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Abstract. In this paper we introduce a formal model of Socio-Technical
Systems (STSs) which makes use of Boolean games, a popular compu-
tational framework to model cooperation among autonomous agents, to
study stability of the emergent behavior in STSs. We divide a STS into
informationally independent organization units which affect system sta-
bility, inter-agent communication and information confidentiality (e.g.
to ensure privacy issues). We give examples and present some prelimi-
nary characterization results about the existence of incentive schemes to
stabilize STSs.

1 Introduction

Socio-technical theory is concerned with the interplay between technical- and
social systems and their joint optimization [22, 21]. The technical part of a
socio-technical system (STS) represents, e.g., the technical infrastructure, the
technology and available resources. The social system includes the actors, their
social relations, their goals etc. As such, STSs are heterogenous, autonomous and
highly dynamic; even if the technical system is fixed the social system is subject
to frequent changes. Moreover, a STS can often be considered as a system of
(organized) subsystems; we call them—in this paper—organization units. These
units are somehow independent: Information exchange, cooperation and commu-
nication between them are often limited and they have their own organizational
objectives. There can be various reasons for that, for example an insufficient
technical infrastructure, time and cost constraints, competition and conflicting
interests. This is a major obstacle for the design of a STS as its overall behavior
emerges from the behaviors of its organization units. As a consequence, deci-
sions and actions taken in these independent units are interrelated and need
to be coordinated to obtain a desired global system behavior [20, 8, 5, 18]. This
shows that designing effective, cost-efficient, stable, robust, adaptive STSs is an
extremely challenging task. The research question addressed in this paper is:

How to formally model STSs in which communication as well as coop-
eration is limited, and information is restrained by involved actors (e.g.
due to competing interests) in order to analyze system stability?



Our model of a STS draws inspiration from Boolean games. Boolean games [10,
11, 4, 14] represent a compact, computational model of cooperation among au-
tonomous agents. Agents control some Boolean variables—they decide on their
truth values—and try to satisfy their individual goals which are given as Boolean
formulae. Agents can usually not satisfy their goal formulae on their own: They
often depend on the actions of other self-interested actors. This requires coop-
eration and strategic reasoning. A cost function further adds to the complexity
of the strategic dimension: Agents try to minimize costs.

We use Boolean games to model organization units in STSs. Therefore, a
STS induces a collection of Boolean games. Each game/organization unit has an
organizational objective which may not be publicly known to other organization
units, e.g. because of competing interests. Consequently, to achieve a good global
behavior the organization units have to announce parts of their objectives—
as much as is needed to obtain a good behavior, but not too much, however,
to preserve confidentiality—in order to facilitate cooperation and coordination.
This is similar to Boolean secrecy games [6] in which players try to satisfy their
goals without revealing them to others. We consider confidentiality constraints
as the goals of the organizational units greatly affect system stability. Thus,
the formal model has to distinguish public and private information in order to
accurately predict system stability.

The paper is structured as follows. First, we recall Boolean games, a minor
extension of them, and solution concepts as well as incentive schemes. In Sec-
tion 3 we present our formal modeling framework—the key contribution of this
paper. In Section 4 we analyse the existence of stable/good STSs and give some
preliminary characterization results. In Section 5 and 6 we discuss related work
and conclude, respectively.

2 Constrained Boolean games and solution concepts

In this section we review the Boolean games model and introduce Boolean games
with information which will later be used to model organization units.

2.1 Preliminaries: Propositional logic and Boolean games

Propositional Logic. Let Π be a set of (propositional) variables and X ⊆ Π a
non-empty subset. We use PL(X) to refer to the set of propositional formulae
where propositional variables are drawn from X. We assume the standard logical
connectives ¬,∧,∨ and →. A X-valuation or X-assignment is a function ξ :
X → B, where B = {t, f} is the set of Boolean truth values, assigning a truth
value to each variable in X. ξ|Y refers to the assignment which equals ξ but of
which the domain is restricted to Y . We write ξ |= ϕ if X-valuation ξ satisfies
ϕ ∈ PL(Y ) where ∅ 6= Y ⊆ X. A formula ϕ over X is satisfiable (resp. valid)
if there is an X-assignment which satisfies ϕ (resp. if all X-assignments satisfy
ϕ). If clear from context we will omit mentioning the sets X and Y and assume
that a valuation always defines all the variables contained in a formula. The set
of all X-valuations is denoted by ValX . Given two assignments ξ ∈ ValX and
ξ′ ∈ ValX′ with X ∩X ′ = ∅ we write ξ ◦ ξ′ to refer to the assignment on X ∪X ′
with (ξ ◦ ξ′)|X = ξ and (ξ ◦ ξ′)|X′ = ξ′.



Boolean games. Apart from minor modifications, we follow the definition of
Boolean games of [11]. A Boolean game is a tuple G = (Agt, Π, c, (γi)i∈Agt, (Πi)i∈Agt)
where Agt = {a1, . . . , ak} is a non-empty set of agents, Π a finite, non-empty set
of (propositional) variables, Πi ⊆ Π is the set of variables controlled by i ∈ Agt.
We require that (Πi)i∈Agt forms a partition of a subset of Π (as in [13] we do not
require that all variables are controlled by some agent). c : Π×B→ R+ is a cost
function and γi ∈ PL(Π) a propositional formula. For example, c(p, t) = 4 mod-
els that setting variable p to t incurs costs of 4. We write Ctrl(A) =

⋃
i∈AΠi for

the set of variables controlled by A ⊆ Agt, Π0 = Π\Ctrl(Agt) for the set of en-

vironmental variables, and Π̂ = Π\Π0 to refer to the set of variables controlled
by the agents in Agt.

