The Poincaré–Hopf theorem for line fields revisited (joint with D. Crowley)

Mark Grant

Southampton Topology Seminar 30th January 2017

- Line fields
- Poincaré-Hopf Theorem for line fields
 - Hopf's result
 - Markus' result
 - Our result
- Normal indices
- 4 The proof
- 5 Further problems

Line fields

Let M^m be a smooth manifold of dimension $m \geq 2$.

Definition

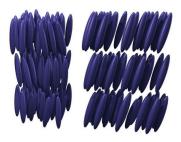
A line field on M is a smooth section $\xi:M\to PTM$ of the projectivized tangent bundle.

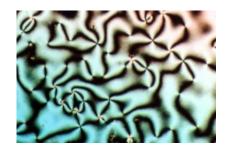
In other words, a line field is a smooth assignment

$$x \mapsto \xi(x) \subset TM_x$$

of a one-dimensional subspace of the tangent space at each point.

Line fields, or nematic fields, are of interest in soft-matter physics, where they are used to model nematic liquid crystals.





(Images: https://en.wikipedia.org/wiki/Liquid_crystal)

A nowhere zero vector field $v:M\to TM$ gives rise to a line field by setting

$$\xi(x) = \langle v(x) \rangle \subset TM_x$$

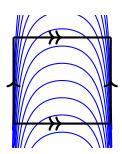
to be the line spanned by v(x).

A nowhere zero vector field $v:M\to TM$ gives rise to a line field by setting

$$\xi(x) = \langle v(x) \rangle \subset TM_x$$

to be the line spanned by v(x).

However, not every line field can be lifted to a nowhere zero vector field.



Proposition

A closed manifold ${\cal M}$ admits a line field if and only if it admits a nowhere zero vector field.

Proposition

A closed manifold ${\cal M}$ admits a line field if and only if it admits a nowhere zero vector field.

Proof: A line field ξ on M may be viewed as a line sub-bundle $\xi \subset TM$.

Proposition

A closed manifold ${\cal M}$ admits a line field if and only if it admits a nowhere zero vector field.

Proof: A line field ξ on M may be viewed as a line sub-bundle $\xi \subset TM$.

Fix a metric on M, then the sphere bundle

$$p_{\xi}:\widetilde{M}:=S(\xi)\to M$$

is the associated double cover.

_ine fields

Note that \widetilde{M} has a canonical nowhere zero vector field which lifts $p_{\xi}^*\xi.$

Note that \widetilde{M} has a canonical nowhere zero vector field which lifts $p_{\xi}^*\xi$.

By the multiplicativity of the Euler characteristic for covers,

$$0=\chi(\widetilde{M})=2\,\chi(M),$$

hence $\chi(M)=0$ and M admits a nowhere zero vector field.

Theorem (Poincaré-Hopf)

Let $v:M\to TM$ be a vector field with isolated zeroes at $x_1,\dots,x_n\in M.$ Then

$$\sum_{i=1}^{n} \operatorname{ind}_{v}(x_{i}) = \chi(M).$$

Theorem (Poincaré-Hopf)

Let $v:M\to TM$ be a vector field with isolated zeroes at $x_1,\dots,x_n\in M.$ Then

$$\sum_{i=1}^{n} \operatorname{ind}_{v}(x_{i}) = \chi(M).$$

The index $\operatorname{ind}_v(x_i) \in \mathbb{Z}$ is the degree of the composition

$$f: S \xrightarrow{v|_S} STM|_S \xrightarrow{\Phi} S \times S^{m-1} \xrightarrow{\pi_2} S^{m-1},$$

where:

- $v|_S$ is the restriction of (the normalization of) v to a small sphere S centred at x_i ;
- $ightharpoonup \Phi$ is a trivialisation, and
- \blacktriangleright π_2 is projection onto the second factor.

Poincaré-Hopf Theorem for line fields

Definition

A line field on M with singularities at $x_1, \ldots, x_n \in M$ is a line field on the complement $M \setminus \{x_1, \ldots, x_n\}$.

