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Abstract. This paper deals with the problem of automating the con-
tribution of resources owned by people to do work for others, whilst
providing a means for owners of resources to maintain autonomy over
how, when and to whom their resources are used with the specification
of use policies governing resources. We give representations of requests
for resource usage as a set of conditional norms, and a use policy as spec-
ifying what norms should and should not be imposed on a resource, i.e.
a set of meta-norms. Our main contribution is a reasoner built on the
Event Calculus, that detects conflicts between requests and use policies,
determining whether the request can be accepted.

1 Introduction

Increasingly, detailed environmental data is needed to support governments and
citizens in making decisions affected by environmental conditions. Such deci-
sions include determining where to go to avoid flooded areas or deciding how
city water infrastructure can be improved based on its current effectiveness. Get-
ting detailed data requires a large number of sensory resources, such as dense
networks of precipitation sensors to monitor the rain.

Crowdsensing [9] is a means to cost-effectively acquire detailed data by re-
questing the use of a the mobile sensors people already own (i.e. crowdsourcing
them), such as rain sensors on citizen’s bicycles. We view a request for the use
of a resource posed to its owner as a request for the owner to agree to the impo-
sition of norms (obligations and prohibitions [1]) on the resource. An example
of a request is for an ongoing agreement for a resource to be obligated to collect
rain data when at a specific location and a prohibition from turning the sensor
off until the data is collected. Given a large number of such agreements, detailed
data can be gathered through the crowdsourcing of sensors.

However, if there are many requests for the use of a resource, feasibility
demands the automation of their acceptance and rejection, whilst respecting an
owner’s desire to maintain autonomy over how, when and for whom their resource
is used. Owners of resources need a means to specify a use policy governing how
their resource may be used, and an automated process should reject requests if
they conflict with the use policy. Whilst existing work detects conflicts between



norms (see [1]), such as when something is simultaneously obliged and prohibited,
there lacks a way to detect conflicts between requests and use policies.

We address these issues by proposing a means to specify a use policy gov-
erning how a resource may be used, and an automated reasoner for rejecting
requests if they conflict with the use policy. We view a use policy as specifying
which norms should and should not be imposed. To exemplify, a use policy for
a mobile sensor might state that anyone using it should be obliged to make a
payment, and prohibit the prohibition of the sensor from being turned off. Given
that a use policy obliges and prohibits the imposition of norms, we view it as a
set of norms about norms, these are meta-norms.

Our proposed reasoner therefore detects conflicts between a request to use
a resource and the meta-norms of a use policy that governs it, supporting the
acceptance and rejection of requests. To detect conflicts we model norms and
meta-norms in the Event Calculus [14], a logic of events and their effects over
time. This allows us to determine if norms and meta-norms coincide and therefore
detect if there are circumstances under which there are conflicts.

In the rest of the paper we first give an overview of existing work in the
area (Section 2). Then, we give an overview of our approach (Section 3). In
Section 4 we introduce the specification languages for requests and use policies
and their informal meaning. The formal operational semantics are specified using
the Event Calculus in Section 5. In Section 6 we illustrate the proposal with a
formalisation of a running example. In Section 7 we describe an implementation
of our proposal. We draw conclusions in Section 8.

2 Related Work

Our proposal fits into the broad area of normative multi-agent systems (see [1] for
a recent literature survey), the formal study of which is deontic logic (see [8]).
Much work has been done on reasoning about normative agreements such as
contracts and compliance with norms (e.g. [5, 10, 18, 21, 22]) and multi-agent
organisational frameworks for the verification of organisations as networks of
contractual agreements (e.g. [7,12]). However, we focus on a pre-agreement stage,
where the novelty of our proposal is the application of meta-norms to govern
resource use.

There is already much work on reasoning about normative conflicts (for a
review see [1]). In particular, Vasconcelos et al. [19] provide a normative conflict
checking and resolution formalism based on logic and constraint programming.
Unlike our work, they do not consider conflicts between norms and meta-norms,
nor do they consider conditional norms and meta-norms about events. Instead,
they detect normative conflicts between coinciding temporal obligations and
prohibitions, where compliance with both is impossible. On the other hand,
their approach does have an advantage in that it enables expressing norms with
constraints such as an prohibition to stay within an area, and the detection of
conflicting norms such as an obligation to be in a smaller part of that area.



