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Line fields

Let M™ be a smooth manifold of dimension m > 2.

Definition

A line field on M is a smooth section £ : M — PT M of the projectivized
tangent bundle.

In other words, a line field is a smooth assignment
x> &(x) C TM,

of a one-dimensional subspace of the tangent space at each point.



Line fields

Line fields, or nematic fields, are of interest in soft-matter physics, where
they are used to model nematic liquid crystals.

(Images: https://en.wikipedia.org/wiki/Liquid_crystal)


https://en.wikipedia.org/wiki/Liquid_crystal

Line fields

A nowhere zero vector field v : M — T'M gives rise to a line field by
setting
&(x) = (v(x)) C TM,

to be the line spanned by v(x).



Line fields

A nowhere zero vector field v : M — T'M gives rise to a line field by

setting
&(x) = (v(x)) C TM,

to be the line spanned by v(x).

However, not every line field can be lifted to a nowhere zero vector field.



Proposition

A closed manifold M admits a line field if and only if it admits a nowhere
zero vector field.
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Proof: A line field £ on M may be viewed as a line sub-bundle £ C T'M.



Line fields

Proposition
A closed manifold M admits a line field if and only if it admits a nowhere
zero vector field.

Proof: A line field £ on M may be viewed as a line sub-bundle £ C T'M.

Fix a metric on M, then the sphere bundle
pg:M:zS({)—)M

is the associated double cover.



Line fields

Note that M has a canonical nowhere zero vector field which lifts ng.



Line fields

Note that M has a canonical nowhere zero vector field which lifts ng.

By the multiplicativity of the Euler characteristic for covers,

0 =x(M) =2x(M),

hence x(M) = 0 and M admits a nowhere zero vector field.



Line fields

Theorem (Poincaré-Hopf)

Let v: M — TM be a vector field with isolated zeroes at
T1,...,Tn € M. Then

n

> indy(2;) = x(M).

=1




Line fields

Theorem (Poincaré—Hopf)

Let v: M — TM be a vector field with isolated zeroes at
T1,...,Tn € M. Then

n

) indy (i) = x(M).

=1

The index ind,(z;) € Z is the degree of the composition

Fi8S STy~ § % §m1 T2, gm-1,
where:

> v|g is the restriction of (the normalization of) v to a small sphere S
centred at x;;

» & is a trivialisation, and

» 7o is projection onto the second factor.



Poincaré—Hopf Theorem for line fields

Poincaré—Hopf Theorem for line fields

Definition

A line field on M with singularities at z1,...,z, € M is a line field on the
complement M \ {z1,...,z,}.




Poincaré—Hopf Theorem for line fields

Poincaré—Hopf Theorem for line fields

Definition
A line field on M with singularities at z1,...,z, € M is a line field on the
complement M \ {z1,...,z,}.

A vector field with zeroes determines a line field with singularities, but a
line field with singularities need not lift to a vector field.
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Poincaré—Hopf Theorem for line fields

Definition
A line field on M with singularities at z1,...,z, € M is a line field on the
complement M \ {z1,...,z,}.

A vector field with zeroes determines a line field with singularities, but a
line field with singularities need not lift to a vector field.

What is the analogue of Poincaré—Hopf for line fields with singularities?

Question }




Poincaré—Hopf Theorem for line fields

The singularities are known as topological defects in the Physics literature.

Of particular interest are point defects in 2 and 3 dimensions, and line
defects or disclinations in 3 dimensions (which may be knotted).

(Images: http:
//www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html,
http://www.personal.kent.edu/~bisenyuk/liquidcrystals/texturesl.html)


http://www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html
http://www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html
http://www.personal.kent.edu/~bisenyuk/liquidcrystals/textures1.html

Poincaré—Hopf Theorem for line fields Hopf's result

Hopf's result

Theorem (Hopf)

A line field & with singularities z1,...,z, on a closed orientable surface X
has

> hinde(a) = x(2).
=1

The Hopf index hind¢(x;) € %Z is the number of total rotations made by
& as a simple closed curve around x; is traversed.

Reference: H. Hopf, Differential Geometry in the Large, LNM 1000, (1983)
(Based on lectures given at Stanford University in 1956).



(c) hindg(z) = -1 (d) hindg(z) = —1

Line field singularities and their Hopf indices.
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Markus’ result

Definition

A singularity x; of a line field £ on M™ is called (non)-orientable if the
restriction of £ to a small sphere S centred at z; lifts (does not lift) to a
vector field.

