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Abstract. The computation of preferred labellings of an abstract argu-
mentation framework (or briefly, AF) is generally intractable. The ex-
isting decomposition-based approach by exploiting strongly connected
components (SCCs) of a general AF is promising to cope with this prob-
lem. However, the efficiency of this approach is highly limited by the
maximal SCC of an AF. This paper presents a further solution by ex-
ploiting the most sceptically rejected arguments of an AF. Given an AF,
its grounded labelling is first generated. Then, the attacks between the
undecided arguments and the rejected arguments are removed. It turns
out that the modified AF has the same preferred labellings as the original
AF, but the maximal SCC in it could be much smaller than that of the
original AF. Empirical results show that this new method dramatically
reduce the computation time for some sparse AFs (when the ratio of the
number of edges to the number of nodes of an AF is between 1:1 and
1.8:1).
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1 Introduction

Argumentation is an increasingly active research area in AI. One of the most im-
portant problems of this area is that many natural problems are computationally
intractable [1]. While the worst-case computational complexity of argumentation
has been well formulated, how to efficiently compute the argumentation seman-
tics is still an open problem. To the best of our knowledge, the existing work
related to this problem mainly consists of the following three lines. The first line
of work is on identifying tractable classes of argumentation frameworks (AFs)
with special structures [1], and developing efficient algorithms for some classes of
AFs with fixed parameters, such as bounded tree-width [2] and bounded clique-
width [3], etc. And, in [4], Dvořák et al proposed a generic approach for solving
hard problems in the area of argumentation in a “complexity-sensitive” way.
The corresponding empirical results showed that their approach significantly
outperforms existing systems developed for hard argumentation problems (i.e.,
problems under the preferred, semi-stable, or stage semantics. The second line of
work is on developing more efficient algorithms by means of some specific mech-
anisms. For instance, in [5], the authors proposed a more efficient algorithm for
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enumerating all preferred extensions, by utilizing further labels to improve labels’
transitions. The third line of work is on decomposition-based computation. In
[6], the authors proposed an SCC-recursive scheme for argumentation semantics,
based on decomposition along the SCCs of an AF. In [7], the authors developed
splitting-based algorithms for the computation of extensions. Their experimental
results showed an average improvement by 50% and by 54% for preferred and
stable semantics respectively, compared to Modgil and Caminada’s algorithms
[8]. In [9] and [10], the authors proposed methods to efficiently compute, respec-
tively, the dynamic semantics and the partial semantics of argumentation, by
means of decomposition and semantics combination. In [11], we formulated an
approach to compute the extensions of an AF by exploiting its SCCs and acyclic
fragments.

While the existing approaches have made some progress on developing tractable
algorithms for some AFs with special topologies or more efficient algorithms for
a general AF, there are no (approximately) tractable algorithms for a general
AF in which the ratio of the number of attacks to the number of arguments is
no less than 1:1. According to the theory formulated in [11], one possible way to
cope with this problem is to decompose an AF into a set of SCCs, and compute
the status of arguments in each SCC separately. However, the efficiency of this
approach is highly limited by the size of the maximal SCC.

In this paper, we introduce a further solution by exploiting most sceptically
rejected arguments (or briefly, MSR arguments) and SCCs of an AF. The feasi-
bility of this approach lies in a new discovery that after removing some attacks
related to MSR arguments from an AF, the status of arguments in the AF are
unaffected, while the maximal SCC of the modified AF is often much smaller
than that of the original AF. Since preferred semantics is a typical semantics
of argumentation, and its computation is one of the most difficult ones, in this
paper, for simplicity and without loss of generality, we only consider the compu-
tation under this semantics. Furthermore, since the labelling-based approach is
one of the two mainstream approaches for formulating argumentation semantics,
and it is closer to algorithms, we only study the computation of the preferred
semantics that is formulated by the labelling-based approach.