Like our proposal, the work of Gunay et al. [11] uses the Event Calculus to
detect normative conflicts. They consider conflicts between social commitments
(norms bound to agents as a part of an agreement). Unlike our proposal, they do
not consider meta-norms or conflicts between norms and meta-norms. Instead,
they consider conflicts in terms of different simultaneous obligations to perform
tasks that cannot cannot coincide. For example, two obligations to rent the same
car to different people at the same time.

In reasoning about meta-norms, López et al. [15] propose a kind of legislative
meta-norm to govern which norms an agent may issue or abolish. Their meta-
norms define which norms can be introduced into the system and when. Unfor-
tunately, they do not provide an implementation level mechanism for checking
meta-norm/norm conflicts based on their operational semantics as we do.

Boella and Torre [3] also propose a kind of meta-norm acting as a permission
issued by a higher authority to block the imposition of norms by lower level
authorities. Using input/output logic (a logic of conditional norms [16]), their
formalism produces for a given situation what may be obliged by lower-level
authorities given everything that is permitted by higher-level authorities. The
main difference with our work is that they give permissions the role of derogation
and do not consider obligatory meta-norms. Furthermore, unlike in the afore-
mentioned work, we detect conflict for norms with deadlines. Deadlines affect if
norms can be simultaneously detached with meta-norms and thus cause conflict.

Meanwhile, Wansing [20] treats both obligatory and prohibitory meta-norms
in deliberative-stit logic as being norms about the action of imposing norms.
This is in a setting where there is a hierarchy of authorities, so for example,
one authority obliges a lower authority to forbid an even lower authority. Like
Wansing, we define a meta-norm as being about the event of a norm being
imposed. We also explicitly represent norms as being from one authority to
another, and meta-norms are implicitly so. Unlike Wansing’s work, our work
contributes a meta-norm/norm conflict detection mechanism.

In summary, there is much work on detecting conflicts between norms. There
is also much work on reasoning about certain kinds of meta-norms. However,
as far as we know there are no proposals for reasoning about conflicts between
conditional norms and meta-norms about events.

3 Overview

Throughout the paper we consider a scenario where a municipality wants detailed
statistics of rain hitting the ground near a newly built water square (an above-
ground area that is both a recreational square, and a place to store rain water
temporarily until there is capacity in the sewage system to handle the water1).

Assuming there is no dense network of stationary rain sensors in the area, the
municipality might opt to make an ongoing agreement with the mobile sensors
of people that frequent or pass by the square, such that whenever they are near

1 http://www.raingain.eu/en/actualite/rotterdam-inaugurates-first-large-scale-
square-water-storage-greenery-and-sport



the square they will collect and send rain data. For example, by recruiting users
with an app on their mobile phone that communicates with rain sensors on their
umbrella or bicycle to collect rain data, such that the sensors transmit the rain
data they gather to their mobile phones which then send it to the requestor.

For simplicity we consider a process between two agents, depicted in Figure 1.
These are, the resource provider agent governing a resource owned by a user and
a requestor agent used by someone who wants to request use of the resource. The
process begins with the user wanting data specifying the terms of the request,
using the lexicon of a common ontology describing events, which their requestor
agent then poses to the resource provider agent. The owner of the resource has
specified the terms of its use policy, using the same common ontology of events.

The resource provider agent detects conflict between the use policy and re-
quest. This supports the automated governance of resources, so resource provider
agent refuses requests that conflict with the use policy.

There are two types of conflict to consider. The first occurs if the request does
not impose a norm in circumstances where the use policy obliges it to be imposed
(e.g. an obligation to oblige a requestor to provide payment). The second type
of conflict occurs if the request would impose norms in circumstances where
they are prohibited by the use policy, (e.g. a prohibition on prohibiting the free
movement of a resource).
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Use Policy
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RequestRequest 
Issuance

Request
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Conflicts
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a resource

User wanting 
data

Common
Event
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Fig. 1. Overview

In this paper, we focus on the reasoning about requests for resources governed
by use policies, including the representations of requests and use policies. An
overview of the resource governance reasoner architecture is given in Figure 2.