Example 1 (Boolean game).

(a) Let G1 = (Agt, Π, c, (γi)i∈Agt, (Πi)i∈Agt) where Agt = {a1, a2, a3}, Π =
{p1, . . . , p5}, γa1 = (p1∧p2)∨(¬p1∧¬p2), γa2 = (¬p1∧p2)∨(¬p2∧p1), γa3 =
p1 ∧ p3. The variables are controlled as follows: Πa1 = {p1}, Πa2 = {p2, p5},
and Πa3 = {p3, p4}. Note that the game has no environmental variables. We
define the cost function by c(p, t) = 1 and c(p, f) = 0 for all p ∈ Π\{p4, p5}
and c(p4, t) = c(p4, f) = c(p5, t) = c(p5, f) = 1.

(b) Let G{2,3} be the game obtained from G1 with player a1 removed, that is
G{2,3} = ({a2, a3}, Π, c, (γa2 , γa3), (Πa2 , Πa3)). Then, variable p1 is an envi-
ronmental variable (i.e. controlled by no player).
Analogously, let G{1} be the game obtained from G1 with players a2 and a3
removed. The environmental variables are Π\{p1}.

2.2 Constrained Boolean games and information

We extend the Boolean game model with a global constraint on the actions of
the agents.

Definition 1 (Constrained Boolean game, consistent assignment). A
constrained Boolean game is given by G = (Agt, Π, c, (γi)i∈Agt, (Πi)i∈Agt, ϕ)
where G′ = (Agt, Π, c, (γi)i∈Agt), (Πi)i∈Agt) is a Boolean game and ϕ ∈ PL(Π)
a propositional formula—the global constraint. We also write G = (G′, ϕ). An
assignment ξ is said to be ϕ-consistent iff ξ |= ϕ. For obvious reasons, we will

identify a Boolean game Ĝ with the constrained Boolean game (Ĝ,>) and vice
versa (> imposes no constraints on actions).

In particular, we are interested in constrained Boolean games where ϕ con-
tains environmental variables only. Such a constraint can be seen as information
disclosed to the agents about the environmental variables, or as the agents’
(global) belief about the environmental variables. This is similar to [13] where
each agent has a belief—formally defined as a truth assignment—about the en-
vironmental variables. In our work, we assume that information is publicly an-
nounced and known to all agents. Information can be vague; therefore, we use
propositional formulae rather than (partial) truth assignments as it is the case



in [13]. For example, agents may believe that x ∨ y but they have no specific
belief about x nor about y.

Definition 2 (Boolean game with information). A constrained Boolean
game (Agt, Π, c, (γi)i∈Agt, (Πi)i∈Agt, ϕ) is a Boolean game with information if ϕ
is a propositional formula over Π\Ctrl(Agt).

Example 2 (Boolean game with information). The Boolean game G{2,3} from
Example 1 in combination with ϕ = p1 is a Boolean game with information. It
models that p1 is (believed to be) true.

2.3 Solution concepts

A solution concept SC maps constrained Boolean games over Π to truth as-
signments such that SC(G) ⊆ ValΠ . In the following we assume that G =
(Agt, Π, c, (γi)i∈Agt, (Πi)i∈Agt, ϕ). Let us define maxG as

∑
p∈Π [c(p, t)+c(p, f)]+1;

the number is greater than the maximum cost in any course of action. We lift
the cost function c of a constrained Boolean game to assignments: for and X-
assignment ξ we define c(ξ) =

∑
p∈X c(p, ξ(p)). Then, the utility of a Π-valuation

ξ for player i is defined as follows (cf. [11]) where γi is the goal of player i:

µ̂G
i (ξ) =

{
maxG − c(ξ|Πi

) if ξ |= γi,

−c(ξ|Πi
) else.

The utility function µ̂i computes the utility independently of whether the con-
straint ϕ is satisfied by ξ. It is an auxiliary function and models, due to the term
maxG, that a player always prefers an assignment which satisfies its goal over
one that does not. Ultimately, we are interested in the worst case utility which
is defined next. For a Π̂-valuation ξ the worst case utility of player i—note that
it does not include environmental variables—is defined by

µG
i (ξ) =

{
min{µ̂G

i (ξ′) | ξ′ ∈ ValΠ , ξ
′|Π̂ ≡ ξ, ξ

′ |= ϕ} if ϕ[ξ] is satisfiable

−maxG − c(ξ|Πi
) else

where ϕ[ξ] equals ϕ but each propositional variable p ∈ Π̂ occurring in ϕ is
replaced by > (resp. ⊥) if ξ(p) = t (resp. ξ(p) = f). The worst case utility
models the worst case assignment of the environmental variables for player i
where it is required, however, that the environmental variables respect the con-
straint ϕ. In this sense, ϕ is a global constraint which assumes some enforce-
ment/communication mechanism.