The remaining contents of this paper are organised as follows. In the next
section, we briefly introduce some basic notions of argumentation and some
typical algorithms for computing argumentation semantics. In Section 3, we
introduce an approach for computing preferred labellings by exploiting the SCCs
of an AF. In Sections 4 and 5, we first propose a further solution by exploiting
both the SCCs and MSR arguments of an AF, and then conduct an empirical
investigation. Finally, in Section 6, we conclude the paper.

2 Preliminaries

2.1 Semantics of argumentation framewroks

In this paper, we only deal with (abstract) argumentation frameworks [12]. An
argumentation framework (or briefly, AF) is defined as a tuple (A,R), in which
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A is a set of arguments and R ⊆ A × A is a set of attacks. For all α, β ∈ A,
we often use (α, β) ∈ R to denote that α attacks β. It is obvious that an AF is
in fact a directed graph (often called a defeat graph), where the nodes represent
arguments and edges represent attacks. Figure 1 illustrates an AF (A1, R1).
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Fig. 1. (A1, R1)

Given an AF, a fundamental problem is to determine which arguments can
be regarded as (collectively) acceptable. There are two mainstream approaches
to resolve this problem: extension-based approach and labelling-based approach
[13]. The former defines various criteria (called argumentation semantics) under
which a set (sets) of arguments are regarded as acceptable, while the latter is to
assign a “reasonable” label to each argument, according to some criteria.

In the extension-based approach, a set of collectively acceptable arguments is
called an extension. A core notion of this approach is admissible sets. Specifically,
given an AF (A,R), a set of arguments is admissible, if and only if it is conflict-
free and it can defend each argument within the set. A set B ⊆ A is conflict-free
if and only if there exist no arguments α and β in B such that (α, β) ∈ R.
Argument α ∈ A is defended by a set B ⊆ A if and only if for all β ∈ A, if
(β, α) ∈ R, then there exists γ ∈ B such that (γ, β) ∈ R. An admissible set
is called a complete extension, if and only if it contains all arguments it can
defend. Given an AF, there might exist several complete extensions, in which
the maximal ones (w.r.t. set inclusion) are called preferred extensions, while the
minimal one (w.r.t. set inclusion) is called the grounded extension (the grounded
extension of an AF is unique).The AF (A1, R1) has three complete extensions
{}, {1, 3} and {2}, two preferred extensions {1, 3} and {2}, and one grounded
extension {}.

On the other hand, in the labelling-based approach, there are usually three
different labels: IN, OUT and UNDEC. An argument is IN if all its attackers
are OUT. An argument is OUT if it is attacked by an argument that is IN. An
argument is UNDEC, if it is neither IN nor OUT [14]. Given (A,R) and the
three labels, a labelling is a total function L : A 7→ {IN, OUT, UNDEC}. The
definition of labelling-based semantics is based on the notion of legal labelling.
More specifically, an argument is legally IN if and only if it is labelled IN and
each attacker is labelled OUT; an argument is legally OUT if and only if it is
labelled OUT and there exists an attacker that is labelled IN; an argument is
legally UNDEC if and only if it is not the case that (1) each attacker is labelled
OUT or (2) there exists an attacker that is labelled IN. Then, a labelling L is
called an admissible labelling, if and only if each IN-labelled argument is legally
IN, and each OUT-labelled argument is legally OUT; L is called a complete
labelling, if and only if it is an admissible labelling and each UNDEC-labelled
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argument is legally UNDEC; L is called a preferred labelling, if and only if it
is an admissible labelling and the set of IN-labelled arguments is maximal; L is
called a grounded labelling, if and only if it is a complete labelling and the set of
IN-labelled arguments is minimal.

Let in(L) = {α : L(α) = IN}, out(L) = {α : L(α) = OUT} and undec(L) =
{α : L(α) = UNDEC}. A labelling L is often represented as a triple of the
form (in(L), out(L), undec(L)). Accordingly, the AF (A1, R1) in Figure 1 has
two preferred labellings: L1 = ({1, 3}, {2}, {}) and L2 = ({2}, {1, 3}, {}), as
illustrated in Figure 2.
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Fig. 2. Preferred labellings of (A1, R1)

As summarised in [13], there exists a bijective correspondence between com-
plete (respectively, preferred and grounded) labelling(s) and complete (respec-
tively, preferred and grounded) extension(s).