The resource governance reasoner we propose takes as inputs an ontology of
events (what can happen), a request, and a use policy. The ontology of events
is used to generate a sequence of events for the normative evaluator, in order
to determine under which circumstances (after which events) which norms and
meta-norms are detached simultaneously. Simultaneously detached norms and
meta-norms are output as sets for the conflict detector. As a result, the reasoner
returns the conflicts between a request and a use policy.

We model norms and meta-norms, detached and terminated according to a
sequence of events, by using the Event Calculus [14] as the underlying formalism.
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Fig. 2. The Architecture of the Reasoner

4 Requests and Use Policies

In this section we introduce the languages of requests as a set of norms and use
policies as a set of meta-norms (4.1), then we proceed to discuss how norms and
meta-norms relate to each other in terms of conflicts (4.2).

4.1 Representations

We use requests to represent what a requestor would like a provider to agree to
doing and a use policy to govern what a provider agent will agree to. We begin
with a motivating example to motivate our representations of requests.

Example. (Part One, Requestor) Rachel wants to monitor the level of rainfall
around a newly built water square. There is no dense network of static sensors,
so she wishes to make use of the existing mobile sensors people carry to gather
the data. Thus, she requests people to make an ongoing agreement to provide
her with precipitation data. The terms of the request are that whenever someone
enters the water square, rain data should be gathered, once data is gathered it
should be sent before the sensor leaves the area around the station, and the
sensor should not be turned off until data has been gathered.

Norms concern agents, so we assume a set of agent names Ag. Norms are
about events, which can be generated by or concern specific agents (e.g. an
agent entering an area), or the environment (e.g. rain starting to fall). Thus,
events are either non-agentive, denoted as propositions, or agentive denoted as
propositions with an agent name in the subscript.

Definition 1. (Events) Let EnvProp with typical element EP, and AgProp with
typical element AP be mutually disjoint sets of propositions, respectively denoting
non-agentive and agentive events. Also let Ag be a set of agent names with typical
element a. The set Ev is the set of all elements ev expressible in the language:

ev ::= EP | APa



Norms are obligations and prohibitions, respectively denoted with a deontic
type of O or F . Norms oblige or prohibit an agent to ensure an aim A happens
(an event) possibly before a deadline D (also an event).

A norm can be detached (become active) [1], either unconditionally or on
the condition of an event happening. If a norm’s detachment is conditional on
an event, we say it is a conditional norm, otherwise it is an unconditional norm.
Conditional norms are represented as a rule with the conditional event C placed
in the antecedent and a norm as the consequent.

Finally, we follow the notion that when a norm is detached it is imposed on
a debtor denoted with DE, towards a creditor denoted with CR. For example,
a debtor can be an agent obliged to provide data within one minute towards
a creditor requesting it, or a debtor can be an agent obliged to pay for data
towards an agent providing the data.

Definition 2. (Norm) Let O and F respectively denote the deontic types of
obligation and prohibition, DE, CR ∈ Ag be debtor and creditor agents, and
C,A,D ∈ Ev be events respectively denoting the condition, aim and deadline of
the norm. An unconditional norm is denoted with 〈ucn〉 and a conditional norm
is denoted with 〈cn〉. The set of norms N is the set of all elements 〈n〉 expressible
in the language defined as:

〈n〉 ::= 〈cn〉 | 〈ucn〉
〈cn〉 ::= C THEN 〈ucn〉
〈ucn〉 ::= ODE:CR(A BEFORE D) | FDE:CR(A BEFORE D) |

ODE:CR(A) | FDE:CR(A)

A request to use a resource, is the set of norms that if the request is accepted
will be imposed on the resource.

Definition 3. (Request) A request R is a set of norms such that R ⊆ N.

Thus we can formalise the request R of Rachel (ra), to a resource owned by
a person called Peter (pe), as:

R = {enter water squarepe THEN Ope:ra(gather rain datape

BEFORE send datape),

enter water squarepe THEN Ope:ra(send datape

BEFORE leave water squarepe),

enter water squarepe THEN Fpe:ra(sensing offpe

BEFORE gather rain datape)}

Use policies are used to govern a resource, such that requests a resource
owner does not want to be automatically accepted will be detected as conflicting
with the request, and rejected. We use the following example to motivate the
expressivity of our use policy representation.