Now, we can define standard solution concepts. For example, a Nash equi-
librium is a Π̂-valuation ξ = (ξa1 , . . . , ξak) where ξai ∈ ValΠai

and Agt =
{a1, . . . , ak} such that for all j = 1, . . . , k and all ξ′aj ∈ ValΠaj

we have that

µG
aj (ξ) ≥ µG

aj (ξa1 , . . . , ξaj−1 , ξ
′
aj , ξaj+1 , . . . , ξak).



Remark 1. Let G be a Boolean game such that Π̂ = Π. Then, the Nash equi-
libria of G—in the classical sense as defined in [23]—are equivalent to the Nash
equilibria of (G,>).

Example 3 (Nash equilibria).

(a) Firstly, let us consider the Boolean game G1 from Example 1. The game does
not have any Nash equilibria: The goals of players a1 and a2 do not allow
any stable point. We observe that for any truth value of p1 and p2 either
player a1’s or player a2’s goal is true (but never both). Moreover, if player
ai’s goal is true, i ∈ {1, 2}, player a3−i can (by flipping the truth value of
pi) ensure that its goal becomes true and player ai’s goal false.

(b) The game G{2,3} from Example 1 has the unique Nash equilibrium ξ ∈
ValΠa2∪Πa3

with ξ(p) = f for all p ∈ Πa2 ∪Πa3 . This is easy to see: No player
can guarantee to achieve its goal, because for any Πa2∪Πa3-assignment there
is a value of p1 which makes γa2 and γa3 false (possibly not at the same time).
Hence, the best/cheapest actions for players a2 and a3 are those that make
all their variables false.

(c) The Boolean game with information (G{2,3}, p1) has the four Nash equilib-
ria (f, t, f, f), (f, t, t, f), (f, t, f, t) and (f, t, t, t). Each tuple represents a truth
assignment of p2, p3, p4 and p5 (in this order).

(d) The Boolean game with information (G{1}, p2) has the unique Nash equilib-
rium ξ ∈ ValΠ1

with ξ(p1) = t.

2.4 Incentive schemes

Nash equilibria may not exist or there may be several of them; often, both
is undesirable. One way to change the behavior of agents is to use taxes or
incentives. This is called incentive engineering and has been studied in [23] in
the Boolean game setting. Here we consider incentives as payoffs given to the
agents rather than taxes imposed on the actors. Formally, an incentive scheme
for a constrained Boolean game (G, ϕ) over Π is a function ι : Π̂ × B→ R. The
interpretation of ι(p, t) = 5 is that setting variable p to t is incentivized by 5
(units of payoff). We denote by G ⊕ ι the game which equals G but has as cost

function c′(p, v) = c(p, v) − ι(p, v) for all p ∈ Π̂ and c′(p, v) ≡ c(p, v) for all
p ∈ Π0 where c is the original cost function of G. Similarly, we write (G, ϕ) ⊕ ι
for (G⊕ ι, ϕ).

3 Formal Modeling of Socio-Technical Systems

A socio-technical system (STS) is composed of two subsystems: a technical and
a social one. The technical subsystem provides, e.g., the technology, resources,
and the technical infrastructure. The social system represents the actors/agents,
their abilities, goals, and models the interrelation between actors but also social
and organizational constraints which are imposed on the agents to ensure the
successful functioning of the STS. In the following we assume that Π is a non-
empty set of (propositional) variables.



3.1 Formal System Model

A technical system T consists of a set of available artifacts (e.g. resources and
machines), which are modeled by propositional variables ΠT , and a set of tech-
nical constraints that affect the size and structure of a STS. These constraints
are modeled by vectors (t1, . . . , tj) of positive integers meaning that the actors
can be clustered into j technical units of sizes t1, . . . , tj .

Definition 3 (Technical system). A technical system (over Π) is given by
a tuple T = (ΠT , {Ti}i∈I , tcostT ) where I ⊆ N is a non-empty, finite index set;
ΠT ⊆ Π a non-empty, finite set of variables; each Ti = (t1, . . . , tji) is a finite,
non-empty sequence of positive integers, one for each i ∈ I; and tcostT : I → R+

a cost function. The value tcostT (i) defines the costs needed to realize Ti. A
vector Ti is called technical constraint and each tj refers to a technical unit.

Example 4 (Technical system). Consider the technical system T1 = ({p1, . . . , p5},
{T1, T2}, tcostT } with T1 = (5) and T2 = (1, 3), tcostT (1) = 1 and tcostT (2) = 3.
The system models two possible infrastructures: the first consists of a single unit
of size 5 and costs 1, where the second models two units of size 1 and 3, respec-
tively, and costs 3.

A technical system defines the static structure of a STS; for example, a vec-
tor from Ti can represent the available offices in a building and their capacity or
(more or less independent) distributed parts of a STS. We assume that commu-
nication and cooperation across these different technical units is limited. Next,
we introduce an agent society. It models the available actors and their individual
goals from which a STS can draw its members.

Definition 4 (Agent society). An agent society (over Π) is a set A = {(Π1, γ1, c1),
(Π2, γ2, c2), . . . } where γi is a propositional formula over Π, Πi ⊆ Π a finite,
non-empty set of variables, and ci : Πi×B→ R a cost function of player i. Intu-
itively, an element (Πi, γi, ci) represents an agent which is capable of controlling
variables Πi, which has γi as individual goal and ci as cost function.