Equivalently, x; is (non)-orientable if the restriction to S of the associated
double cover p¢|s : S — S is (non)-trivial.
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Markus’ result

Definition
A singularity x; of a line field £ on M™ is called (non)-orientable if the

restriction of £ to a small sphere S centred at z; lifts (does not lift) to a
vector field.

Equivalently, z; is (non)-orientable if the restriction to .S of the associated
double cover p¢|s : S — S is (non)-trivial.

If m = 2, then x; is orientable if and only if hind¢(x;) € Z.

If m > 2, then all singularities are orientable.



Poincaré—Hopf Theorem for line fields Markus’ result

The Markus index mindg(z;) € Z is defined as follows:

For m even, it is the degree of the composition

£8Py —2s § x RPT T2 Pl



S NEENRTEMERTEE  Markus' result

The Markus index mindg(z;) € Z is defined as follows:

For m even, it is the degree of the composition

£8Py —2s § x RPT T2 Pl

For m > 3 odd, orienting & near z; gives a lift f: S — S™ ! of
f:S — RP™ ! Choose base points and suspend, and take the degree of
the composition

=f

S —— " ——RP™.



Poincaré—Hopf Theorem for line fields Markus’ result

Theorem (Markus)

A line field & with singularities x1, ..., x, on a closed manifold M™ has

Z mindg (z;) = 2x(M)—k,
i=1

where k is the number of non-orientable singularities.

Reference: L. Markus, Line element fields and Lorentz structures on
differentiable manifolds, Ann. Math. 62, (1955)



Poincaré—Hopf Theorem for line fields Markus’ result

Theorem (Markus)

A line field & with singularities x1, ..., x, on a closed manifold M™ has

Z mindg (z;) = 2x(M)—k,
i=1

where k is the number of non-orientable singularities.

Reference: L. Markus, Line element fields and Lorentz structures on
differentiable manifolds, Ann. Math. 62, (1955)

Unfortunately, there are counter-examples to Markus' Theorem for m = 2
and m > 3 odd.



Poincaré—Hopf Theorem for line fields EMVETIISNCE

Example: The baseball

There is a line field on S2, known colloquially as “the baseball”, with four
non-orientable singularities of Hopf index % and Markus index 1.

=

A




Poincaré—Hopf Theorem for line fields EMVETIISNCE

Example: The baseball

There is a line field on S2, known colloquially as “the baseball”, with four
non-orientable singularities of Hopf index % and Markus index 1.

This contradicts Markus' Theorem, since

Zmindg(xi) =4 4#0=2x(5% — 4.
i=1



Poincaré—Hopf Theorem for line fields Markus’ result

Example: The hedgehog

This is a line field on RP™ with a single orientable singularity of Hopf
index 1 and Markus index 2.




Poincaré—Hopf Theorem for line fields Markus’ result

Example: The hedgehog

This is a line field on RP™ with a single orientable singularity of Hopf
index 1 and Markus index 2.

For m > 3 odd this contradicts Markus' Theorem, since

Zmindg(xi) =2#0=2x(RP™).

=1



Poincaré—Hopf Theorem for line fields [EONIEEI

Our result

We define the projective index by

. N J deg(f) €Z if m even,
pmdf(“”)_{ deg,(f) €7Z/2 if m odd,

where f: §™~1 — RP™! is the composition

£8Py %> 8 x RPPT 2L RpmL,



Poincaré—Hopf Theorem for line fields [EEOIIEEEINI

Our result

Theorem (Crowley-G.)

A line field & with singularities z1,...,z, on a closed manifold M™ has

n

Zpindg(ﬂfz‘) = 2x(M).

i=1

The equality is congruence mod 2 when m is odd.




Poincaré—Hopf Theorem for line fields [EONIEEI

Remarks

This corrects Markus' Theorem, and extends Hopf's Theorem to
dimensions m > 2.

Our proof is similar to that of Markus, but we introduce normal indices to
clarify some issues when m = 2.

Similar statements were given by Koschorke for m > 2 (1974) and Janich
(1984). Our contribution is a careful proof valid in all dimensions.