Poincaré-Hopf Theorem for line fields

Definition

A line field on M with singularities at $x_1, \ldots, x_n \in M$ is a line field on the complement $M \setminus \{x_1, \ldots, x_n\}$.

A vector field with zeroes determines a line field with singularities, but a line field with singularities need not lift to a vector field.

Poincaré-Hopf Theorem for line fields

Definition

A line field on M with singularities at $x_1, \ldots, x_n \in M$ is a line field on the complement $M \setminus \{x_1, \ldots, x_n\}$.

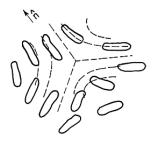
A vector field with zeroes determines a line field with singularities, but a line field with singularities need not lift to a vector field.

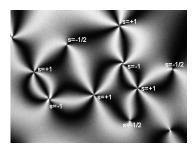
Question

What is the analogue of Poincaré-Hopf for line fields with singularities?

The singularities are known as topological defects in the Physics literature.

Of particular interest are point defects in 2 and 3 dimensions, and line defects or disclinations in 3 dimensions (which may be knotted).





(Images: http:

//www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html, http://www.personal.kent.edu/~bisenyuk/liquidcrystals/textures1.html)

Hopf's result

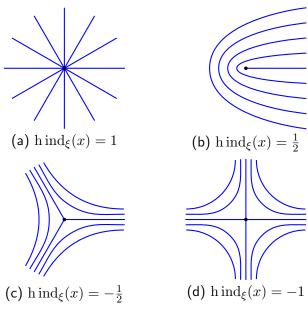
Theorem (Hopf)

A line field ξ with singularities x_1,\dots,x_n on a closed orientable surface Σ has

$$\sum_{i=1}^{n} \operatorname{h} \operatorname{ind}_{\xi}(x_i) = \chi(\Sigma).$$

The Hopf index $\operatorname{hind}_{\xi}(x_i) \in \frac{1}{2}\mathbb{Z}$ is the number of total rotations made by ξ as a simple closed curve around x_i is traversed.

Reference: H. Hopf, *Differential Geometry in the Large*, LNM 1000, (1983) (Based on lectures given at Stanford University in 1956).



Line field singularities and their Hopf indices.

Markus' result

Definition

A singularity x_i of a line field ξ on M^m is called (non)-orientable if the restriction of ξ to a small sphere S centred at x_i lifts (does not lift) to a vector field.

Equivalently, x_i is (non)-orientable if the restriction to S of the associated double cover $p_{\xi}|_S:\widetilde{S}\to S$ is (non)-trivial.

Markus' result

Definition

A singularity x_i of a line field ξ on M^m is called (non)-orientable if the restriction of ξ to a small sphere S centred at x_i lifts (does not lift) to a vector field.

Equivalently, x_i is (non)-orientable if the restriction to S of the associated double cover $p_{\xi}|_S:\widetilde{S}\to S$ is (non)-trivial.

If m=2, then x_i is orientable if and only if $\operatorname{hind}_{\xi}(x_i)\in\mathbb{Z}$.

If m > 2, then all singularities are orientable.

The Markus index $\min_{\xi}(x_i) \in \mathbb{Z}$ is defined as follows:

For m even, it is the degree of the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}.$$

The Markus index $\min_{\xi}(x_i) \in \mathbb{Z}$ is defined as follows:

For m even, it is the degree of the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}.$$

For $m\geq 3$ odd, orienting ξ near x_i gives a lift $\tilde{f}:S\to S^{m-1}$ of $f:S\to \mathbb{R}P^{m-1}$. Choose base points and suspend, and take the degree of the composition

$$S^m \xrightarrow{\Sigma \tilde{f}} S^m \longrightarrow \mathbb{R}P^m.$$

Theorem (Markus)

A line field ξ with singularities x_1,\ldots,x_n on a closed manifold M^m has

$$\sum_{i=1}^{n} \operatorname{mind}_{\xi}(x_i) = 2\chi(M) - k,$$

where k is the number of non-orientable singularities.