2.2 Algorithms for computing argument labellings

In existing literature, there are mainly two approaches for computing labellings
(extensions): labelling-based algorithms and answer-set programming. It has
been recognised that Modgil and Caminada’s labelling-based algorithms (briefly,
MC algorithms) [8] have received much attention and been compared with some
newly proposed algorithms ([7], [5], etc).

According to MC algorithms, generating the grounded labelling of an AF is
simple. It starts by assigning IN to all arguments that are not attacked, and then
iteratively: OUT is assigned to any argument that is attacked by an argument
that has just been made IN, and then IN to those arguments all of whose attack-
ers are OUT. The iteration continues until no more new arguments are made IN
or OUT. Any arguments that remain unlabelled are then assigned UNDEC.

By comparison, the MC algorithm for computing preferred labellings is more
complex. It computes admissible labellings that maximise the number of argu-
ments that are legally IN. Admissible labellings are generated by starting with
a labelling that labels all arguments IN and then iteratively, selects arguments
that are illegally IN (or super-illegally IN) and applies a transition step to obtain
a new labelling, until a lablling is reached in which no argument is illegally IN.
For the details of this algorithm, readers may refer to [8].

3 An approach by exploiting SCCs

In this section, based on [11], we introduce an approach for the computation
of preferred labellings by exploiting the SCCs of an AF (called the SCC-based
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approach). The basic idea of this approach is as follows. Given an AF, it is
first decomposed into a set of sub-frameworks according to the SCCs of the AF.
Then, along the order of SCCs, the preferred labellings of the sub-frameworks
are generated separately, and combined incrementally to form the labellings of
the original AF.

Decomposing a general AF according to its SCCs Since an AF can be viewed
as a directed graph and the set of SCCs of a directed graph can be obtained by
a polynomial time algorithm [15], it is intuitively feasible to decompose an AF
along its SCCs [6].

According to graph theory, an important property of SCCs is that every
directed graph is a directed acyclic graph of its SCCs. Consider an AF (A2, R2)
in Figure 3(a). The directed graph of its SCCs is shown in Figure 3(b).
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Fig. 3. (A2, R2) and the directed acyclic graph of its SCCs

Since there exists a partial order over all SCCs, it is possible to compute
separately the preferred labellings of each sub-framework induced by an SCC.
Now, let us define the notion of a sub-framework induced by an SCC.

Let {C1, . . . , Cn} be the set of SCCs of an AF (A,R). It holds that C1, . . ., and
Cn are a partition of A. Let RCi = R∩(Ci×Ci) be the set of attacks between the
arguments in Ci, C

−
i = {α ∈ A\Ci : ∃β ∈ Ci, such that (α, β) ∈ R} be the set of

arguments outside Ci that attack the arguments in Ci, and ICi
= R∩ (C−i ×Ci)

be the set of interactions from the arguments in C−i to the arguments in Ci, in
which 1 ≤ i ≤ n. In terms of [9], C−i is called the set of conditioning arguments.
A sub-framework of (A,R) induced by Ci is then defined as a tuple:

(Ci ∪ C−i , RCi
∪ ICi

) (1)

Computing the preferred labellings of each sub-framework In Formula (1) , when
C−i = ∅ (and thus ICi

= ∅), (Ci ∪ C−i , RCi
∪ ICi

) = (Ci, RCi
). In this case,

the sub-framework is not related to any external arguments. Hence, its preferred
labellings can be computed independently. On the contrary, when C−i 6= ∅, the
labels of arguments in C−i are not assigned within (Ci ∪ C−i , RCi