A social system consists of a subset of agents—drawn from an agent society—
and defines their relations and powers. Our relational model between agents is
rather simplistic. It prescribes how agents are divided into organization units.
We assume that each organization unit S has an organization objective δ which
is known to all agents in the unit but, per se, not to members of other units. In
order to obtain an efficient overall behavior across organization units, the STS
has to provide communication and cooperation mechanisms. For this purpose,
each organization unit publicly and truthfully announces parts of its objective
to inform the other units; therefore, we require that the announced objective
and the real objective must be consistent. There are plenty of reasons why or-
ganization units belonging to the same STS may not want to reveal their true
objectives; for example, they may be in competition. This is similar to the idea
of Boolean secrecy games [6] where players try to hide their true goals.



Finally, agents from the same agent society are able to control specific vari-
ables. The intuition is that the agents have, e.g., the power to operate a machine
or the knowledge to work with a piece of software. There can be several agents
with overlapping capabilities; hence, a STS has to define which agents have the
rights to exercise their powers. This is modeled by a function pow.

Definition 5 (Social system). A social system over an agent society A (over
Π) is given by S = (Agt, pow, (S1, δ1, δ

I
1), . . . , (Ss, δs, δ

I
s ), ι) where

– Agt ⊆ A is a finite, non-empty set of agents1. If (Πl, γl, cl) ∈ Agt then we
will often write al to refer to agent (Πl, γl, cl).

– pow : Agt → 2Π such that for each (Πi, γi, ci) ∈ Agt we have that pow(i) ⊆
Πi and pow(i) ∩ pow(j) = ∅ whenever i 6= j. We simply write pow(al) for
pow((Πl, γl, cl)) and (Πl, γl, cl) ∈ Agt. (The function is called power function
and describes which capabilities an agent is allowed to exercise in a social
system. The first constraint expresses that an agent must have the physical
power assigned to it; and the second, that no two agents have power over the
same variable.)

– Each (S1, . . . , Ss) forms a partition of Agt where each Si 6= ∅, for i = 1, . . . , s.
The tuple (Si, δi, δ

I
i ) is called organization specification, Si organization

unit, δi (private) organization objective and δIi public organization objec-
tive.

– All δi and δIi , for i = 1, . . . , s, are propositional formulae over
⋃
aj∈Si

pow(aj)

such that δi ∧ δIi is satisfiable.
– ι : pow(Agt)× B→ R is an incentive scheme.

Example 5 (Social system). Let S1 be the social system consisting of the follow-
ing elements. Agt represents the three actors from the Boolean game G1 presented
in Example 1: ai = (Πi, γi, ci) where ci ≡ c|Πi

for i = 1, 2, 3. Each agent has the
same power as in G1, i.e. pow(ai) = Πi for i = 1, 2, 3. The social system consists
of the organization unit (Agt, p5 ∧ p1 ∧ ((p2 ∧ p3) ∨ p4),>) and provides the in-
centive scheme ι ≡ 0. Another social system is S2 that equals S1 but consists of
the two organization units ({a1}, p1, p1) and ({a2, a3}, p5 ∧ ((p2 ∧ p3) ∨ p4), p2).

A social subsystem has to be embedded in a technical one. It is hardly possi-
ble, e.g., to find an office building which can host thousands of workers. Formally,
this is captured in the following definition:

Definition 6 (T -consistency). Given the technical system T = (ΠT , {Ti}i∈I , tcost)
and the social system S = (Agt, pow, (S1, δ1, δ

I
1 , ), . . . , (Ss, δs, δ

I
s ), ι) over the

same set of variables, we say that S is consistent with Tj = (tj1, . . . , t
j
g) in T if

there is an injective mapping f : {1, . . . , s} → {1, . . . , g} such that |Si| ≤ tjf(i)
for i = 1, . . . , s. That is, the mapping ensures that each set of agents Si can
be embedded into the technical unit tjf(i). We say that S is consistent with T ,

T -consistent in short, if there is an element Tj in T such that S is Tj-consistent.

1 Note that agents have more structure than before where abstract elements ai were
use to refer to agents.



Finally, a STS is essentially given by a technical system and a consistent
social system, both over the same set of variables.

Definition 7 (Socio-technical system). A STS over Π is given by a tuple
ST = (Π, T , T,S) where T is a technical system (over Π), T is a technical
specification included in T and S is a T -consistent social system over Π.

Example 6 (Socio-technical system). The social systems S1 and S2 from Exam-
ple 5 are both consistent with the technical system T1 presented in Example 4.
Thus, ST1 = (Π, T1, T1,S1) and ST2 = (Π, T2, T2,S2) are both STSs. The for-
mer consists of a single organization unit grounded in the technical constraint
T1 and the latter of two organization units grounded in the technical constraint
T2.

3.2 Organizational Behavior and Equilibria in STSs

Actors in a STS are autonomous and self-interested; they do not necessarily
care about the organization goal. So, a crucial question is how to model and
influence the actors’ behaviors in a STS. We follow a game theoretical ap-
proach to model the actors’ decision-making. Each organization unit in a STS
induces a Boolean game which is used to analyze the resulting behavior. For
the remainder of this section, let us assume that we are given the STS ST =
(Π, T , T,S) with T = (ΠT , {Ti}i∈I , tcostT ) and S = (Agt, pow, (S1, δ1, δ

I
1), . . . ,

(Ss, δs, δ
I
s ), ι). Each Si consists of elements aij = (Πi

j , γ
i
j , c

i
j) for i = 1, . . . , s.