Reference: L. Markus, Line element fields and Lorentz structures on differentiable manifolds, Ann. Math. 62, (1955)

Theorem (Markus)

A line field ξ with singularities x_1,\ldots,x_n on a closed manifold M^m has

$$\sum_{i=1}^{n} \operatorname{mind}_{\xi}(x_i) = 2\chi(M) - k,$$

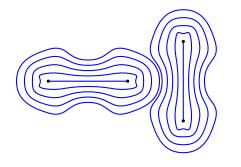
where k is the number of non-orientable singularities.

Reference: L. Markus, Line element fields and Lorentz structures on differentiable manifolds, Ann. Math. 62, (1955)

Unfortunately, there are counter-examples to Markus' Theorem for m=2 and $m\geq 3$ odd.

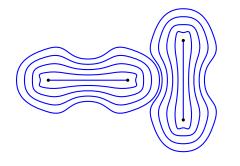
Example: The baseball

There is a line field on S^2 , known colloquially as "the baseball", with four non-orientable singularities of Hopf index $\frac{1}{2}$ and Markus index 1.



Example: The baseball

There is a line field on S^2 , known colloquially as "the baseball", with four non-orientable singularities of Hopf index $\frac{1}{2}$ and Markus index 1.

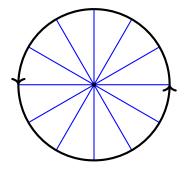


This contradicts Markus' Theorem, since

$$\sum_{i=1}^{n} \min_{\xi}(x_i) = 4 \neq 0 = 2\chi(S^2) - 4.$$

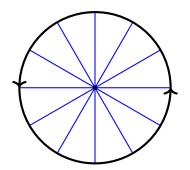
Example: The hedgehog

This is a line field on $\mathbb{R}P^m$ with a single orientable singularity of Hopf index 1 and Markus index 2.



Example: The hedgehog

This is a line field on $\mathbb{R}P^m$ with a single orientable singularity of Hopf index 1 and Markus index 2.



For $m \geq 3$ odd this contradicts Markus' Theorem, since

$$\sum_{i=1}^{n} \operatorname{mind}_{\xi}(x_i) = 2 \neq 0 = 2\chi(\mathbb{R}P^m).$$

Our result

We define the projective index by

$$\mathrm{p}\,\mathrm{ind}_\xi(x_i) = \left\{ \begin{array}{ll} \deg(f) & \in \mathbb{Z} & \text{if } m \text{ even,} \\ \deg_2(f) & \in \mathbb{Z}/2 & \text{if } m \text{ odd,} \end{array} \right.$$

where $f: S^{m-1} \to \mathbb{R}P^{m-1}$ is the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}.$$

Our result

Theorem (Crowley-G.)

A line field ξ with singularities x_1, \ldots, x_n on a closed manifold M^m has

$$\sum_{i=1}^{n} \operatorname{pind}_{\xi}(x_i) = 2\chi(M).$$

The equality is congruence mod 2 when m is odd.

Remarks

This corrects Markus' Theorem, and extends Hopf's Theorem to dimensions m>2.

Our proof is similar to that of Markus, but we introduce normal indices to clarify some issues when $m=2. \,$

Similar statements were given by Koschorke for m>2 (1974) and Jänich (1984). Our contribution is a careful proof valid in all dimensions.

Normal indices

Let x be an isolated zero of the vector field $v:M\to TM$. Recall that $\operatorname{ind}_v(x)$ is the degree of the composition

$$f: S \xrightarrow{v|_S} STM|_S \xrightarrow{\Phi} S \times S^{m-1} \xrightarrow{\pi_2} S^{m-1}.$$

Normal indices

Let x be an isolated zero of the vector field $v:M\to TM$. Recall that $\operatorname{ind}_v(x)$ is the degree of the composition

$$f: S \xrightarrow{v|_S} STM|_S \xrightarrow{\Phi} S \times S^{m-1} \xrightarrow{\pi_2} S^{m-1}.$$

