) ∈D
with b ∈ T , there is c ∈ T such that (c,a) ∈ D.

In this model, the main aim of argumentation is deciding the status of arguments.
The acceptability of an argument a is defined based on its membership in an admissible
set of arguments satisfying certain properties (formalizing different intuitions about
which arguments to accept on the basis of the given framework) called semantics. The
attack graph is given in advance – abstracting on the underlying logic and structure of
arguments, as well on the reason and nature of the attacks – and provides a defeasible-
based conceptualization of commonsense reasoning.

It is well-known that the syntactical structure of argumentation frameworks directly
influences the output [11, 12, 1], and the complexity of algorithms for deciding ac-
ceptability questions [13]. In [21], a four-layers succession for any AI-argumentation
process was proposed. First we have the logical layer in which arguments are defined.



Second, in the dialectical layer, the attacks are defined. Next, in the procedural layer,
are defined rules that control the way arguments are introduced and challenged. Last
layer, the heuristics layer, contains the remaining parts of the process, including meth-
ods for deciding the justification status of arguments.

In this paper, keeping the abstract character of arguments and attacks, we are inter-
ested in understanding the syntactical properties of argumentation frameworks related
to the procedural layer. We prove in a formal way that some discipline policy can be
adopted in forming of an argumentation framework, without changing the semantic
properties. It follows from our result that if the output of a dispute is obtained using
an extension based reasoning engine, then it will be not influenced if we impose the
following rule: any new argument added by an agent attacks no existing pair of con-
flicting arguments and, at the same time, at most one argument from any existing pair
of conflicting argument can attack the new argument.

We formalize this by considering σ -extensions (for σ a classical semantics), and
introducing the notion of σ -augmentation of an argumentation framework AF . An ar-
gumentation framework AF ′ is a σ -augmentation of AF if it contains all arguments of
AF , and the attacks of AF ′ are such that, for any set S of arguments of AF , S is con-
tained in a σ -extension of AF if and only if S is contained in a σ -extension of AF ′. We
show that for suitable join-normal semantics the join of two argumentation frameworks
gives rise to a common σ -augmentation of the joined argumentation frameworks. In
the main result of this paper, we prove that for any argumentation framework AF there
is a σ -augmentation AF ′ in normal form, where σ is any Dung’s classical semantics.
An argumentation framework is in normal form if the set of arguments attacked by any
argument contains no two attacking arguments. We prove that an argumentation frame-
work is in normal form if and only if it can be constructed by adding its arguments one
after one (the order does not matter), such that each new argument cannot attack two
attacking arguments already added, and cannot be attacked by a pair of two attacking
arguments already added.

The remainder of this paper is organized as follows. In Section 2, we discuss basic
notions of Dung’s theory of argumentation. In Section 3, σ -augmentations of argumen-
tation frameworks are introduced and their basic properties are studied. In Section 4, we
show that each argumentation framework admits an admissible augmentation in normal
form (which can be constructed in cubic time). Finally, Section 5 concludes the paper
and discusses future work.

2 Dung’s Theory of Argumentation

In this section we present the basic concepts used for defining classical semantics in
abstract argumentation frameworks introduced by Dung in 1995, [11]. All notions and
results, if not otherwise cited, are from this paper (even some of them are not literally
the same). We consider U a fixed countable universe of arguments.

Definition 1. An Argumentation Framework is a digraph AF = (A,D), where A ⊂U
is finite and nonempty, the vertices in A are called arguments, and if (a,b) ∈ D is a
directed edge, then argument a defeats (attacks) argument b. A, the argument set of



AF , is referred as Arg(AF) and its attack set D is referred as Def (AF). The set of all
argumentation frameworks (over U) is denoted by AF.

Two argumentation frameworks AF1 and AF2 are isomorphic (denoted AF1 ∼= AF2)
if there is a bijection h : Arg(AF1)→ Arg(AF2) such that (a,b) ∈ De f (AF1) if and only
if (h(a),h(b)) ∈ De f (AF2). h is called an argumentation framework isomorphism, and
it is emphasized by the notation AF1 ∼=h AF2. If S⊆ Arg(AF1) and h is an isomorphism
between AF1 and AF2, then h(S)⊆ Arg(AF2) is h(S) = {h(a)|a ∈ Arg(AF1)}. Similarly,
if M ⊆ 2Arg(AF1), then h(M)⊆ 2Arg(AF2) is h(M) = {h(S)|S ∈M}.