Example. (Part Two, Provider) Peter has a cellphone app that can measure
rainfall in a location by communicating using bluetooth with a sensor on his
umbrella. Peter usually carries his cellphone and umbrella with him, including
when he walks past the water square. He is willing to donate the use of his
sensing resource, but only if he does not have to stay in any particular area. His
cellphone uses up a lot of energy when collecting data, so he wants to be allowed
to turn the sensing off when the battery’s energy becomes low. Finally, if he is
obliged to provide data, then he wants to be paid within one day.

We represent a use policy as a specification of what norms should and should
not be detached under specific circumstances. That is, it is a set of norms about
norms, or meta-norms. This specification can be compared against a request.

Meta-norms can be conditional on an event or a norm being detached. For
example, on the condition an obligation for data to be provided is detached,
then it is obligatory for the agent that should be sent data to provide payment.

An unconditional meta-norm is detached by default, whilst a conditional
meta-norm is detached on the condition an event occurring, or a norm specified
in the condition is detached. Both conditional and unconditional meta-norms
obligate or prohibit the detachment of a norm. For brevity we do not examine
the case where a meta-norm has a deadline, but our framework can easily be
extended to accommodate for this.

Definition 4. (Meta Norms) Let n, n′ ∈ N denote norms, and C ∈ Ev be an
event. An unconditional meta-norm is denoted with 〈ucmn〉 and a conditional
meta-norm is denoted with 〈cmn〉. The set MN is the set of all elements 〈mn〉
expressible in the language defined as:

〈mn〉 ::= 〈cmn〉 | 〈ucmn〉
〈cmn〉 ::= n THEN 〈ucmn〉 | C THEN 〈ucmn〉
〈ucmn〉 ::= O(n′) | F (n′)

A use policy is a set of meta-norms.

Definition 5. (Use Policy) A use policy UP ⊆ MN is a set of meta-norms.

To exemplify, we formalise Peter’s use policy UP which specifies how Rachel
may use his resource, where his resource is denoted with pe, as2:

UP = {Ope:ra(send datape BEFORE leave water square) THEN

O(Ora:pe(payra BEFORE tomorrow)),

F (Ope:ra(send datape BEFORE leave water squarepe)),

battery depletedpe THEN F (Fpe:ra(sensing offpe BEFORE

gather rain datape))}
2 More general use policies are possible by extending the framework with variables.

This would allow non-specific debtors and creditors to be specified, and the expres-
sion of meta-norms about norms where we are not concerned with exact terms.



4.2 Conflict

Taking Rachel’s request and Peter’s use policy, we can intuitively see there are
conflicts, which should be identified by the resource governance reasoner.

Example. (Part Three, Conflict) Rachel’s request has been posed to Peter’s
agent in control of providing the resource. Rachel wants data sent before Peter’s
sensor leaves the water square area, however, Peter has stated that he wants to
be free to move. If Rachel’s request is accepted then Peter will be prohibited
from turning his sensor off, yet, he has stated that when his cellphone’s battery
is depleted he must be allowed to do so. Finally, once Peter has fulfilled an
obligation to provide data, he demands to be paid before tomorrow, but Rachel’s
request does not include such an obligation.

The normative reasoner identifies sets of norms and meta-norms that hold
simultaneously given some circumstances (a sequence of events), a request, and a
use policy. Meanwhile the conflict-detector takes as input sets of simultaneously
holding norms and meta-norms and identifies conflicts by comparing those sets.

The conflict detector identifies two types of conflict. The first type of conflict
is where a meta-norm holds that obliges a norm to be detached, but that norm is
not detached. Conversely, the second type of conflict is where a meta-norm holds
that prohibits a norm from being detached, but that norm is detached. We define
conflict in terms of a set of norms and meta-norms that hold simultaneously. We
assume the sets of norms and meta-norms to be self-consistent and focus on
conflicts between norms and meta-norms.