If $a\in S^{m-1}$ is a regular value of f, then $v|_S$ is transverse to the embedding $\sigma=\sigma_a:S\hookrightarrow STM|_S$ given by

$$\sigma(y) = \Phi^{-1}(y, a).$$

Normal indices

Let x be an isolated zero of the vector field $v:M\to TM$. Recall that $\operatorname{ind}_v(x)$ is the degree of the composition

$$f: S \xrightarrow{v|_S} STM|_S \xrightarrow{\Phi} S \times S^{m-1} \xrightarrow{\pi_2} S^{m-1}.$$

If $a\in S^{m-1}$ is a regular value of f, then $v|_S$ is transverse to the embedding $\sigma=\sigma_a:S\hookrightarrow STM|_S$ given by

$$\sigma(y) = \Phi^{-1}(y, a).$$

Then $\operatorname{ind}_v(x)$ equals the oriented intersection number

$$\sigma(S) \pitchfork v(S) \in \mathbb{Z}.$$

Suppose M endowed with a Riemannian metric. Then the outward unit normal to S defines an embedding $\eta: S \hookrightarrow STM|_{S}$.

Definition

The normal index $\operatorname{ind}_v^{\perp}(x) \in \mathbb{Z}$ is defined to be the oriented intersection number

$$\eta(S) \pitchfork v(S) \in \mathbb{Z}.$$

The normal index counts the number of times v points outwards on S (with signs).

Lemma

We have

$$\operatorname{ind}_{v}^{\perp}(x) = \operatorname{ind}_{v}(x) + (-1)^{m-1}.$$

Proof: Calculate intersection numbers in

$$H_*(S \times S^{m-1}) \cong H_*(S) \otimes H_*(S^{m-1}).$$

Now let x be an isolated singularity of the line field $\xi: M \to PTM$. Recall that $\operatorname{pind}_{\xi}(x)$ is the degree of the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}.$$

Now let x be an isolated singularity of the line field $\xi: M \to PTM$. Recall that $\operatorname{pind}_{\xi}(x)$ is the degree of the composition

$$f: S \xrightarrow{\xi|_S} PTM|_S \xrightarrow{\Phi} S \times \mathbb{R}P^{m-1} \xrightarrow{\pi_2} \mathbb{R}P^{m-1}.$$

If $a\in\mathbb{R}P^{m-1}$ is a regular value of f, then $\xi|_S$ is transverse to the embedding $\sigma=\sigma_a:S\hookrightarrow PTM|_S$ given by

$$\sigma(y) = \Phi^{-1}(y, a).$$

Then $\operatorname{pind}_{\mathcal{E}}(x)$ equals the intersection number

$$\mathrm{p}\,\mathrm{ind}_\xi(x) = \left\{ \begin{array}{ll} \sigma(S) \pitchfork \xi(S) & \in \mathbb{Z} & \text{if } m \text{ even,} \\ \sigma(S) \pitchfork_2 \xi(S) & \in \mathbb{Z}/2 & \text{if } m \text{ odd.} \end{array} \right.$$

The normal line to S defines an embedding $\eta: S \hookrightarrow PTM|_{S}$.

Definition

The normal projective index is defined by

$$\mathrm{p}\,\mathrm{ind}_\xi^\perp(x) = \left\{ \begin{array}{ll} \eta(S) \pitchfork \xi(S) & \in \mathbb{Z} & \text{if } m \text{ even,} \\ \eta(S) \pitchfork_2 \xi(S) & \in \mathbb{Z}/2 & \text{if } m \text{ odd.} \end{array} \right.$$

The normal projective index counts the number of times ξ is normal to S (with signs if m is even).

Lemma

When m is even, we have

$$\operatorname{pind}_{\xi}^{\perp}(x) = \operatorname{pind}_{\xi}(x) - 2.$$

Proof: Calculate intersection numbers in

$$H_*(S \times \mathbb{R}P^{m-1}) \cong H_*(S) \otimes H_*(\mathbb{R}P^{m-1}).$$

Lemma

When $m \geq 3$ is odd, we have

$$\operatorname{pind}_{\xi}(x) \equiv \operatorname{pind}_{\xi}^{\perp}(x) \equiv 0 \in \mathbb{Z}/2.$$

Proof: The map $f: S \to \mathbb{R}P^{m-1}$ lifts through the standard double cover $S^{m-1} \to \mathbb{R}P^{m-1}$, and therefore $\operatorname{pind}_{\xi}(x) = \deg_2(f) \equiv_2 0$. Since σ and η represent the same mod 2 homology class, the result follows.