∪ ICi
), but

assigned in an external sub-framework.
Consider the example in Figure 3. According to Formula (1), we get two

sub-frameworks as shown in Figures 4(a) and 4(b). The sub-framework in Fig-
ure 4(a) has two preferred labellings: L1 = ({1, 3}, {2}, {}) (Figure 4(c)) and
L2 = ({2}, {1, 3}, {}) (Figure 4(e)). With respect to Lk (k ∈ {1, 2}), we get
a partially labelled sub-framework of ({3, 4, 5}, {(3, 4), (4, 5), (5, 4)}), denoted as
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({3, 4, 5}, {(3, 4), (4, 5), (5, 4)})Lk , in which the label of the conditioning argu-
ment 3 conforms to Lk. These two partially labelled sub-frameworks are respec-
tively illustrated in Figures 4(d) and 4(f).
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Fig. 4. Sub-frameworks and partially labelled sub-frameworks

Let (P ∪ P−, RP ∪ IP )L be a partially labelled sub-framework of (A,R), in
which the labels of arguments in P− conform to L that is a preferred labelling
of an external sub-framework. Let L′ be a labelling of (P ∪P−, RP ∪ IP )L, such
that the labels for arguments in P− conform to L, while each argument in P is
assigned with a new label. Then, L′ is called an admissible labelling, if and only if
each argument in P that is labeled IN is legally IN, and each argument in P that
is labeled OUT is legally OUT. L′ is called a preferred labelling, if and only if it
is an admissible labelling and the set of arguments in P that are labelled IN is
maximal. Let us return to the above example. It holds that L3 = ({3, 5}, {4}, {})
is a preferred labelling of ({3, 4, 5}, {(3, 4), (4, 5), (5, 4)})L1 (Figure 4(d)), in that
argument 5 is legally IN, argument 4 is legally OUT, and {5} is the maximal set
of arguments in {4, 5} that are legally IN. Similarly, L4 = ({4}, {3, 5}, {}) and
L5 = ({5}, {3, 4}, {}) are preferred labellings of ({3, 4, 5}, {(3, 4), (4, 5), (5, 4)})L2

(Figure 4(f)).

Labelling combination When an AF has only two SCCs, in which one is re-
stricted by another, the labelling combination is simple. Formally, let (A,R) be
an AF, and P and Q be a partition of A, such that P− ⊆ Q and Q− = {}. For
every preferred labelling L of (Q,RQ), (P ∪P−, RP ∪IP )L is a partially labelled
sub-framework. Then, for every preferred labelling L′ of (P ∪ P−, RP ∪ IP )L,
the combination of L and L′ is defined as L + L′ = (in(L) ∪ in(L′), out(L) ∪
out(L′), undec(L) ∪ undec(L′)), which is a combined labelling of (A,R). For in-
stance, the preferred labellings of (A2, R2) in Figure 3(a) can be obtained by the
following way. We combine L1 with L3, L2 with L4, and L2 with L5, obtaining
three combined labellings as follows: ({1, 3, 5}, {2, 4}, {}), ({2, 4}, {1, 3, 5}, {})
and ({2, 5}, {1, 3, 4}, {}). In [9], we have proved the soundness and complete-
ness of this kind of semantic combination under the context of extension-based
approach. Since there is a one-to-one correspondence between sets of preferred
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labellings and sets of preferred extensions, the above labelling combination is
correct.

When an AF has more than two SCCs, its sub-frameworks are organised into
several layers conforming to the partial order of the SCCs of the AF. Then, the
labellings of the AF are computed and combined incrementally, from the lowest
layer in which each sub-framework is not restricted by other sub-frameworks,
to the highest layer in which each sub-framework is most restricted by the sub-
frameworks located in the lower layers. The following example illustrates the pro-
cess of incremental combination of preferred labellings. Compared to (A2, R2),
(A′2, R

′
2) in Figure 5(a) has two more sub-frameworks ({1, 6}, {(1, 6)}) (in which

1 is a conditioning argument) and ({3, 4, 7}, {(3, 7), (4, 7)}) (in which 3 and 4 are
conditioning arguments), located in the second and the third layer, respectively.
With respect to L1 and L2 mentioned above (Figures 4(c) and 4(e)), there are
two partially labelled sub-frameworks of ({1, 6}, {(1, 6)}), i.e., ({1, 6}, {(1, 6)})L1