The extension-based acceptability semantics is a central notion in Dung’s argumen-
tation framework, which we define as follows (see also [2]).

Definition 2. An extension-based acceptability semantics is a function σ that assigns to
every argumentation framework AF ∈ AF a set σ(AF) ⊆ 2Arg(AF), such that for every
two argumentation frameworks AF1,AF2 ∈ AF, if h is an isomorphism between AF1
and AF2 (AF1 ∼=h AF2) then σ(AF2) = h(σ(AF1)). A member E ∈ σ(AF) is called a
σ -extension in AF .

If a semantics σ satisfies the condition |σ(AF)|= 1 for any argumentation framework
AF , then σ is said to belong to the unique-status approach, otherwise to the multiple-
status approach [22].

The main conditions on the acceptability status of an argument with respect to a
given semantics are defined as follows.

Definition 3. Let AF = (A,D) be an argumentation framework, a ∈ A be an argument
and σ be a semantics.

a is σ -credulously accepted if and only if a ∈
⋃

S∈σ(AF) S.
a is σ -sceptically accepted if and only if a ∈

⋂
S∈σ(AF) S.

Let AF = (A,D) be an argumentation framework. For each a ∈ A we denote a+ =
{b ∈ A| (a,b) ∈ D} the set of all arguments attacked by a, and a− = {b ∈ A| (b,a) ∈
D} the set of all arguments attacking a. These notations can be extended to sets of
arguments. The set of all arguments attacked by (the arguments in) S ⊆ A is S+ =⋃

a∈S a+, and the set of all arguments attacking (the arguments in) S is S− =
⋃

a∈S a−.
We also have /0+ = /0− = /0. The set S of arguments defends an argument a ∈ A if
a− ⊆ S+ (i.e. any a’s attacker is attacked by an argument in S). The set of all arguments
defended by a set S of arguments is denoted by F(S).

If MAF is a non-empty set of sets of arguments in AF , then max(MAF) denotes the
set of maximal (w.r.t. inclusion) members of MAF and min(MAF) denotes the set of its
minimal (w.r.t. inclusion) members.

We now define the main admissibility extension-based acceptability semantics.

Definition 4. Let AF = (A,D) be an argumentation framework.

– A conflict-free set in AF is a set S ⊆ A with property S∩ S+ = /0 (i.e. there are no
attacking arguments in S). We will denote cf(AF) = {S⊆ A|S is conflict-free set }.

– An admissible set in AF is a set S ∈ cf(AF) with property S− ⊆ S+ (i.e. defends its
elements). We will denote adm(AF) = {S⊆ A|S is admissible set }.



– A complete extension in AF is a set S ∈ cf(AF) with property S = F(S). We will
denote comp(AF) = {S⊆ A|S is complete extension }.

– A preferred extension in AF is a set S∈max(comp(AF)). We will denote pref(AF) :=
max(comp(AF)).

– A grounded extension in AF is a set S ∈min(comp(AF)). We will denote gr(AF) :=
min(comp(AF)).

– A stable extension in AF is a set S ∈ cf(AF) with the property S+ = A− S. We will
denote stb(AF) = {S⊆ A|S is stable extension }.

Note that /0 ∈ adm(AF) for any AF (hence adm(AF) 6= /0) and if a ∈ A is a self-
attacking argument (i.e.(a,a) ∈ D), then a is not contained in an admissible set. It is
not difficult to see that any admissible set is contained in a preferred extension, which
exists in any AF ; the preferred extension is unique if AF has no directed cycle of even
length [4, 1].

The grounded extension exists and it is unique in any argumentation framework. It
can be constructed by considering all non-attacked arguments, deleting these arguments
and those attacked by them from the digraph, and repeating these two steps for the
digraph obtained until no node remains.