Definition 6. (Conflict) Let N ′ ⊂ N be a set of unconditional norms and
MN′ ⊂ MN be a set of unconditional meta-norms, denoting all of the simul-
taneously detached norms and meta-norms for some circumstances. We say that
there is a conflict between N ′ and MN′ if either of the following holds:

(n ∈ N ′ and F (n) ∈ MN′) or (n 6∈ N ′ and O(n) ∈ MN′)

To exemplify, consider a sequence of events generated by the event sequence
generator component, that can hypothetically happen after the request is ac-
cepted, where Peter enters the water square and then the battery on his phone
is depleted. For this situation, assuming nothing else has happened, the sets
DN and DMN are the respective sets of simultaneously detached norms from
Rachel’s request and meta-norms from Peter’s use policy:

DN = {Fpe:ra(sensing offpe BEFORE gather rain datape)}
DMN = {O(Ora:pe(payra BEFORE tomorrow),

F (Fpe:ra(sensing offpe BEFORE gather rain datape)),

F (Ope:ra(send datape BEFORE leave water squarepe))}

Both types of conflict are identified in this example when these sets of norms
and meta-norms are compared. The first, is that a norm forbids turning the



sensing off, yet a meta-norm is simultaneously detached that forbids such a
prohibition. Similarly, a norm obliges Peter to send data before he leaves the
water square, but such an obligation is prohibited by a detached meta-norm.
Finally, a meta-norm obliges the obligation for payment to be provided, but
such an obligation is not detached at the same time.

5 The Event Calculus Normative Model

In this section we give the operational semantics for the detachment and termi-
nation of norms and meta-norms, and when they produce conflicts between a
use policy and a request. We first re-introduce the Event Calculus (Section 5.1)
which we subsequently use to define the operational semantics (Section 5.2).

5.1 Event Calculus

The Event Calculus is a logical-formalism specified by Kowalski and Sergot [14]
for reasoning about events and their effects on which fluents hold and when.
The Event Calculus provides an ontology of predicates (Table 1) for specifying
in an Event Calculus theory the effects of events on initializing and terminating
fluents, and what events happen at which time points (a narrative). The same
ontology also provides predicates that specify, given the Event Calculus, an Event
Calculus Theory and a narrative, which fluents hold at specific time intervals.

Predicate Meaning

broken during(P, Start, End) P is terminated between time points Start and End.
happens at(E, T ) The event E happens at time T .
holds at(P, T) The property P holds at time T .
holds for(P, Start, End) The property P holds from time points Start until End.
initially(P) The property P holds at the first time point.
initiates at(E, P, T) The event E initiates the property P at time T .
terminates at(E, P, T) The event E terminates the property P at time T .

Table 1. The Event Calculus ontology of predicates

We choose the Event Calculus due to its modelling of inertial fluents and its
efficient implementations [2, 4, 6]. Inertial fluents are required because we treat
norms and meta-norms as fluents, and the informal notions of detached norms
and meta-norms mean they continue to be detached until either their aim or
deadline occurs. Efficiency is important, due to the time constraints that can be
expected when accepting or rejecting a request.

Although many variations of the Event Calculus exist [17] we use the simple
Event Calculus, where from here-on we usually omit the word simple. In the
following, we give an axiomatisation of the Event Calculus adapted from [6]
with the addition of a commonly used axiom for an initial state.



Axioms are given as Prolog style horn-clauses. Keeping with convention, sym-
bols starting with upper-case denote variables and lower-case denote constants.
Since the Event Calculus explicitly deals with time, we assume an infinitely
countable set of time instances T with typical element ti where i ∈ N ∪ {∞}.
The operators < and ≤ are assumed to be specified for all members of the set
T, with the expected meaning. Finally, ¬ is interpreted as negation-as-failure,
making the Event Calculus non-monotonic.

The first axiom, ec1, states that any fluent stated to initially hold is initiated
at the first time point.

initiates at(initially(P ), P, 0)← initially(P) (ec1)

The next two axioms specify the intervals fluents hold for. Axiom ec2 states that
a fluent holds in an interval beginning immediately after the initiation event and
ending at the termination event. Axiom ec3 deals with the case where there is
no terminating event for a fluent.

holds for(P, Start, End)← initiates at(Ei, P, Start) ∧
terminates at(Et, P, End) ∧
End > Start ∧
¬broken during(P, Start, End)

(ec2)

holds for(P, Start, t∞)← initiates at(Ei, P, Start) ∧
¬broken during(P, Start, t∞)

(ec3)

Axiom ec4 states that a fluent is broken during an interval if a terminating event
occurs during that interval. We specify the axiom such that it provides a ‘weak-
interpretation’ of the initiates at predicate [6], where the same initiation event
occurring consecutively does not imply there was a terminating event in-between.