We associate with each organization unit Si a Boolean game with informa-
tion. The players in the game are the agents in Si with their powers defined
as in the STS. An agent’s behavior does not only depend on the other actors
in Si but also on those belonging to other organization units different from Si;
how those agents behave, however, is not known to the members in Si. Thus, we
assume that the members of Si believe that the other players act in line with
their public organization objective. This gives rise to the following definition:

Definition 8 (Induced Boolean game with information). The Boolean
game with information associated with the STS ST and Si, i ∈ {1, . . . , s}, is de-
fined as GST(i) = (Si, Π, c, (γ

i
j)j∈Si

, (pow(aj))aj∈Si
, ∆i) where ∆i =

∧
j∈{1,...,s}\{i} δ

I
j

and c(p, v) = cij(p, v)− ι(p, v) for p ∈ pow(aj) and 0 otherwise.

Formula ∆i models the beliefs of the agents in Si about the behavior of the other
actors—why those players should play in order to achieve ∆i is not known to
them.

Example 7 (Induced Boolean games). We consider the STSs from Example 6.

(a) The STS ST1 induces the Boolean game (with information) (G1,>) from
Example 1.

(b) The STS ST2 induces the two Boolean games with information GST2(1) =
(G{1}, p2) and GST2(2) = (G{2,3}, p1) presented in Example 1.



Note that both games are only equivalent to those introduced previously because
the incentive schemes of the social systems are the constant function 0.

The behavior of a STS is the result of all combination of all equilibria—for
the following discussion we choose the term equilibria to refer to some solution
concept—of the induced Boolean games. The idea is that the agents in GST(i)
assume that the other agents choose their actions in line with ∆i and that they
try to maximize their utilities accordingly. It is important to note that members
of some induced Boolean game—members of the same organization unit—usually
have no specific information about the other actors’ actions outside GST(i); i.e.,
how exactly those actors try to satisfy ∆i. Thus, the system has multiple possible
behaviors of which some can be desirable and other undesirable. In order to
remove the undesirable ones, however, communication and cooperation among
the organization units is necessary.

Definition 9 (Behavior of STS). Let SC be a solution concept of a Boolean
game. The SC-behavior of ST, BSC(ST), consists of all assignments ξ : Π → B
such that there are assignments ξi ∈ SC(GST(i)) with ξ|pow(Si) = ξi for i =
1, . . . , s.

The organization cost of a specific assignment consists of two parts: the cost
of the realization of the technical system and the incentives that have to be paid
to the actors for performing the assignments. The cost of the behavior of the
system is given as the cost of the worst-case behavior wrt. a solution concept.

Definition 10 (Cost). The organization cost of an assignment ξ in ST is
defined as ocostST(ξ) = tcost(T ) +

∑
p∈Π ι(p, ξ(p)). The SC-behavioral cost of

ST is defined as ocostSCST = maxξ∈BSC(ST) ocostST(ξ).

Example 8 (Nash behavior of STS). The Nash behaviors of the STSs ST1 and
ST2 are easily computed from Example 3:

(a) ST1 is constructed from a single organization unit. As a consequence, the
behavior of the STS agrees with the Nash equilibria of its induced Boolean
game with information. We have that BNE(ST1) = NE((G1,>)) = ∅. This
indicates that the STS ST1 is unstable.

(b) The behavior of ST2 is more complex because the STS consists of two orga-
nization units and their induced Boolean games with information (G{1}, p2)
and (G{2,3}, p1), respectively. The behavior of the STS is the combination of
the Nash equilibria of both games, which are determined in Example 3. We
have that BNE(ST2) = {(t, f, t, x, y) | x, y ∈ {t, f}} where each tuple specifies
the truth value of (p1, . . . , p5) and thus corresponds to a truth assignment
of ValΠ .

Definition 11 (Organizational effectivity). We say that ST is weakly (resp.
strongly) organizationally SC-effective if we have that ξ |= δi for some ξ ∈
BSC(ST) (resp. for all ξ ∈ BSC(ST) and BSC(ST) 6= ∅) and all i = 1, . . . , s.



The following result shows that organizational effectivity is a local property
of the organization units.

Proposition 1. ST is weakly (resp. strongly) organizationally NE-effective iff
we have ξ |= δi for some ξ ∈ NE(GST(i)) (resp. for all ξ ∈ NE(GST(i)) and
NE(GST(i) 6= ∅) and for all i = 1, . . . , s.

3.3 Objectives and Confidentiality Constraints in STSs

In the previous section we introduced the behavior of a STS as the behavior
emerging from the behaviors of the organization units. Which properties does
the behavior satisfy and thus a STS enjoy?

In the following we consider two different kinds of properties: (i) a system
objective and (ii) a confidentiality constraint. The former specifies how a STS
should (ideally) behave; it represents the task/purpose of a system. The confi-
dentiality constraint models which information is allowed to be passed within
a system. For example, the designer may want to keep the (sub)objective γ of
an organization unit confidential. In this case the public organization objective
should not imply γ.

Definition 12 (System specification). A system objective Υ o and a confi-
dentiality constraint Υ s over Π are propositional formulae over Π. The tuple
(Υ o, Υ s) is called system specification over Π.