An equivalent way to express Dung’s extension-based semantics is using argument
labellings as proposed by Caminada [7] (originally introduced in [18]). The idea un-
derlying the labellings-based approach is to assign to each argument a label from the
set {I,O,U}. The label I (i.e. In) means the argument is accepted, the label O (i.e. Out)
means the argument is rejected, and the label U (i.e. Undecided) means one abstains
from an opinion on whether the argument is accepted or rejected.

Definition 5. [7] Let AF = (A,D) be an argumentation framework. An admissible
labelling of AF is a function Lab : A→{I,O,U} such that ∀a ∈ A:
• Lab(a) = I if and only if a− ⊆ Lab−1(O),
• Lab(a) = O if and only if a−∩Lab−1(I) 6= /0.
A complete labelling of AF is an admissible labelling Lab such that ∀a∈A: Lab(a) =U
if and only if a−∩Lab−1(I) = /0 and a−∩Lab−1(U) 6= /0. A grounded labelling of AF is
a complete labelling Lab such that there is no complete labelling Lab1 with Lab−1

1 (I)⊂
Lab−1(I). A preferred labelling of AF is a complete labelling Lab such that there is
no complete labelling Lab1 with Lab−1(I) ⊂ Lab−1

1 (I). A stable labelling of AF is a
complete labelling Lab such that Lab−1(U) = /0.

In [7] it was proved that, for any argumentation framework AF = (A,D) and any
semantics σ ∈ {adm,comp,gr,pref,stb}, a set S ⊆ A satisfies S ∈ σ(AF) if and only
if there is a σ -labelling Lab of AF such that S = Lab−1(I). We close this introductory
section by noting that the above construction of the grounded extension can be related
in a nice way to complete labellings, which explains their close relationship with the
so called P,N,D -partitions from combinatorial game theory ([16]). More precisely, it is
not difficult to prove the following observation.

Observation 6 Let AF = (A,D) be an argumentation framework. A complete labelling
Lab of AF is a grounded labelling if and only if there is a linear order < on Lab−1(I)
such that the following condition holds:

if a ∈ Lab−1(I) and b ∈ a− then there is a′ ∈ Lab−1(I)∩b− such that a′ < a.



3 The σ -Augmentations

We introduce the following binary relation between argumentation frameworks.

Definition 7. Let AF,AF ′ ∈ AF and σ be a semantics.
We say that AF ′ is a σ -augmentation of AF , denoted AF vσ AF ′, if

– Arg(AF)⊆ Arg(AF ′),
– for any S ∈ σ(AF) there is S′ ∈ σ(AF ′) s.t. S⊆ S′, and
– for any S′ ∈ σ(AF ′) there is S ∈ σ(AF) s.t. S′∩Arg(AF)⊆ S.

The binary relation vσ between argumentation frameworks is a preorder : clearly
vσ is reflexive, and it is transitive as the following proposition shows.

Proposition 8. If AF vσ AF ′ and AF ′ vσ AF ′′, then AF vσ AF ′′.

Proof. Clearly, Arg(AF)⊆ Arg(AF ′′).
Let S ∈ σ(AF). Since AF vσ AF ′, there is S′ ∈ σ(AF ′) such that S ⊆ S′, and since
AF ′ vσ AF ′′, there is S′′ ∈ σ(AF ′′) such that S′ ⊆ S′′. Hence for any S ∈ σ(AF) there
exists S′′ ∈ σ(AF ′′) such that S⊆ S′′.

Let S′′ ∈σ(AF ′′). Since AF ′vσ AF ′′, there is S′ ∈σ(AF ′) such that S′′∩Arg(AF ′)⊆
S′. Since AF vσ AF ′, there is S ∈ σ(AF) such that S′∩Arg(AF)⊆ S. Since Arg(AF)⊆
Arg(AF ′) it follows that S′′ ∩Arg(AF) ⊆ S′′ ∩Arg(AF ′) ⊆ S′, hence S′′ ∩Arg(AF) ⊆
S′∩Arg(AF)⊆ S. 2

It is not necessary that the attack set of the σ -augmentation to be a superset of the
attack set of the initial argumentation framework, as the following example shows.