Normal indices

Normal indices

Let = be an isolated zero of the vector field v : M — T'M. Recall that
ind, (z) is the degree of the composition

vls

Fi8-2% ST Mg —2> § x gm—L T2, gm—1



Normal indices

Normal indices

Let = be an isolated zero of the vector field v : M — T'M. Recall that
ind, (z) is the degree of the composition

Fi8S STy —2s 5 % §m1 T2 gme1,

If a € S™ ! is a regular value of f, then v|g is transverse to the
embedding 0 = 0, : S < STM]|s given by

o(y) =2 (y,a).



Normal indices

Normal indices
Let = be an isolated zero of the vector field v : M — T M. Recall that
ind, (z) is the degree of the composition

vls

f:S—>STM]5$SXSm71L>Sm71.

If a € S™ ! is a regular value of f, then v|g is transverse to the
embedding 0 = 0, : S < STM]|s given by

o(y) = 7\ (y, a).
Then ind,(z) equals the oriented intersection number

o(S) M v(S) € Z.



Normal indices

Suppose M endowed with a Riemannian metric. Then the outward unit
normal to S defines an embedding n: S — STM|s.

Definition

The normal index ind (z) € Z is defined to be the oriented intersection
number

n(S) mwv(S) € Z.

The normal index counts the number of times v points outwards on S
(with signs).



Normal indices

Lemma

We have
ind:-(z) = ind,(z) + (=1)™ L.

Proof: Calculate intersection numbers in

H,(Sx S™ Y~ H,(S)® H,(S™1).



Normal indices

Now let = be an isolated singularity of the line field £ : M — PT M.
Recall that pind, () is the degree of the composition
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Normal indices

Now let = be an isolated singularity of the line field £ : M — PT M.
Recall that pind, () is the degree of the composition

f: SiPTM\S 2?2 S xRpml 2L Rrpm-l,

If a € RP™ ! is a regular value of f, then £|g is transverse to the
embedding o = 0, : S < PTM|g given by

a(y) =&~ (y, a).
Then pind¢(z) equals the intersection number

. [ ao(S)mEs) ez if m even,
pindg(x) = { o(S) o £(S) € Z/2 if m odd.



Normal indices

The normal line to S defines an embedding 1 : S — PTM|sg.

Definition
The normal projective index is defined by

. [ n(S)MmeES) €Z if moeven,
pindg () = { n(S) the £(S) € Z/2 if m odd.

The normal projective index counts the number of times £ is normal to S
(with signs if m is even).



Normal indices

Lemma
When m is even, we have

p indé‘ (7) = pindg(x) — 2.

Proof: Calculate intersection numbers in

H.(S x RP™ ') = H,(S)® H, (RP™ ).



Normal indices

Lemma
When m > 3 is odd, we have

pindg(z) = pindé(w) =0€Z)/2

Proof: The map f: S — RP™ ! lifts through the standard double cover
M=t — RP™ !, and therefore pind,(z) = degy(f) =2 0. Since ¢ and 5
represent the same mod 2 homology class, the result follows. O



The proof

The proof

Theorem (Crowley—G.)

A line field & with singularities z1,...,x, on a closed manifold M has

> pindg(a) = 2x(M).
i=1

The equality is congruence mod 2 when m is odd.




The proof

Theorem (Crowley—G.)

A line field & with singularities z1,...,x, on a closed manifold M has

> pindg(a) = 2x(M).

i=1

The equality is congruence mod 2 when m is odd.

Proof: When m > 3 is odd, trivial consequence of pind,(z;) =2 0.



The proof

Remark: The Markus index mind¢(x;) € Z is not well-defined for m odd,
since the two lifts f : S — S™~! differ by a map of degree (—1)™ = —1.

One may define an index in Ny, but the hedgehog example suggests the
above result is the best we can hope for.
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So suppose m even, and let & be a line field on M™ with singularities
Tly-+eyLy.
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So suppose m even, and let & be a line field on M™ with singularities
Tly-+eyLy.

Let D; be a coordinate disk containing x; and no other singularities, and
let S; = 0D;. Then N := M \ |Jint(D;) is a compact with boundary

ON =~ |i|Si ~ |i|Sm_1.
i=1 i=1



The proof

So suppose m even, and let & be a line field on M™ with singularities
Tly-+eyLy.

Let D; be a coordinate disk containing x; and no other singularities, and
let S; = 0D;. Then N := M \ |Jint(D;) is a compact with boundary

ON =~ |i|5iz [lSm_l.

i=1 i=1

The restriction £|x is a line field with associated double cover p : N — N.