and ({1, 6}, {(1, 6)})L2 . The former has a preferred labelling L6 = ({1}, {6}, {}),
while the later has a preferred labelling L7 = ({6}, {1}, {}). Before the labellings
of the second layer are combined with those of the first layer, the labellings of the
sub-frameworks in the second layer are first combined. After combination, L3+L6

is a preferred labelling of ({1, 3, 4, 5, 6}, {(3, 4), (4, 5), (5, 4), (1, 6)})L1 , and L4 +
L7 and L5 + L7 are preferred labellings of ({1, 3, 4, 5, 6}, {(3, 4), (4, 5), (5, 4), (1,
6)})L2 . Then, the labellings of the first and the second layer are combined, result-
ing L1 +L3 +L6 = ({1, 3, 5}, {2, 4, 6}, {}), L2 +L4 +L7 = ({2, 4, 6}, {1, 3, 5}, {})
and L2 + L5 + L7 = ({2, 5, 6}, {1, 3, 4}, {}), which are prefered labellings of the
sub-framework ({1, 2, 3, 4, 5, 6}, {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 5), (5, 4), (1,
6)}). And then, let L8 = L1+L3+L6, L9 = L2+L4+L7 and L10 = L2+L5+L7.
With respect to L8, L9 and L10, in the third layer, there are three partially la-
belled sub-frameworks of ({3, 4, 7}, {(3, 7), (4, 7)}), i.e., ({3, 4, 7}, {(3, 7), (4, 7)})L8 ,
({3, 4, 7}, {(3, 7), (4, 7)})L9 and ({3, 4, 7}, {(3, 7), (4, 7)})L10 . Sets of preferred
labellings of them are respectively {L11}, {L12} and {L13}, in which L11 =
({3}, {4, 7}, {}), L12 = ({4}, {3, 7}, {}) and L13 = ({7}, {3, 4}, {}). Finally, the
preferred labellings of the third layer and the labellings of the previous two lay-
ers are combined, resulting L8 + L11 = ({1, 3, 5}, {2, 4, 6, 7}, {}), L9 + L12 =
({2, 4, 6}, {1, 3, 5, 7}, {}) and L10 + L13 = ({2, 5, 6, 7}, {1, 3, 4}, {}), which are
the preferred labellings of (A′2, R

′
2).
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Fig. 5. (A′
2, R

′
2) and a layered decomposition of it
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4 A further solution by exploiting both SCCs and most
sceptically rejected arguments

As mentioned in Section 1, the efficiency of the above SCC-based approach is
highly limited by the size of the maximal SCC. Let us consider the AF (A3, R3)
as shown in Figure 6. It has only two SCCs: {1, . . . , 6} and {7}. The size of the
maximal SCC is six. Hence, in this case, little execution time could be saved by
using the SCC-based approach. In order to make the SCC-based approach more
efficient, a natural idea is to modify an AF such that the status of arguments in
the original AF remains unchanged, while the size of the maximal SCC of the
modified AF becomes smaller.

1
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Fig. 6. (A3, R3)

In order to realise this idea, we resort to the most sceptically rejected argu-
ments (briefly, MSR arguments) of an AF. We say an argument is most scepti-
cally rejected, if it is labelled OUT in the grounded labelling of an AF.

Proposition 1. Let Lg = (in(Lg), out(Lg), undec(Lg)) be the grounded la-
belling of an AF (A,R). The interactions between out(Lg) and undec(Lg) do
not influence the preferred labellings of (A,R).

Proof. Let Lp = (in(Lp), out(Lp), undec(Lp)) be a preferred labelling of (A,R).
Since the grounded extension is contained in every preferred extension [13], the
arguments labelled OUT in Lg are also labelled OUT in Lp. Let (α, β) be an
interaction from out(Lg) to undec(Lg). It follows that β is attacked by an argu-
ment α that is itself OUT in Lp. Hence, whether β belongs to in(Lp), out(Lp)
or undec(Lp), (α, β) does not influence Lp. On the other hand, let (α, β) be
an interaction from undec(Lg) to out(Lg). Since β ∈ out(Lg), it is attacked by
a third argument γ ∈ in(Lg) ⊆ in(Lp). Since attacking an argument that is
already OUT has no effect, (α, β) does not affect Lp.