e a

c

d

b e

a

a′

c

d

b

AF AF ′

Fig. 1. AF ′ is an admissible augmentation of AF

Example 9. Let us consider the two argumentation frameworks in the Figure 1. We
have A′ = A∪ {a′} and D′ = (D−{(a,b)})∪ {(e,a′),(a′,e),(a′,b)}, hence D 6⊆ D′.
However, AF vadm AF ′. Indeed, the admissible sets in AF are /0, {a}, and {a,d} (no
conflict-free set containing b defends the attack (d,b), no conflict-free set containing
c defends the attack (b,c)), which remain admissible sets in AF ′. The admissible sets
in AF ′ are /0, {a}, {a′}, {a,a′}, {a,d}, {a′,d}, and {a,a′,d} (the “new” conflict-free
sets {a,b} and {a′,c} can not be extended to admissible sets in AF ′ due to the attacks
(a′,b), respectively (a,c)), and their intersections with A are contained in admissible
sets of AF .



The next proposition follows easily from the definition.

Proposition 10.

(i) If σ(AF) = /0, then we have AF vσ AF ′ if and only if Arg(AF) ⊆ Arg(AF ′) and
σ(AF ′) = /0.

(ii) If σ(AF) = { /0}, then we have AF vσ AF ′ if and only if Arg(AF) ⊆ Arg(AF ′),
σ(AF ′) 6= /0, and S′∩Arg(AF) = /0 for all S′ ∈ σ(AF ′).

It is easy to prove that the σ -credulous acceptability of an argument in a given AF is
not changed in a σ -augmentation AF ′ of AF . More precisely, the following proposition
holds.

Proposition 11. If AF vσ AF ′ and a ∈ Arg(AF) then a is σ -credulously accepted in
AF if and only if a is σ -credulously accepted in AF ′.

Proof. If there is S ∈ σ(AF) such that a ∈ S, then since AF vσ AF ′ it follows that
there is S′ ∈ σ(AF ′) such that S⊆ S′, hence there is S′ ∈ σ(AF ′) such that a ∈ S′, that is
a is σ -credulously accepted in AF ′. Conversely, if there is S′ ∈ σ(AF ′) such that a ∈ S′,
then since AF vσ AF ′ and a ∈ Arg(AF), it follows that there is S ∈ σ(AF) such that
S′∩Arg(AF)⊆ S, hence there is S ∈ σ(AF) such that a ∈ S, that is a is σ -credulously
accepted in AF . 2

If σ is an admissibility-based semantics, the σ -sceptical acceptance is not preserved
in general by the σ -augmentations. Indeed, let the argument a be adm-sceptically ac-
cepted in the argumentation framework AF and let AF ′ be the argumentation framework
obtained from AF by adding a new copy a′ of a, each attack (a,x) or (x,a) giving rise to
a new attack (a′,x) or (x,a′), and adding the attacks (a,a′) and (a′,a). It is not difficult
to see that adm(AF ′) = adm(AF)∪{S−{a}∪{a′}|S ∈ adm(AF),a ∈ S}. It follows
that AF vadm AF ′ but a is not adm-sceptically accepted in the argumentation frame-
work AF ′.

A simple way of constructing σ -augmentations is given by the join of two argu-
mentation frameworks.

Definition 12. Let AF1 and AF2 be disjoint argumentation frameworks, that is
Arg(AF1)∩Arg(AF2) = /0.

– The disjoint union of AF1 and AF2 is the argumentation framework AF ′ = AF1 ∪̇ AF2,
where Arg(AF ′) = Arg(AF1)∪Arg(AF2) and Def (AF ′) = Def (AF1)∪Def (AF2).

– The sum of AF1 and AF2 is the argumentation framework AF ′′ = AF1 +AF2, where
Arg(AF ′′)=Arg(AF1)∪Arg(AF2) and Def (AF ′′)=Def (AF1)∪Def (AF2)∪{(a1,a2),
(a2,a1)|ai ∈ Def (AFi), i = 1,2}.

– If σ is a semantics then it is join-normal if σ(AF1 ∪̇ AF2) = {S∪S′|S ∈ σ(AF1),S′ ∈
σ(AF2)} and σ(AF1 +AF2) = σ(AF1)∪σ(AF2).