The system objective crucially depends on the actors’ behaviors—if not a
tautology—where the confidentiality constraint is affected by the organization
objectives and the behavior of the actors. We distinguish two types: weak confi-
dentiality is provided by a STS if the public organization objectives do not imply
the confidentiality constraint; strong confidentiality is restricted to the (rational)
behavior of a STS.

Similarly, we distinguish between weak and strong implementation of a sys-
tem objective. In the weak setting, we require that there is some system behavior
which satisfies the objective; its stronger variant requires this for all behaviors.
Clearly, in the former case additional communication and/or coordination mech-
anisms are needed to ensure that a “good” behavior will actually emerge.

Definition 13. Let ST = (Π, T , T,S) be a STS and (Υ o, Υ s) be a system spec-
ification. We say that:

(a) ST ensures weak confidentiality2 of Υ s if
∧
j∈{1,...,s} δ

f
j ∧¬Υ s is satisfiable.

(b) ST ensures strong confidentiality of Υ s if there is an assignment ξ ∈ BSC(ST)

with ξ |=
∧
j∈{1,...,s} δ

f
j ∧ ¬Υ s.

2 In case of confidentiality, we only consider the public part of the organization objec-
tive; alternatively, one could take into account that all actors in an organization unit
are aware of their actual (private) organization objective and the public objectives
of the other organization units. In this case weak confidentiality would refer to the
condition: for all i = 1, . . . , s we have that δi ∧

∧
j∈{1,...,s}\{i} δ

f
j ∧¬Υ s is satisfiable.



(c) ST weakly implements Υ o if is there is an assignment ξ ∈ BSC(ST) which
satisfies Υ o.

(d) ST stronlgy implements Υ o if all assignments ξ ∈ BSC(ST) satisfy Υ o and
BSC(ST) 6= ∅.

Proposition 2. If a STS ensures strong confidentiality of a confidentiality con-
straint then it also ensures weak confidentiality of the constraint.

If a STS strongly implements a system specification then the system specifi-
cation is also weakly implemented by the STS.

Example 9 (Confidentiality and implementation in STS). Let the system specifi-
cation Υ o = p5∧p1∧((p2∧p3)∨p4) and the confidentiality constraint Υ s = p1∧p2
be given.

(a) ST1 neither weakly nor strongly implements Υ o. The STS ensures weak con-
fidentiality of Υ s because >∧¬(p1 ∧ p2) is satisfiable. Strong confidentiality
is not ensured because the system has no (stable) behavior.

(b) STS ST2 weakly implements Υ o, which is witnessed by the assignment
(t, f, t, t, t) but not strongly, which is e.g. witnessed by (t, f, t, f, f) 6|= Υ o.
ST2 does neither ensure weak nor strong confidentiality of Υ s because p1 ∧
p2 ∧ ¬(p1 ∧ p2) is not satisfiable.

4 Designing Good STSs: Incentive Engineering

The formal framework allows to pose interesting question, for example:

– Is there a STS that weakly/strongly implements a system objective and
ensures weak/strong confidentiality of a confidentiality constraint?

– Is there a social system which is consistent with a given technical system
such that the resulting STS weakly/strongly implements a system objective
and ensures weak/strong confidentiality of a confidentiality constraint?

– Is there a technical systems for a given social system such that the previous
properties are satisfied?

– Given a STS and a system specification how to incentivize agents such that
the system specification is ensured?

In Example 9 we have seen that the STS ST2 neither strongly implements system
specification Υ o nor does it ensure weak confidentiality of Υ s. Thus, if the STS
were designed to ensure the system specification (Υ o, Υ s) it would miss its aim.
Is there a better STS?

Firstly, we observe that the public organization objectives δI1 = p1 and δI2 =
p2 will never ensure the confidentiality constraint. However, these objectives are
needed to coordinate the two organization units S1 and S2 to achieve stability.
Suppose that the public organization objective of S2 is δI2 = > instead. Then
weak confidentiality of Υ s is ensured in the resulting STS as p1 ∧>∧¬(p1 ∧ p2)
is satisfiable. This change, however, affects the behavior of organization unit 1.
The unique Nash equilibrium in the induced Boolean game with information,



which is now (G{1},>), is given by (f): agent a1 cannot satisfy its goal—both
truth values of p2 must be considered possible—and the costs of setting p1 to f
are smaller than for setting p1 to t. As a consequence, the modified STS does
not anymore weakly implement the system objective Υ o.

In order to achieve both—implementation and confidentiality—the STS can
provide an incentive to player a1 to set p1 to true. This is called incentive engi-
neering and has been studied in [23].

Example 10. Firstly, we modify the social system S2 = (Agt, pow, ({a1}, p1, p1),
({a2, a3}, p5 ∧ ((p2 ∧ p3)∨ p4), p2), ι) from Example 5 as follows: S3 = (Agt, pow,
({a1}, p1, p1), ({a2, a3}, p5 ∧ ((p2 ∧ p3) ∨ p4),>), ι′) where the incentive scheme
ι′ is defined by ι′(p1, t) = ι′(p3, t) = ι′(p5, t) = 2 and ι′(p, t) = ι′(p, f) = 0
for all other variables p. Let ST3 denote the STS (Π, T2, T2,S3). The Nash
behavior of ST3 is uniquely determined: BNE(ST3) = {(t, t, t, f, t)}. Moreover,
the STS ensures strong confidentiality of Υ s = p1 ∧ p2 and strongly implements
Υ o = p5 ∧ p1 ∧ ((p2 ∧ p3) ∨ p4).