Let us consider (A3, R3) again. Since argument 6 is an MSR argument, after
we remove the attacks (5, 6) and (6, 3) from the framework, we get a modified
framework (A3, R

′
3) (Figure 7), which has the same preferred labellings as the

original one. Now, the size of the maximal SCC {1, 2, 3} is three.
Let (A,R′) be the remaining part of (A,R) after removing the interactions

between out(Lg) and undec(Lg). According to Proposition 1, (A,R′) and (A,R)
have the same preferred labellings.

Since the computation of the grounded labelling of (A,R) is polynomial time
tractable, (A,R′) can be obtained easily. The preferred labellings of (A,R′) are
then computed by the SCC-based approach described above.
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Fig. 7. (A3, R
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3)

5 Empirical investigation

In previous sections, we have introduced three approaches for computing the
preferred labellings of a general AF, including the MC algorithm, the SCC-based
approach and the approach by exploiting both SCCs and MSR arguments (called
SCC-MSR approach). In the SCC-based approach, the algorithm for generating
preferred labellings of each sub-framework is based on MC algorithm with a
slight modification such that the preferred labellings of a partially labelled sub-
framework can be generated. Meanwhile, the SCC-MSR approach is in turn
directly established on top of the SCC-based approach.

The above approaches were implemented in Java, and tested on a machine
with an Intel CPU running at 1.86 GHz and 1.98 GB RAM.

First, we tested the average sizes of the maximal SCCs of AFs in the SCC-
based approach and the SCC-MSR approach, respectively. Given an assignment
of edge density (#edges/#nodes = 1, 1.2, ..., 4) and the size of AFs (#nodes
=50, 500, 5000), the programs (in which the components for generating preferred
labellings were disabled) of the two approaches were executed 100 times. In each
time, an AF with the given edge density and size is generated at random, and the
size of the maximal SCC produced by each approach was recorded. The average
results are illustrated in Figure 8, where S[n] (SM[n]) (n = 50, 500, or 5000)
denotes that the results were produced by the SCC-based approach (respectively,
the SCC-MSR approach) and the size of every AF is n. From this figure, we
may observe that when the edge density of AFs is sparse (#edges/#nodes ≤2)
, for a given AF, the percentage of arguments in the maximal SCC (denoted
as “maxscc/#nodes” where “maxscc” represents the size of the maximal SCC)
produced by the SCC-MSR approach is much smaller than the one produced by
the SCC-based approach. For instance, when #edges/#nodes =1.8 and #nodes
=500, the average number of arguments in the maximal SCCs produced by the
SCC-based approach is 264, but only 2 by the SCC-MSR approach.

Second, we tested the performance of the SCC-MSR approach by comparing
it with other two approaches. Given an assignment of edge density (#edges/
#nodes = 1, 1.1, ..., 2) and the size of AFs (#nodes =200,1000), the programs of
the three approaches were executed 20 times. In each time, an AF with the given
edge density and size is generated at random, and then its preferred labellings
were generated by the three approaches respectively. The overall execution time
of each approach was recorded. In the SCC-based approach, the overall execution
time is mainly used for generating a set of SCCs, constructing a set of layered
sub-frameworks, and generating and combining the preferred labellings of all
sub-frameworks. In the SCC-SMR approach, the overall execution time is mainly
used for generating the grounded labelling of a given AF, and computing the
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Fig. 8. Average results of the sizes of maximal SCCs generated by the SCC-based
approach and the SCC-MSR approach

preferred labellings of the modified AF by using the SCC-based approach. Since
in many cases, the overall execution time may last very long, to make the test
easier, when the time for computing the preferred labellings of an AF is over
30 minutes, we stopped the execution by setting a break in the program. The
average results of this test are illustrated in Figure 9, where MC[n] (n = 200, or
1000) denotes that the results were produced by the MC algorithm and the size of
every AF is n, similar to the meanings of S[n] and SM[n] mentioned above. Each
number near a symbol in the graph indicates the number of timeouts among the
20 times of execution (the overall rate of timeout is indicated in the legend of the
plots). For instance, when #nodes = 200 and #edges/#nodes = 1.5 (in Figure
9(a)), there were 7 timeouts in the MC algorithm, 3 timeouts in the SCC-based
approach and 0 timeout in the SCC-MSR approach. Table 1 shows the detailed
records of this case.