If σ ∈ {adm, comp, pref, gr, stb} then σ is join-normal. Indeed, S is a conflict-free
set in AF1 ∪̇ AF2 if and only if Si = S∩Arg(AFi) is a conflict-free in AFi (i ∈ {1,2}).



Also, S+ = S+1 ∪̇ S+2 . Similarly, S is a conflict-free set in AF1 +AF2 if and only if S ∈
cf(AF1) or S ∈ cf(AF2). If S ∈ cf(AF1) then S+ = Arg(AF2)∪ S+ ∩ Arg(AF1) and if
S ∈ cf(AF2) then S+ = Arg(AF1)∪S+∩Arg(AF2).
The next proposition follows easily from the definition above.

Proposition 13. Let AF1 and AF2 be disjoint argumentation frameworks, and σ a join-
normal semantics. Then AF1,AF2 vσ AF1 ∪̇ AF2, and AF1,AF2 vσ AF1 +AF2.

4 Normal Forms

In this section we confine ourselves only to σ = adm and we refer to an adm-augmenta-
tion as an admissible augmentation. The results obtained for admissible augmentations
can be easily adapted for σ -augmentations, where σ ∈ {comp, pref, gr, stb}. Alterna-
tively, for these semantics, σ -augmentations can be defined equivalently, using Cami-
nada’s labellings. More precisely, the following proposition is easy to prove from Cam-
inada’s characterizations ([7]) of σ -extensions.

Proposition 14. Let σ ∈ {adm, comp, pref, gr, stb}. AF ′ is a σ -augmentation of the
argumentation framework AF if and only if i) Arg(AF)⊆ Arg(AF ′), ii) any σ -labelling
of AF can be extended to a σ -labelling of AF ′, and iii) the restriction of any σ -labelling
of AF ′ to Arg(AF) can be extended to a σ -labelling of AF.

An admissible augmentation can be viewed as adding “auxiliary” arguments in or-
der to simplify the combinatorial structure of the given argumentation framework and,
at the same time, maintaining all the credulous acceptability conclusions (see Proposi-
tion 11). We consider this simplified structure a normal form as follows.

Definition 15. An argumentation framework AF = (A,D) is in normal form if for each
a ∈ A there are no b,c ∈ a+ such that b 6= c and (b,c) ∈ D. A set S ⊆ A containing no
distinct attacking arguments is referred as d-conflict-free.

Some properties of an argumentation framework in normal form are given in the
next proposition. Note that the part ii) of this proposition shows that an argumentation
framework is in normal form if and only if it can be constructed by adding its arguments
one after one (the order does not matter), such that each new argument cannot attack two
attacking arguments already added, and cannot be attacked by a pair of two attacking
arguments already added.

Proposition 16.

(i) Let AF = (A,D) be an argumentation framework in normal form. Then for each
a ∈ A the set a− is d-conflict-free. Moreover, in any set of four arguments of AF
there are two non-attacking arguments.

(ii) An argumentation framework AF = (A,D) is in normal form if and only if for any
ordering A = {a1,a2, . . . ,an}, the sets ~a−i = a−i ∩ {a1, . . . ,ai−1} and ~a+

i = a+i ∩
{a1, . . . ,ai−1} are d-conflict-free, for all i ∈ {2, . . . ,n}.



Proof (i) Suppose that there is a0 ∈ A such that a−0 is not a d-conflict-free set, that is,
there are b,c ∈ a−0 such that b 6= c and (b,c) ∈ D. But then, a0,c ∈ b+ and (c,a0) ∈ D,
that is the set b+ is not d-conflict free, a contradiction.
If there are four pairwise attacking arguments {a,b,c,d} ⊆ A, then the underlying undi-
rected graph of AF contains a complete graph K4 as an induced subgraph, with nodes
a,b,c,d and the edge {a,b} generated by the attack (a,b) ∈ D (see Figure 2 below).
Since a+ in AF is d-conflict-free, we are forced to have (c,a) ∈ D and (d,a) ∈ D; but
then, a− contains c and d, and since (c,d) ∈D or (d,c) ∈D, a− is not d-conflict-free, a
contradiction.

a b

cd

Fig. 2. An induced K4 in AF .