The proof

Theorem (Crowley-G.)

A line field ξ with singularities x_1,\ldots,x_n on a closed manifold M^m has

$$\sum_{i=1}^{n} \operatorname{p} \operatorname{ind}_{\xi}(x_i) = 2\chi(M).$$

The equality is congruence mod 2 when m is odd.

The proof

Theorem (Crowley-G.)

A line field ξ with singularities x_1,\ldots,x_n on a closed manifold M^m has

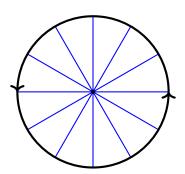
$$\sum_{i=1}^{n} \operatorname{p} \operatorname{ind}_{\xi}(x_i) = 2\chi(M).$$

The equality is congruence mod 2 when m is odd.

Proof: When $m \geq 3$ is odd, trivial consequence of $p \operatorname{ind}_{\varepsilon}(x_i) \equiv_2 0$.

Remark: The Markus index $\min_{\xi}(x_i) \in \mathbb{Z}$ is not well-defined for m odd, since the two lifts $\widetilde{f}: S \to S^{m-1}$ differ by a map of degree $(-1)^m = -1$.

One may define an index in \mathbb{N}_0 , but the hedgehog example suggests the above result is the best we can hope for.



So suppose m even, and let ξ be a line field on M^m with singularities $x_1,\dots,x_n.$

So suppose m even, and let ξ be a line field on M^m with singularities $x_1,\ldots,x_n.$

Let D_i be a coordinate disk containing x_i and no other singularities, and let $S_i = \partial D_i$. Then $N := M \setminus \bigcup \operatorname{int}(D_i)$ is a compact with boundary

$$\partial N \approx \bigsqcup_{i=1}^{n} S_i \approx \bigsqcup_{i=1}^{n} S^{m-1}.$$

So suppose m even, and let ξ be a line field on M^m with singularities $x_1,\ldots,x_n.$

Let D_i be a coordinate disk containing x_i and no other singularities, and let $S_i = \partial D_i$. Then $N := M \setminus \bigcup \operatorname{int}(D_i)$ is a compact with boundary

$$\partial N \approx \bigsqcup_{i=1}^{n} S_i \approx \bigsqcup_{i=1}^{n} S^{m-1}.$$

The restriction $\xi|_N$ is a line field with associated double cover $p:\widetilde{N}\to N.$

Each restriction $p|_{S_i}:\widetilde{S}_i\to S_i$ is a double cover of S^{m-1} , which is trivial if and only if x_i is orientable.

By gluing in m-disks along the boundary components of $\widetilde{N},$ we obtain a closed manifold \widetilde{M} and a double cover

$$\pi:\widetilde{M}\to M$$

 $\text{ extending } p: \widetilde{N} \to N.$

By gluing in m-disks along the boundary components of $\widetilde{N},$ we obtain a closed manifold \widetilde{M} and a double cover

$$\pi:\widetilde{M}\to M$$

extending $p:\widetilde{N}\to N$.

This double cover may be branched if m=2, with branch points of index 2 above the non-orientable singularities.

By gluing in m-disks along the boundary components of $\widetilde{N},$ we obtain a closed manifold \widetilde{M} and a double cover

$$\pi:\widetilde{M}\to M$$

extending $p:\widetilde{N}\to N$.

This double cover may be branched if m=2, with branch points of index 2 above the non-orientable singularities.

The line field $\xi|_N$ lifts canonically to a vector field $\widetilde{\xi}$ on \widetilde{N} , which extends to a vector field v on \widetilde{M} .

Each pre-image $\pi^{-1}(x_i)$ consists of one or two isolated zeroes of v.