broken during(P, Start, End)← terminates at(E, P, T) ∧
Start < T < End

(ec4)

Finally, axiom ec5 states which time points a fluent holds at.

holds at(P, T)← holds for(P, Start, End) ∧ Start < T ≤ End (ec5)

Given the Event Calculus specification, the effects of events can be specified
using the schemas ec6 for the initialisation of a fluent and ec7, taken from [5].

initiates at(E, P, T)← happens at(E, T) ∧ holds at(P1, T )

∧ ... ∧ holds at(Pn, T )
(ec6)

terminates at(E, P, T)← happens at(E, T) ∧ holds at(P1, T )

∧ ... ∧ holds at(Pn, T )
(ec7)



5.2 Normative Evaluation and Conflict Checking

Our normative evaluation and conflict checking semantics uses the Event Cal-
culus for reasoning about which norms and meta-norms hold when, and when
they conflict. The two resource governance reasoner components (see Figure 2),
the Normative Evaluator and the Conflict Checker, are defined as sets of Event
Calculus rules.

In the following, we use the predicates o/4 and f/4 to respectively represent
obligations and prohibitions, with the first two parameters respectively being the
debtor and creditor, the third the aim, and the fourth the deadline event or ⊥ to
indicate no deadline. o/1 and f/1 are predicates representing meta-norms, where
the parameter is a norm. We use the predicate ifthen/2 to represent conditional
and unconditional norms and meta-norms, the first parameter is the condition
or > if it is unconditional, the second parameter is the norm or meta-norm.

As with work on social commitment modelling [5] we assume that two events
cannot occur at the same time. However, we make an exception for the event
of a norm being detached, which can often occur at the same time as a non-
detachment event and other norms being detached.

Normative Operational Semantics. The operational semantics of norms and meta-
norms correspond to the Normative Evaluator component (see Figure 2), spec-
ifying when a norm or meta-norm is and is not detached. The semantics are
specified with axioms for the initiates at/3 and terminates at/3 Event Calculus
predicates, which state an event (the first term) respectively detaches or ter-
minates a norm or meta-norm (the second term) when the event happens (the
last term). These axioms are defined with respect to the happens at/2 predicate
which describes when an event happens.

The first two axioms state that any unconditional norm holds initially.

initially(o(DE, CR, A, D))← ifthen(>, o(DE, CR, A, D))
(Obl. Uncond. Norm Detachment)

initially(f(DE, CR, A, D))← ifthen(>, f(DE, CR, A, D))
(Pro. Uncond. Detachment)

Obligatory meta-norms have different detachment semantics from norms. An
unconditional obligatory meta-norm is detached initially only if it is not simul-
taneously satisfied with the detachment of a norm. We do not check if the norm
it obliges is already detached, although this is certainly possible we take the
meaning of an obligatory meta-norm to be that it obliges the detachment of a
norm at the time it is itself detached. If the obligatory meta-norm is satisfied as
soon as it is detached, then there is no conflict and so it will not be taken into
account by the conflict checker.

initially(o(Norm))← ifthen(>, o(Norm)) ∧ ¬initially(Norm)
(Obl. MN Uncond. Detachment)



Unconditional prohibitory meta-norms, however, are detached regardless of
whether the norm they prohibit is detached. Thus, their detachment follows the
same form as norms, formulated in the next axiom.

initially(f(Norm))← ifthen(>, f(Norm)) (Pro. MN Uncond. Detachment)

The next two axioms, give the conditional detachment of norms, stating that
when the condition of a conditional norm happens, the norm is detached.

initiates at(C, o(DE, CR, A, D), T )← ifthen(C, o(DE, CR, A, D)) ∧
happens at(C, T )

(Obl. Cond. Detachment)

initiates at(C, f(DE, CR, A, D), T )← ifthen(C, f(DE, CR, A, D)) ∧
happens at(C, T )

(Pro. Cond. Detachment)

The next axiom states that a conditional obligatory meta-norm is detached
when its condition occurs, unless it is satisfied at the same time with the de-
tachment of the norm it obliges (as with its unconditional variant). Again, if
the obligatory meta-norm is detached and simultaneously satisfied, the conflict
checker will not take it into account, because there is no conflict.

initiates at(C1, o(Norm), T )← ifthen(C1, o(Norm)) ∧ happens at(C1, T ) ∧
¬initiates at(C2, Norm, T)