(ii) Clearly, if AF is in normal form, then for any ordering A = {a1,a2, . . . ,an},
and any i ∈ {2, . . . ,n}, a+i and a−i are d-conflict-free sets, therefore their subsets ~a+

i
and ~a−i are d-conflict-free. Conversely, let AF = (A,D) satisfying the property stated.
If AF is not in normal form, there are a,b,c ∈ A such that (a,b),(a,c),(b,c) ∈ A. Any
ordering of A with a1 := a,a2 := b,a3 := c has~a−3 = {a,b} which is not d-conflict-free,
a contradiction. 2

The next algorithm eliminates an attack between arguments attacked by the same
argument in a given argumentation framework.

Algorithm 1: ELIM1(AF ;a,b,c)

Input AF = (A,D) an argumentation framework, a,b,c ∈ A with (a,b),(a,c),(b,c) ∈ D;
Output AF ′ = (A′,D ′);

add to A two new arguments a1,a2 giving A′;
put in D ′ all attacks in D;
delete from D ′ the attack (a,b);
add to D ′ the attacks (a,a1),(a1,a2),(a2,b);

Return AF ′

The effect of ELIM1(AF ;a,b,c) is depicted in the Figure 3.
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Fig. 3. Elimination of a bad triangle.

Proposition 17. The argumentation framework AF ′=(A′,D ′), returned by ELIM1(AF ;
a,b,c), is an admissible augmentation of AF.

Proof. Let S⊆ A be an admissible set in AF . We prove that S′ ⊆ A′ is an admissible
set in AF ′, where:

S′ =


S∪{a2} if a ∈ S,
S∪{a1} if a 6∈ S,b ∈ S,
S if a 6∈ S,b 6∈ S.

If S⊆ A is an admissible set containing a in AF , then S′ = S∪{a2} is a conflict-free
set in AF ′. Indeed, no attack between the arguments in A is added by the algorithm
ELIM1, hence S is conflict free in AF ′. The only attacks containing a2 are (a1,a2)
and (a2,b). But a1 6∈ S (because a1 6∈ A), and b 6∈ S (because a ∈ S, (a,b) ∈ D, and
S is conflict-free set in AF). It follows that S∪{a2} is a conflict-free set in AF ′. The
attack (a1,a2) against S∪{a2} is defeated by (a,a1), since a ∈ S. Any attack (x,y) with
x ∈ A− S and y ∈ S is defeated by an attack (z,x) with z ∈ S, since S is admissible set
in AF . It follows that S∪{a2} is a conflict-free set in AF ′ which defends itself against
any attack in AF ′, that is, S∪{a2} is an admissible set in AF ′.

If S is an admissible set in AF such that a 6∈ S but b ∈ S, then adding a1 to S we
obtain a conflict-free set in AF ′ (since a 6∈ S and a2 6∈ S, the only attacks involving a1 –
(a,a1) and (a1,a2) – are not between arguments from S∪{a1}). The attack (a2,b) on
S∪{a1} is defeated by (a1,a2). The attack (a,a1) must be defeated by some argument
x ∈ a− ∩ S, because in AF the attack (a,b) must be defeated. Any attack (x,y) with
x ∈ A−S and y ∈ S is defeated by an attack (z,x) with z ∈ S, since S is admissible set in
AF . It follows that S∪{a1} is admissible set in AF ′.

If S is an admissible set in AF not containing a and b, then S remains conflict-free
since no attacks between arguments in A are added. Also all attacks from an arguments
in S remain in AF ′, and no new attack against S is introduced. It follows that S continues
to defend itself against any attack in AF ′, hence S is admissible set in AF ′.