Lemma

For each singularity x_i of ξ , we have

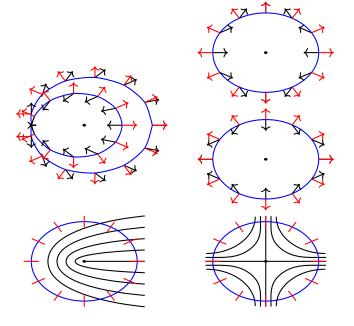
$$p \operatorname{ind}_{\xi}^{\perp}(x_i) = \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_{v}^{\perp}(y).$$

Lemma

For each singularity x_i of ξ , we have

$$p \operatorname{ind}_{\xi}^{\perp}(x_i) = \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_{v}^{\perp}(y).$$

Intuitively: the number of times ξ is normal to S equals the number of times v agrees with the outward normal on \widetilde{S} .



Proof of Lemma: The double cover $\pi:\widetilde{M}\to M$ induces a 4-fold cover $\overline{\pi}:ST\widetilde{M}|_{\widetilde{S}}\to PTM|_S$, and there is pullback square

$$\begin{array}{c|c} \widetilde{S} \sqcup \widetilde{S} \xrightarrow{\widetilde{\eta} \sqcup -\widetilde{\eta}} ST\widetilde{M}|_{\widetilde{S}} \\ \downarrow & & \overline{\pi} \\ S \xrightarrow{\eta} PTM|_{S} \end{array}$$

where $\widetilde{\eta}:\widetilde{S}\to ST\widetilde{M}|_{\widetilde{S}}$ denotes the outward unit normal to $\widetilde{S}.$

Proof of Lemma: The double cover $\pi:\widetilde{M}\to M$ induces a 4-fold cover $\overline{\pi}:ST\widetilde{M}|_{\widetilde{S}}\to PTM|_S$, and there is pullback square

$$\begin{array}{c|c} \widetilde{S} \sqcup \widetilde{S} \xrightarrow{\widetilde{\eta} \sqcup -\widetilde{\eta}} ST\widetilde{M}|_{\widetilde{S}} \\ \downarrow & & \overline{\pi} \\ S \xrightarrow{\eta} PTM|_{S} \end{array}$$

where $\widetilde{\eta}:\widetilde{S}\to ST\widetilde{M}|_{\widetilde{S}}$ denotes the outward unit normal to $\widetilde{S}.$

It follows that $\overline{\pi}^*\eta_!(1)=2\,\widetilde{\eta}_!(1)$.

$$4 \operatorname{p} \operatorname{ind}_{\xi}^{\perp}(x) = 4 \langle \eta_{!}(1) \cup \xi_{!}(1), [PTM|_{S}] \rangle$$

$$4 \operatorname{pind}_{\xi}^{\perp}(x) = 4 \langle \eta_{!}(1) \cup \xi_{!}(1), [PTM|_{S}] \rangle$$
$$= \langle \eta_{!}(1) \cup \xi_{!}(1), 4[PTM|_{S}] \rangle$$

$$4 \operatorname{pind}_{\xi}^{\perp}(x) = 4 \langle \eta_{!}(1) \cup \xi_{!}(1), [PTM|_{S}] \rangle$$
$$= \langle \eta_{!}(1) \cup \xi_{!}(1), 4[PTM|_{S}] \rangle$$
$$= \langle \eta_{!}(1) \cup \xi_{!}(1), \overline{\pi}_{*}[ST\widetilde{M}|_{\widetilde{S}}] \rangle$$

$$\begin{split} 4\operatorname{p}\operatorname{ind}_{\xi}^{\perp}(x) &= 4\left\langle \eta_{!}(1) \cup \xi_{!}(1), [PTM|_{S}]\right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), 4[PTM|_{S}]\right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), \overline{\pi}_{*}[ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \\ &= \left\langle \overline{\pi}^{*}\eta_{!}(1) \cup \overline{\pi}^{*}\xi_{!}(1), [ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \end{split}$$