Note, however, that this positive result has its price: the costs of ST3 are
ocostNEST3

= 3 + 6 = 9 (costs of the technical system plus the costs of the paid
incentives). In comparison, the costs of ST2 are only 3.

A key problem in STSs is the joint optimization of the social- and technical
system. Incentives or taxes cannot be used to implement all system objectives;
this follows from [23, Proposition 8]. A reorganization of the organization units,
however, can stabilize a STS as illustrated next.

Example 11 (Stabilizing a STS). By [23, Proposition 8] the STS ST1 from Ex-
ample 8(a) can only be stabilized by incentives/taxes if the conjunction of all
goals of all players is satisfiable. But the formula γa1 ∧ γa2 = ((p1 ∧ p2)∨ (¬p1 ∧
¬p2)) ∧ ((¬p1 ∧ p2) ∨ (¬p2 ∧ p1)) is not satisfiable. Thus, the Boolean game G1

cannot have any Nash equilibria according to [23, Proposition 8] and the be-
havior of ST1 must be empty. If we modify the technical system and use ST2

instead of ST1, however, the behavior is non-empty.

Some characterization results. A natural question to pose is whether the incen-
tive scheme of a STS can be modified in such a way that it implements a system
objective, ensures confidentiality and organizational efficiency. Therefore, given
a STS ST and an incentive scheme ι we denote by ST⊕ ι the STS which equals
ST but the incentive scheme of which is replaced by ι. In the following we char-
acterize sufficient and necessary conditions for the existence of an appropriate
incentive scheme. We make use of quantified Boolean formulae. A quantified
Boolean formula (QBF) [17] allows to quantify (existentially and universally)
over propositional variables.

Remark 2 (Quantified Boolean formulae). We often write ϕ(X) to emphasize
that the QBF formula ϕ contains the free variables X—ϕ can be a plain propo-
sitional formula. Then, a formula ∃Xϕ is QBF-satisfiable if there is a truth
assignment ξ of the variables in X such that ϕ[ξ] is satisfiable, where ϕ[ξ] is



the QBF-formula equivalent to ϕ but each variable p ∈ X which is free in ϕ is
replaced by ⊥ (resp. >) if ξ(p) = f (resp. ξ(p) = t). The QBF-satisfiability and
QBF-validity problems are PSPACE-complete; for more details we refer e.g.
to [17].

Lemma 1. Let G = (Agt, P rops, (γj)j∈Agt, (Πj)j∈Agt, ϕ) be a Boolean game with
information. Then,

Θ(Π̂) =
∧
i∈Agt

((∃Πi∀Π0(ϕ→ γi))→ ∀Π0(ϕ→ γi))

is QBF-satisfiable iff there is an incentive scheme ι such that NE(G⊕ ι) 6= ∅.

Proof (Sketch). The formula is true iff there exist an ξ ∈ ValΠ̂ such that for each
player i ∈ Agt = {a1, . . . , ak}: if there is a ξi ∈ ValΠi such that for all ξ0 ∈ ValΠ0

with ξ0 |= ϕ we have that ξ|Π̂\Πi
◦ ξi ◦ ξ0 |= γi, then also for all ξ0 ∈ Val(Π0)

with ξ0 |= ϕ we have ξ ◦ ξ0 |= γi. We sketch the proof of the lemma:
“⇒:” Define an incentive scheme ι such that each player i chooses the truth

assignment ξi. Then, no agent would deviate from ξi and ξa1◦· · ·◦ξak ∈ NE(G⊕ι).
“⇐:” Suppose ξa1 ◦ · · · ◦ ξak ∈ NE(G ⊕ ι). Then, no agent can deviate to

obtain a better outcome; in particular, no agent with an unsatisfied objective
can choose an action to satisfy it. The QBF-formula is true under the assignment
ξa1 ◦ · · · ◦ ξak . ut

The next result follows from Lemma 1 and Proposition 1.

Proposition 3. There is an incentive scheme ι such that ST ⊕ ι with organi-
zation units S1, . . . , Ss is organizationally NE-effective iff∧

i=1,...,s

Θ(Ctrl(Si)) ∧ δi

is QBF-satisfiable where δi is the objective of organization unit Si and Θ is the
QBF-formula from Lemma 1.

Theorem 1. Let (Υ o, Υ s) be a system specification and ST a STS. There is
an incentive scheme ι for ST such that ST ⊕ ι is weakly organizationally NE-
effective, weakly implements Υ o and ensures weak confidentiality of Υ s each of
these properties wrt. the same assignment ξ ∈ BNE(ST⊕ ι) iff

∃Π(
∧

j∈{1,...,s}

δfj ∧ ¬Υ
s) ∧ Υ o ∧

∧
i=1,...,s

Θ(Ctrl(Si)) ∧ δi

is QBF-satisfiable for all i = 1, . . . , s.