(Obl. MN Cond. Detachment)
Conditional prohibitory meta-norms, have the same detachment semantics as
conditional norms.

initiates at(C, f(Norm), T )← ifthen(C, f(Norm)) ∧ happens at(C, T )
(Pro. MN Cond. Detachment)

We treat the detachment of a norm as an event, the event of the norm being
imposed on an agent. This is required for the detachment of meta-norms that
are conditional on the event of a norm being detached and the satisfaction of
obligatory meta-norms which is the event of a norm being detached.

happens at(o(DE, CR, A, D), T)← ifthen(C, o(DE, CR, A, D)) ∧
happens at(C, T )

(Obl. Detachment Event)

happens at(f(DE, CR, A, D), T)← ifthen(C, f(DE, CR, A, D)) ∧
happens at(C, T )

(Pro. Detachment Event)
We now turn our attention to the termination of detached norms. A detached

obligation is terminated if its aim is achieved, whilst a detached prohibition is



terminated if its deadline occurs. Thus, although we do not explicitly model
violations, under these semantics a norm persists after it is violated until it is
fulfilled. Alternative semantics can be accommodated for in the future.

terminates at(A, o(DE, CR, A, D), T )← happens at(A, T )
(Obl. Aim Termination)

terminates at(D, f(DE, CR, A, D), T )← happens at(D,T )
(Pro. Deadl. Termination)

As with obligatory norms, obligatory meta-norms are terminated when their
aim (the detachment of a norm) occurs:

terminates at(Norm, o(Norm), T )← happens at(Norm, T)
(Obl. MN Aim Termination)

Prohibitory meta-norms, like their norm counterparts, are not terminated when
their aim occurs (a norm they prohibit is detached). Thus, due to not having a
deadline, they are not terminated at all.

Conflict Detection Semantics. The conflict detection semantics correspond to
the Conflict Checker component (see Figure 2). The semantics are given as ax-
ioms for the predicate conflict/3, which states a meta-norm is causing conflict
(the first term), from when (the second term) and until when (the last term).
As conceptually defined in Definition 6, conflict is determined based on which
norms and meta-norms hold for the same period of time, this is given by the
results of the Normative Operational Semantics.

The first type of conflict occurs when a meta-norm obliges the detachment
of a norm and that norm is not detached. If this is the case, then the obligatory
meta-norm will hold for some time until it is satisfied. If the obligatory meta-
norm holds, then the norm it obliges was not detached at the same time or
subsequently and so there is a conflict.

conflict(o(Norm), Start, End)← holds for(o(Norm),Start,End)
(Obl. MN Conflict)

The final axiom states that given two overlapping intervals where a norm
holds and a prohibitory meta-norm holds, there is a conflict if the norm is pro-
hibited by the meta-norm. We assume two predicates minimum(T, T ′,Min) and
maximum(T, T ′,Max) for defining when two periods of time, T, T ′ ∈ T, overlap.
The predicate minimum/3 holds iff Min is the minimum of the two time points,
and the predicate maximum/3 holds iff Max is the maximum.

conflict(f(Norm),Start,End)←holds for(f(Norm),MNStart,MNEnd) ∧
holds for(Norm,NStart,NEnd) ∧
maximum(NStart,MNStart,Start) ∧
minimum(NEnd,MNEnd,End) ∧ Start < End

(Pro. MN Conflict)



6 Illustration

In this section we illustrate how our formalism works for the running example of
Rachel’s request and Peter’s use policy. First, we assume the following narrative
is produced by a sequence generator component (to be sure all conflicts are
detected, all possible event sequences would need to be checked):

E1 = happens at(enter water squarepe, 1),E2 = happens at(battery depletedpe, 2),

E3 = happens at(gather rain datape, 3),E4 = happens at(send datape, 4)

From this narrative, we can infer the following norm detachment events:

E5 = happens at(Ope:ra(gather rain datape BEFORE send datape), 1),

E6 = happens at(Ope:ra(send datape BEFORE leave water squarepe), 1),

E7 = happens at(Fra:pe(sensing offpe BEFORE gather rain datape), 1)

Given these events, Figure 3 depicts which norms, meta-norms and conflicts
hold and when.