On the other hand, let S′ ⊆ A′ be an admissible set in AF ′. We prove that S = S′∩A
is an admissible set in AF .
If S′ is an admissible set containing a2 in AF ′, then a1,b 6∈ S′ (since S′ is conflict-free
and (a1,a2),(a2,b) ∈ D′). Since (a1,a2) ∈ D′ and S′ is admissible, it follows that a1



must be attacked by S′ in AF ′. The only attack on a1 in AF ′ is (a,a1). Hence a ∈ S′.
S′−{a2} is conflict free in AF , because b 6∈ S′. Any attack (x,y) with x∈A−S and y∈ S
is defeated by an attack (z,x) with z∈ S, since S′ is admissible set in AF ′. It follows that
S′−{a2}= S′∩A is admissible set in AF .

If S′ is admissible set containing a1 in AF ′, a similar proof shows that S′−{a1} =
S′∩A is an admissible set in AF .

If S′ is an admissible set in AF ′ such that a1,a2 6∈ S′, we can suppose that b 6∈ S′.
Otherwise, if b∈ S′ then the attack (a2,b) can not be defeated by S′, since the only attack
on a2 in AF ′ is (a1,a2). Since the only additional attack involving at least one argument
in S′ can be (a,b), it follows that S′ is a conflict-free set in AF and also defends itself
against any attack in AF (because it was an admissible set in AF ′). 2

Proposition 18. The argumentation framework AF ′ = (A′,D ′) given by ELIM1(AF ;a,
b,c) satisfies AF vσ AF ′ for σ ∈ {comp, pref, gr, stb}.

Proof. For σ ∈ {comp, pref} the proof follows from Proposition 17. Indeed, if
S ∈ σ(AF) then S is an admissible set in AF and, by Proposition 17, can be extended
to an admissible set in AF ′. Since any admissible set can be extended to a complete or
preferred extension, it follows that there is S′ ∈ σ(AF ′) such that S ⊆ S′. Conversely,
if S′ ∈ σ(AF ′) then S′ is an admissible set in AF ′ and, by Proposition 17, S′ ∩A can
be extended to an admissible set in AF . Since any admissible set can be extended to a
complete or prefered extension, it follows that there is S ∈ σ(AF) such that S′∩A⊆ S.

For σ = stb it is not difficult to verify that if S ∈ stb(AF) then S′ ∈ stb(AF ′), where

S′ =

{
S∪{a2} if a ∈ S,
S∪{a1} if a 6∈ S

and, if S′ ∈ stb(AF ′) then S ∈ stb(AF), where

S =

{
S′−{a2} if a ∈ S′,
S′−{a1} if a 6∈ S′.

For σ = gr, we use Proposition 14 and Observation 6. Clearly, if each x ∈ Arg(AF)
satisfies x− 6= /0, then the same property holds in AF ′ and gr(AF) = gr(AF ′) = { /0}.
Suppose that gr(AF) = {S}, S 6= /0 and let Lab a gr-labelling of AF such that S =
Lab−1(I). If a∈ S, then we extend Lab to AF ′ by taking Lab(a1) = O, Lab(a2) = I, and
the linear ordering of Lab−1(I) in AF ′ is obtained by considering a2 the successor of a.
It is not difficult to see that we obtain a gr-labelling of AF ′. If a 6∈ S, and Lab(a) = O
then a gr-labelling of AF ′ is obtained by taking Lab(a1) = I and the linear ordering of
Lab−1(I) in AF ′ is obtained by considering a1 the successor of an attacker of a labeled
I. If a 6∈ S, and Lab(a) =U then Lab remains a gr-labelling of AF ′. A similar analysis
can be used to show that the restriction to AF of a gr-labelling of AF ′ gives rise to a
gr-labelling of AF . 2

By iterating the algorithm ELIM1, we obtain:



Algorithm 2: ELIMALL(AF )
AF ′ := AF ;
foreach a,b,c ∈ Arg(AF)s.t.(a,b),(a,c),(b,c) ∈ De f (AF) do

AF ′ := ELIM1(AF ′;a,b,c)
end
Return AF ′

Proposition 19. For any argumentation framework AF = (A,D) there is an admissible
augmentation AF ′ = (A′,D ′) in normal form. Furthermore, AF ′ can be constructed
from AF in O(|A|3) time.