Proof (Sketch). Let Agt = {a1, . . . , ak}. “⇒”: Let ξ = ξa1◦· · ·◦ξak be a satisfying
truth assignment. By Proposition 3 and by defining an incentive scheme ι analo-
gously to Lemma 1, ST is organizationally NE-effective. Then, by Definition 9,
ξ ∈ BNE(ST⊕ ι). Straightforwardly, weak implementability of Υ o follows. Weak
confidentiality holds because there is some truth assignments which shows that∧
j∈{1,...,s} δ

f
j ∧¬Υ s. “⇐”: Follows analogously to the reasoning of Lemma 1. ut



5 Related Work

The authors of [18] model STSs as multi-agent systems. They use an ontology to
address agent interoperability. The focus is on knowledge representation and how
agents’ knowledge can be merged. Our work focusses on the strategic behavior
of the actors and on analysing steady states of the emergent behavior of STSs.

In [15, 3, 12] the design of STSs is considered from a software engineering
perspective. The authors of [9] argue that a system and actor perspective should
be used alongside; our formal model somehow includes both perspectives (the
optimization of the technical subsystem and the equilibrium analysis in the social
system). [8] proposes an architecture of STSs that allows the system to adapt to
changing situations. Their model of a STS is based on goal-oriented requirements
models, thus more low-level than ours.

Norms to govern STSs were proposed in [20]; in particular, the author consid-
ers a STS as multi-stakeholder system consisting of autonomous entities which
are not necessarily controlled by a single organization. [7] considers formal tools
for modeling, specifying and verifying STSs, namely situation calculus, ambient
calculus, and bigraphical reactive systems; again our model is more abstract.
Also the strategic dimension and stability are not considered in this work.

The authors of [19] analyze causality, complexity and the modeling of STSs on
a rather informal level. In our modeling some of these ideas are formally modeled
by Boolean games, in particular the strategic dimension and the decomposition
into smaller parts (organization units).

In our work, we try to find good configurations of socio-technical systems that
satisfy some system specification. This is related to [5] where a planning-based
process is used to explore the space of possible system dependence configurations,
in particular the delegation of goals/objectives to actors. The authors also briefly
discuss system stability from a game theoretical point of view, which is related
to the work we propose here. Our model, however, is more abstract and focusses
on steady states of strategic interactions.

In recent years, much work has been directed towards Boolean games [10, 11,
4, 14], some of which underlies our modeling. A key question is whether a game
has a stable solution, for example whether the core is non-empty or whether the
game has a stable set [10]. In [11] taxation schemes are proposed to incentivize
or disincentives agents to play specific actions in order to enforce equilibria.
Communication of truth values [13] and verifiability of equilibria [2] are further
proposals to stabilize Boolean games. We use three different techniques to sta-
bilize STSs: Firstly, incentive schemes as proposed in [23]; secondly, public orga-
nization objectives which influence the behavior of agents, this is related to [13];
and thirdly, a technical system is used to impose constraints on the cooperation
and communication capabilities of agents3. This is motivated by the observation
that “to a large extent, the underlying organization model is responsible for how

3 This also relates to a discussion at [1] where it was discussed to extend cooperative
games with normative constraints to restrict the coalitions that are allowed to deviate
from a given action profile when computing the core of a game.



efficiently and effectively organizations carry out their tasks” [16, page 2]. Note,
that the former two methods do not restrict the agents’ autonomy where the
third one affects autonomy by constraining the physical infrastructure.

6 Conclusions

In this paper we proposed a formal modeling of socio-technical systems (STSs).
The technical part of a STS defines, e.g., the infrastructure and the technical
units. The social part frames the organization units, actors, and their social rela-
tionships. The behavior of a STS emerges from the steady states of the organiza-
tion units which are modeled as Boolean games with information—an extension
of the Boolean game model. Private and public organization objectives, which
are announced by each organization unit, are used to coordinate the behavior of
the otherwise independent parts of the system.

Furthermore, we introduced system objectives and confidentiality constraints
to specify properties that a STS should ensure and properties that should not
be disclosed to the public. We used different mechanisms to ensure them and to
stabilize the behavior of the system: Incentive schemes to influence the behavior
within an organization unit; public organization objectives to coordinate the
behavior on the inter-organization level, and technical constraints to foster and
to suppress cooperation among agents. Finally, we presented some preliminary
characterization results about the existence of appropriate incentive schemes to
stabilize a STS and to ensure a given system specification.

Future Work The focus of this paper was a formal modeling of STSs. We also
gave some preliminary characterization results. In our future work we plan to
elaborate on these characterization results and to analyze the computational
complexity. Also, there are many open question wrt. implementability and opti-
mality, some of which were already stated in Section 4. In particular, the effect of
changes in the underlying technical system wrt. the system behavior is left for fu-
ture work. Furthermore, apart from non-cooperative solution concepts we would
like to investigate cooperative solution concepts; thus, assuming that members
of the same organization unit are cooperative.
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2. Thomas Ågotnes, Paul Harrenstein, Wiebe Van Der Hoek, and Michael
Wooldridge. Verifiable equilibria in boolean games. In Proceedings of the Twenty-
Third international joint conference on Artificial Intelligence, pages 689–695.
AAAI Press, 2013.

3. Gordon Baxter and Ian Sommerville. Socio-technical systems: From design meth-
ods to systems engineering. Interacting with Computers, 23(1):4–17, 2011.



4. Elise Bonzon, Marie-Christine Lagasquie-Schiex, Jérôme Lang, and Bruno Zanut-
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