$$\begin{split} 4\operatorname{p}\operatorname{ind}_{\xi}^{\perp}(x) &= 4\left\langle \eta_{!}(1) \cup \xi_{!}(1), [PTM|_{S}]\right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), 4[PTM|_{S}]\right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), \overline{\pi}_{*}[ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \\ &= \left\langle \overline{\pi}^{*}\eta_{!}(1) \cup \overline{\pi}^{*}\xi_{!}(1), [ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \\ &= \left\langle 2\widetilde{\eta}_{!}(1) \cup 2v_{!}(1), [ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \end{split}$$

$$\begin{split} 4\operatorname{p}\operatorname{ind}_{\xi}^{\perp}(x) &= 4\left\langle \eta_{!}(1) \cup \xi_{!}(1), [PTM|_{S}]\right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), 4[PTM|_{S}]\right\rangle \\ &= \left\langle \eta_{!}(1) \cup \xi_{!}(1), \overline{\pi}_{*}[ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \\ &= \left\langle \overline{\pi}^{*}\eta_{!}(1) \cup \overline{\pi}^{*}\xi_{!}(1), [ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \\ &= \left\langle 2\widetilde{\eta}_{!}(1) \cup 2v_{!}(1), [ST\widetilde{M}|_{\widetilde{S}}]\right\rangle \\ &= 4\sum_{y \in \pi^{-1}(x)} \operatorname{ind}_{v}^{\perp}(y), \end{split}$$

and the conclusion follows.

$$2\chi(M) = k + \chi(\widetilde{M}) = k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v(y)$$

$$2\chi(M) = k + \chi(\widetilde{M}) = k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v(y)$$
$$= k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \left(\operatorname{ind}_v^{\perp}(y) + 1 \right)$$

$$2\chi(M) = k + \chi(\widetilde{M}) = k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v(y)$$

$$= k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \left(\operatorname{ind}_v^{\perp}(y) + 1 \right)$$

$$= k + (2n - k) + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v^{\perp}(y)$$

$$2\chi(M) = k + \chi(\widetilde{M}) = k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v(y)$$

$$= k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \left(\operatorname{ind}_v^{\perp}(y) + 1 \right)$$

$$= k + (2n - k) + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v^{\perp}(y)$$

$$= 2n + \sum_{i=1}^{n} \operatorname{p} \operatorname{ind}_{\xi}^{\perp}(x_i)$$

$$2\chi(M) = k + \chi(\widetilde{M}) = k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v(y)$$

$$= k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \left(\operatorname{ind}_v^{\perp}(y) + 1 \right)$$

$$= k + (2n - k) + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v^{\perp}(y)$$

$$= 2n + \sum_{i=1}^{n} \operatorname{pind}_{\xi}(x_i)$$

$$= 2n + \sum_{i=1}^{n} \left(\operatorname{pind}_{\xi}(x_i) - 2 \right)$$

$$2\chi(M) = k + \chi(\widetilde{M}) = k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v(y)$$

$$= k + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \left(\operatorname{ind}_v^{\perp}(y) + 1 \right)$$

$$= k + (2n - k) + \sum_{i=1}^{n} \sum_{y \in \pi^{-1}(x_i)} \operatorname{ind}_v^{\perp}(y)$$

$$= 2n + \sum_{i=1}^{n} \operatorname{pind}_{\xi}(x_i)$$

$$= 2n + \sum_{i=1}^{n} \left(\operatorname{pind}_{\xi}(x_i) - 2 \right)$$

$$= \sum_{i=1}^{n} \operatorname{pind}_{\xi}(x_i).$$

Further problems

► Extend Hopf's differential-geometric proof to higher dimensions using the higher-dimensional Gauss-Bonnet Theorem (Allendoerfer-Weil, Chern).

Further problems

- ► Extend Hopf's differential-geometric proof to higher dimensions using the higher-dimensional Gauss-Bonnet Theorem (Allendoerfer-Weil, Chern).
- ightharpoonup A projective k-frame assigns k pairwise orthogonal lines in the tangent space at each point. Give complete obstructions to the existence of a projective k-frame on M.