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Line fields

Line fields

Let Mm be a smooth manifold of dimension m ≥ 2.

Definition

A line field on M is a smooth section ξ : M → PTM of the projectivized
tangent bundle.

In other words, a line field is a smooth assignment

x 7→ ξ(x) ⊂ TMx

of a one-dimensional subspace of the tangent space at each point.



Line fields

Line fields, or nematic fields, are of interest in soft-matter physics, where
they are used to model nematic liquid crystals.

(Images: https://en.wikipedia.org/wiki/Liquid_crystal)

https://en.wikipedia.org/wiki/Liquid_crystal


Line fields

A nowhere zero vector field v : M → TM gives rise to a line field by
setting

ξ(x) = 〈v(x)〉 ⊂ TMx

to be the line spanned by v(x).

However, not every line field can be lifted to a nowhere zero vector field.
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to be the line spanned by v(x).
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Line fields

Proposition

A closed manifold M admits a line field if and only if it admits a nowhere
zero vector field.

Proof: A line field ξ on M may be viewed as a line sub-bundle ξ ⊂ TM .

Fix a metric on M , then the sphere bundle

pξ : M̃ := S(ξ)→M

is the associated double cover.
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Line fields

Note that M̃ has a canonical nowhere zero vector field which lifts p∗ξξ.

By the multiplicativity of the Euler characteristic for covers,

0 = χ(M̃) = 2χ(M),

hence χ(M) = 0 and M admits a nowhere zero vector field.
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Line fields

Theorem (Poincaré–Hopf)

Let v : M → TM be a vector field with isolated zeroes at
x1, . . . , xn ∈M . Then

n∑
i=1

indv(xi) = χ(M).

The index indv(xi) ∈ Z is the degree of the composition

f : S
v|S // STM |S Φ // S × Sm−1 π2 // Sm−1,

where:

I v|S is the restriction of (the normalization of) v to a small sphere S
centred at xi;

I Φ is a trivialisation, and

I π2 is projection onto the second factor.
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Let v : M → TM be a vector field with isolated zeroes at
x1, . . . , xn ∈M . Then

n∑
i=1

indv(xi) = χ(M).

The index indv(xi) ∈ Z is the degree of the composition

f : S
v|S // STM |S Φ // S × Sm−1 π2 // Sm−1,

where:

I v|S is the restriction of (the normalization of) v to a small sphere S
centred at xi;

I Φ is a trivialisation, and

I π2 is projection onto the second factor.
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Poincaré–Hopf Theorem for line fields

Definition

A line field on M with singularities at x1, . . . , xn ∈M is a line field on the
complement M \ {x1, . . . , xn}.

A vector field with zeroes determines a line field with singularities, but a
line field with singularities need not lift to a vector field.

Question

What is the analogue of Poincaré–Hopf for line fields with singularities?
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Poincaré–Hopf Theorem for line fields

The singularities are known as topological defects in the Physics literature.

Of particular interest are point defects in 2 and 3 dimensions, and line
defects or disclinations in 3 dimensions (which may be knotted).

(Images: http:
//www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html,
http://www.personal.kent.edu/~bisenyuk/liquidcrystals/textures1.html)

http://www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html
http://www.lassp.cornell.edu/sethna/OrderParameters/TopologicalDefects.html
http://www.personal.kent.edu/~bisenyuk/liquidcrystals/textures1.html


Poincaré–Hopf Theorem for line fields Hopf’s result

Hopf’s result

Theorem (Hopf)

A line field ξ with singularities x1, . . . , xn on a closed orientable surface Σ
has

n∑
i=1

h indξ(xi) = χ(Σ).

The Hopf index h indξ(xi) ∈ 1
2Z is the number of total rotations made by

ξ as a simple closed curve around xi is traversed.

Reference: H. Hopf, Differential Geometry in the Large, LNM 1000, (1983)
(Based on lectures given at Stanford University in 1956).



Poincaré–Hopf Theorem for line fields Hopf’s result

(a) h indξ(x) = 1 (b) h indξ(x) = 1
2

(c) h indξ(x) = −1
2

(d) h indξ(x) = −1

Line field singularities and their Hopf indices.



Poincaré–Hopf Theorem for line fields Markus’ result

Markus’ result

Definition

A singularity xi of a line field ξ on Mm is called (non)-orientable if the
restriction of ξ to a small sphere S centred at xi lifts (does not lift) to a
vector field.

Equivalently, xi is (non)-orientable if the restriction to S of the associated
double cover pξ|S : S̃ → S is (non)-trivial.

If m = 2, then xi is orientable if and only if h indξ(xi) ∈ Z.

If m > 2, then all singularities are orientable.
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Poincaré–Hopf Theorem for line fields Markus’ result

The Markus index m indξ(xi) ∈ Z is defined as follows:

For m even, it is the degree of the composition

f : S
ξ|S // PTM |S Φ // S × RPm−1 π2 // RPm−1.

For m ≥ 3 odd, orienting ξ near xi gives a lift f̃ : S → Sm−1 of
f : S → RPm−1. Choose base points and suspend, and take the degree of
the composition

Sm
Σf̃ // Sm // RPm.
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Poincaré–Hopf Theorem for line fields Markus’ result

Theorem (Markus)

A line field ξ with singularities x1, . . . , xn on a closed manifold Mm has

n∑
i=1

m indξ(xi) = 2χ(M)−k,

where k is the number of non-orientable singularities.

Reference: L. Markus, Line element fields and Lorentz structures on
differentiable manifolds, Ann. Math. 62, (1955)

Unfortunately, there are counter-examples to Markus’ Theorem for m = 2
and m ≥ 3 odd.
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Poincaré–Hopf Theorem for line fields Markus’ result

Example: The baseball

There is a line field on S2, known colloquially as “the baseball”, with four
non-orientable singularities of Hopf index 1

2 and Markus index 1.