Each restriction plg, : 5’; — S, is a double cover of S™ 1, which is trivial if
and only if x; is orientable.



The proof

By gluing in m-disks along the boundary components of N, we obtain a
closed manifold M and a double cover

T M— M

extending p : N — N.
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This double cover may be branched if m = 2, with branch points of index
2 above the non-orientable singularities.



The proof

By gluing in m-disks along the boundary components of N, we obtain a
closed manifold M and a double cover

T M— M

extending p : N — N.

This double cover may be branched if m = 2, with branch points of index
2 above the non-orientable singularities.

The line field &|n lifts canonically to a vector field gon N, which extends
to a vector field v on M.

Each pre-image 7~ !(x;) consists of one or two isolated zeroes of v.



Lemma

For each singularity x; of &, we have

pindé‘(xi): Z ind (y).
yem—1(z;)




The proof

Lemma

For each singularity x; of &, we have

pindé‘(xi): Z ind (y).
yem—1(z;)

Intuitively: the number of times £ is normal to .S equals the number of
times v agrees with the outward normal on S.



;e



Proof ofNLemma: The double cover 7 : M — M induces a 4-fold cover
7 : STM|g — PTM]|s, and there is pullback square

SuS§ L 9|

L |

S—"' - PTM|g

where 7 : § — STM|§ denotes the outward unit normal to S.



Proof ofNLemma: The double cover 7 : M — M induces a 4-fold cover
7 : STM|g — PTM]|s, and there is pullback square

SuS§ L 9|

L |

S—"' - PTM|g

where 7 : § — STM|§ denotes the outward unit normal to S.

It follows that 7 m (1) = 2m(1).
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By a similar argument, 7 (1) = 2v(1). Therefore,

4pindg (z) = 4 (m(1) U&(1), [PTM]s])
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By a similar argument, 7 (1) = 2v(1). Therefore,

4pindg (z) = 4 (n(1) U&(L), [PTM|s])
= (m(1) V& (1), 4[PTM]|s])
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By a similar argument, 7 (1) = 2v(1). Therefore,

4pind§l(;c)
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m(1) U&(1),4[PTM|s])
m(1) UG (1), 7 [STM|g])

(
(



The proof

By a similar argument, 7 (1) = 2v(1). Therefore,

4pind§l(;c)

4(m(1) V&(1), [PTM]|s])
(m(1) U&(1), 4[PTM|s])
(

(m(1) U& (1), 7 [STM]5])
(T

m(1) UT*&(1), [STM|g])



The proof

By a similar argument, 7 (1) = 2v(1). Therefore,

4pind§l(;c)

4 (m(1) U &), [PTM|s))
m(1) U&(1),4[PTM|s))
m(1) U&(1), 7 STM|g])
m(1) UT&(1), [STM|g))
27(1) U 20,(1), [STM |g])

(
(
(m
(



The proof

By a similar argument, 7 (1) = 2v(1). Therefore,

4pindg (x) =4 (m(1) V&), [PTM|s))
= (m(1) U&(1), A[PTM|s])
= (m(1) U&(1), 7 [STM]3])
= (T (1) UT& (1), [STM|g))

= (273(1) U 2u(1), [STM]3])

=4 ) indy(y),

yer—1(z)

and the conclusion follows.
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The proof

We now apply Riemann—Hurwitz and the classical Poincaré—Hopf formula.

2x(M) =k + x(M —k—i-z Z ind, (

i=1 yer—1(x;)

=k+ Z > (indj(y) + 1)

i=1 yer—(z)

=k+(2n—k +Z Z 1ndL

i=1 yer—(a;)

n
=2n+ Z pindé(mi)
i=1

=2n+ Z (pindg(z;) — 2)

= Zpindg(azi). O
i=1
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Further problems

» Extend Hopf's differential-geometric proof to higher dimensions using
the higher-dimensional Gauss—Bonnet Theorem (Allendoerfer-Weil,
Chern).
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Further problems

» Extend Hopf's differential-geometric proof to higher dimensions using
the higher-dimensional Gauss—Bonnet Theorem (Allendoerfer-Weil,
Chern).

» A projective k-frame assigns k pairwise orthogonal lines in the
tangent space at each point. Give complete obstructions to the
existence of a projective k-frame on M.
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