Proof. Using Propositions 8 and 17, the above iteration of the algorithm ELIM1
returns an admissible augmentation AF ′ of the given AF . The for condition assures that
AF ′, the returned argumentation framework, is in normal form. It remains to prove that
the algorithm finishes.
We call a triangle {a,b,c} ⊆ A′ with (a,b),(a,c),(b,c) ∈ D ′, a bad triangle. Clearly,
the algorithm finishes when there is no bad triangle in the current argumentation frame-
work.
In each for-iteration the total number of bad triangles of the current argumentation
framework AF ′ decreases by 1. Indeed, the algorithm ELIM1(AF ′;a,b,c) destroys a
bad triangle and creates no new bad triangle, since the two new arguments a1 and a2
are not contained in a triangle in the new argumentation framework. Since the number
of bad triangles in AF it at most

(|A|
3

)
, and the running time of ELIM1(AF ′;a,b,c) is

O(1), the final argumentation framework AF ′ is obtained in O(|A|3) time. 2

Summarizing the results obtained in this section, using Propositions 16ii), 18 and
19, we have the following theorem.

Theorem 20. Any argumentation framework AF = (A,D) has an admissible augmen-
tation AF ′ = (A′,D′) which can be formed by adding the arguments one after one such
that each argument attacks a d-conflict-free set of its predecessors and is attacked by
a d-conflict-free set of its predecessors. Furthermore AF ′ is also a σ -augmentation of
AF for any Dung’s classical semantics σ .

The Figure 4 below suggests the way in which the argumentation framework AF ′

from the above theorem is formed. Any new argument anew added by an agent in a
round cannot attack an existing pair of conflicting arguments, that is anew attacks only a
coherent set of existing arguments. The agent knows that, if she wants, in a later round
can use a surrogate of anew to attack other arguments which in the actual round are in
conflict with those selected to be attacked. In the same time, from the set of existing
arguments only a coherent set can attack the new argument. The other attacks will be
simulated in future rounds by using again special surrogate arguments. In this way, a
more logical scene of dispute can be devised, which is however (polynomially) longer
as one in which our discipline policy is not followed.



~a−new ~a+
new

anew

Fig. 4. Discipline policy in forming an AF .

5 Discussion

In this paper we analyzed the syntactical structure of argumentation frameworks using
σ -augmentations of argumentation frameworks. The use of σ -augmentations of argu-
mentation frameworks for simplifying their syntactical structure is new with respect to
the existing literature. Instead of studying the problem of how an argumentation frame-
work may change if new arguments and/or attack relations are added (deleted) as usual
in dynamic argumentation field [10, 5, 3], we are interested in transformations of argu-
mentation frameworks with the property that the basic outcome – Dung’s extensions –
is not essentially changed. However, the results obtained in Proposition 13 for the par-
ticular case of join-normal semantics were already established in the above papers. Our
results complements those in [15, 14], where the goal is to transform a given argumen-
tation framework into a new one such that the σ -extensions of the original framework
are in a certain correspondence with the σ ′-extensions of the modified framework. Also,
our method of obtaining the normal form is similar to rewriting techniques studied in
other non-monotonic formalisms, as in [6].

Our discipline policy in the construction of argumentation framework can be useful
for designing models of on-line social debates or legal disputes. However, it cannot be
applied to argumentation formalisms that use defeasible argument schemes in combi-
nation with logic, i.e. deductive argumentation frameworks. In these frameworks the in-
ternal structure of the arguments generates and explains the nature of the attacks [8, 19].
If the existence of an attack (a,b) is solely determined by the information carried by the
arguments a and b, we cannot forbid it. Our result could be an explanation of the dif-
ficulties encountered in instantiating (structured) logical argumentation graphs, where
the attack relation depends solely on pairs of arguments and uses no other information
about the set of arguments this pair belongs in (see [9, 17, 20]).

For future work, we intend to relate our result on the existence of the admissible
augmentation normal form for an arbitrary argumentation framework to argument game
based proof theories.

Also, we believe that our attempt to study and eventually simplify the structure of
the attacks in an argumentation framework will be fruitful for the future algorithmic de-
velopments. Since bipartite argumentation frameworks are particular instances of nor-
mal forms, the algorithmic ideas used by Dunne in [13] for credulously acceptance of
an argument in a bipartite argumentation frameworks can be useful for the general case.
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