When an execution is timeout, we use 30 minutes (1800 seconds) in com-
puting the average execution time. From this table we found that the execution
of the SCC-MSR approach under this configuration is very low (less than 0.016
seconds in all cases), while the execution time of other two approaches fluctu-
ates from 0.015 seconds to more than 30 minutes. In addition, from Table 1,
we also observed that in the SCC-based approach and the SCC-MSR approach,
the time for generating SCCs, constructing sub-frameworks, combining preferred
labellings and computing the grounded labelling is negligible when we compare
it to the time for generating preferred labellings.

According to the results shown in Figure 9, when the ratio of the number of
edges to the number of nodes of an AF is between 1:1 and 1.8:1, its preferred
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Fig. 9. Average results of the overall execution time of the three approaches.

labellings are approximately polynomial time tractable. In order to make this
point more clear, we conducted a further test on the SCC-MSR approach. In
this test, given an edge density (#edges/#nodes = 1.3, 1.5, 1.7) and the size
of AFs (#nodes =100, 200, . . ., 1000), the program of the SCC-MSR approach
was executed 200 times. Meanwhile, the timeout is set to 2 seconds. The results
in Figure 10 show that when #edges/#nodes = 1.3 (respectively, 1.5 and 1.7),
there were only 6 (respectively, 15 and 56) timeouts among the 2000 (= 200×10)
times of execution.
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No. MC [200]<1.5> S [200]<1.5> SM [200]<1.5>
(seconds) (seconds) (seconds)

01 0.031 0.016 0.016
02 0.016 0.015 0.016
03 timeout 0.031 0.015
04 timeout 0.015 0
05 0.391 0.062 0.015
06 0.016 0.015 0.015
07 1613.016 2.141 0.015
08 timeout timeout 0
09 0.015 0.016 0.016
10 0.015 0.016 0.016
11 0.016 0.031 0.015
12 timeout timeout 0
13 0.046 0.016 0
14 timeout 1030.188 0
15 0.047 0.015 0.016
16 0.031 0.016 0.015
17 0.031 0.016 0
18 timeout 0.032 0
19 0.016 0.015 0.016
20 timeout timeout 0.015

Avg. 710.684 (7) 321.633 (3) 0.010

Table 1. The overall execution time of the three approaches when #nodes = 200 and
#edges/#nodes = 1.5

6 Conclusions

In this paper, we have proposed an efficient method to compute the preferred
labellings of a general AF by exploiting both its SCCs and most sceptically
rejected arguments. The empirical results show that the computation time de-
creases dramatically when the defeat graphs are sparse. As illustrated in Figure
9, when the ratio between the number of edges (attacks) to the number of nodes
(arguments) is less than 1.8:1, the computation of preferred labellings of vari-
ous AFs is approximately polynomial time tractable. Meanwhile, when the edge
density keeps the same, the average computation time tends to decrease when
the number of nodes becomes bigger (as shown in Figure 9). The fundamen-
tal reason behind these phenomena is that after removing the most sceptically
rejected arguments, the maximal SCC of the modified AF is smaller or much
smaller than that of the original AF (as shown in Figure 8).

To the best of our knowledge, although much work has been done in devel-
oping efficient algorithms for some classes of AFs with fixed parameters (e.g.,
[2] and [3]), there are still no research efforts on finding approximately tractable
algorithms to compute the preferred labellings (extensions) of a general AF in
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which the ratio of the number of attacks to the number of arguments is no less
than 1:1.

Although this paper only focused on the computation of preferred labellings,
the computational mechanism of the SCC-MSR approach is not restricted to the
preferred semantics. The application of this approach under other argumentation
semantics will be our future work.
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