E1 E3
Ope:ra(gather rain datape BEFORE send datape)

E1
Ope:ra(send datape BEFORE leave water squarepe)

E4

E1 E3
Fpe:ra(sensing offpe BEFORE gather rain datape)

F (Ope:ra(send datape BEFORE leave water squarepe))

E6
O(Ora:pe(payra BEFORE tomorrow))

E2
F (Fpe:ra(sensing offpe BEFORE gather rain datape))

conflict(O(Ora:pe(payra BEFORE tomorrow)))

conflict(F (Fpe:ra(sensing offpe BEFORE gather rain datape)))

conflict(F (Ope:ra(send datape BEFORE leave water squarepe)))

Fig. 3. An example with several conflicts. indicates the interval a fluent holds for,
is a terminated interval, whilst is an interval that continues forever.

As we intuitively expect, there is a conflict because Peter is obliged to send
data, but Rachel is not obliged to pay him. Another conflict occurs because
Peter is forbidden from turning his device off, but because his phone’s battery



has become low he wants to maintain this right. Finally Peter is obliged to send
data before leaving the water square, but such an obligation is forbidden.

7 Implementation

Our proposal is implemented [13] for a prototype of a crowdsensing system used
to gather accurate rain data with user’s mobile sensing devices (such as rain
sensors on bicycles) in a simulated environment. In the prototype we simulate
users using NetLogo3 that can both request other users to gather rain data and
form an ad-hoc network to help transmit the data, and provide rain data and
participate in an ad-hoc network to help transmit the data.

Each user in the system has a use policy governing their resource and a
resource governance reasoner, implemented in Prolog, for the automated accep-
tance and rejection of requests for the use of their resource on the basis of its
use policy. Our implementation uses pre-formulated requests (sets of norms) for
users to send to others and provides a graphical user interface for the editing of
Use Policies governing the devices of the individual simulated users.

The proposal in this paper closely corresponds to our implementation. Two
Definite Clause Grammars (DCGs) are specified corresponding to the formal
definition of the norm and meta-norm specification languages defined earlier,
with an appropriate lexicon for the rain gathering scenario. The DCGs are used
to check the requests and use policies are well-formed.

The resource governance reasoner consists of Prolog theories that directly
correspond to the rules for the operational semantics specified in this paper,
and a combinatorial Event Sequence Generator for producing Event Calculus
narratives. We combine a request, a use policy, the operational semantics for the
normative evaluator and conflict checker, and Event Calculus narratives into a
single Prolog theory which we query for conflicts using a Prolog engine.

8 Conclusions

In this paper our main contribution was a novel temporal event-based reasoner
for determining if there are conflicts between a request to use a resource and
a use policy governing a resource’s usage. This allows owners of resources to
maintain autonomy over how, when and to whom their resources are used. Taking
the notion of a request for the use of a resource as a set of norms, we gave a
representation of a use policy, specifying what norms a request should and should
not impose on a resource under some circumstances, as a set of meta-norms.
Our reasoner detects whether a request can be accepted with respect to a a use
policy or if there are conflicts necessitating rejecting the request. Our proposal
is particularly robust because the operational semantics ensures a conflict is
detected between a norm and a meta-norm only based on whether they can be
detached simultaneously.

3 A multi-agent modelling environment http://ccl.northwestern.edu/netlogo/



There are many interesting avenues for future work, we go over some of the
most immediate extensions here. By extending the representation of meta-norms
to include an ‘Or Else’ option, such as ‘you should not obligate me to do X, but
if you do then you should not forbid me to do Y’ we will be able to investigate
computing a partial ordering of ideal and sub-ideal requests. This can support
better decision making in a resource governing agent, such as which requests
are the best to accept when there are many offered, or support negotiation with
a qualitative model of preferences. Extending our work to support negotiation
would also require a conflict resolution mechanism, such that counter-offers can
be made to the agent requesting the use of the resource by modifying the original
request and sending it back as part of an interaction protocol.

Finally, a limitation of our proposal is that we use a propositions as the terms
of norms and meta-norms. This makes sense since it allows us to express concrete
norms in a request. For future work we can extend the representation languages
to make use of variables in first-order logic. This will allow a user to express
meta-norms such as ‘you are prohibited from obligating me to do anything’ and
even meta-norms with constraints such as ‘you are forbidden from obligating me
to pay you anything over AC10’.
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