This contradicts Markus’ Theorem, since

n∑
i=1

m indξ(xi) = 4 6= 0 = 2χ(S2)− 4.
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Poincaré–Hopf Theorem for line fields Markus’ result

Example: The hedgehog

This is a line field on RPm with a single orientable singularity of Hopf
index 1 and Markus index 2.

For m ≥ 3 odd this contradicts Markus’ Theorem, since

n∑
i=1

m indξ(xi) = 2 6= 0 = 2χ(RPm).
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Our result

We define the projective index by

p indξ(xi) =

{
deg(f) ∈ Z if m even,
deg2(f) ∈ Z/2 if m odd,

where f : Sm−1 → RPm−1 is the composition

f : S
ξ|S // PTM |S Φ // S × RPm−1 π2 // RPm−1.



Poincaré–Hopf Theorem for line fields Our result

Our result

Theorem (Crowley–G.)

A line field ξ with singularities x1, . . . , xn on a closed manifold Mm has

n∑
i=1

p indξ(xi) = 2χ(M).

The equality is congruence mod 2 when m is odd.



Poincaré–Hopf Theorem for line fields Our result

Remarks

This corrects Markus’ Theorem, and extends Hopf’s Theorem to
dimensions m > 2.

Our proof is similar to that of Markus, but we introduce normal indices to
clarify some issues when m = 2.

Similar statements were given by Koschorke for m > 2 (1974) and Jänich
(1984). Our contribution is a careful proof valid in all dimensions.
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Normal indices

Let x be an isolated zero of the vector field v : M → TM . Recall that
indv(x) is the degree of the composition

f : S
v|S // STM |S Φ // S × Sm−1 π2 // Sm−1.

If a ∈ Sm−1 is a regular value of f , then v|S is transverse to the
embedding σ = σa : S ↪→ STM |S given by

σ(y) = Φ−1(y, a).

Then indv(x) equals the oriented intersection number

σ(S) t v(S) ∈ Z.
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Normal indices

Suppose M endowed with a Riemannian metric. Then the outward unit
normal to S defines an embedding η : S ↪→ STM |S .

Definition

The normal index ind⊥v (x) ∈ Z is defined to be the oriented intersection
number

η(S) t v(S) ∈ Z.

The normal index counts the number of times v points outwards on S
(with signs).



Normal indices

Lemma

We have
ind⊥v (x) = indv(x) + (−1)m−1.

Proof: Calculate intersection numbers in

H∗(S × Sm−1) ∼= H∗(S)⊗H∗(Sm−1).



Normal indices

Now let x be an isolated singularity of the line field ξ : M → PTM .
Recall that p indξ(x) is the degree of the composition
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Normal indices

The normal line to S defines an embedding η : S ↪→ PTM |S .

Definition

The normal projective index is defined by

p ind⊥ξ (x) =

{
η(S) t ξ(S) ∈ Z if m even,
η(S) t2 ξ(S) ∈ Z/2 if m odd.

The normal projective index counts the number of times ξ is normal to S
(with signs if m is even).



Normal indices

Lemma

When m is even, we have

p ind⊥ξ (x) = p indξ(x)− 2.

Proof: Calculate intersection numbers in

H∗(S × RPm−1) ∼= H∗(S)⊗H∗(RPm−1).



Normal indices

Lemma

When m ≥ 3 is odd, we have

p indξ(x) ≡ p ind⊥ξ (x) ≡ 0 ∈ Z/2.

Proof: The map f : S → RPm−1 lifts through the standard double cover
Sm−1 → RPm−1, and therefore p indξ(x) = deg2(f) ≡2 0. Since σ and η
represent the same mod 2 homology class, the result follows.



The proof

The proof

Theorem (Crowley–G.)

A line field ξ with singularities x1, . . . , xn on a closed manifold Mm has

n∑
i=1

p indξ(xi) = 2χ(M).

The equality is congruence mod 2 when m is odd.

Proof: When m ≥ 3 is odd, trivial consequence of p indξ(xi) ≡2 0.
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The proof

Remark: The Markus index m indξ(xi) ∈ Z is not well-defined for m odd,

since the two lifts f̃ : S → Sm−1 differ by a map of degree (−1)m = −1.

One may define an index in N0, but the hedgehog example suggests the
above result is the best we can hope for.



The proof

So suppose m even, and let ξ be a line field on Mm with singularities
x1, . . . , xn.

Let Di be a coordinate disk containing xi and no other singularities, and
let Si = ∂Di. Then N := M \

⋃
int(Di) is a compact with boundary

∂N ≈
n⊔
i=1

Si ≈
n⊔
i=1

Sm−1.

The restriction ξ|N is a line field with associated double cover p : Ñ → N .

Each restriction p|Si : S̃i → Si is a double cover of Sm−1, which is trivial if
and only if xi is orientable.
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Each restriction p|Si : S̃i → Si is a double cover of Sm−1, which is trivial if
and only if xi is orientable.



The proof

So suppose m even, and let ξ be a line field on Mm with singularities
x1, . . . , xn.

Let Di be a coordinate disk containing xi and no other singularities, and
let Si = ∂Di. Then N := M \

⋃
int(Di) is a compact with boundary

∂N ≈
n⊔
i=1

Si ≈
n⊔
i=1

Sm−1.

The restriction ξ|N is a line field with associated double cover p : Ñ → N .
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The proof

By gluing in m-disks along the boundary components of Ñ , we obtain a
closed manifold M̃ and a double cover

π : M̃ →M

extending p : Ñ → N .

This double cover may be branched if m = 2, with branch points of index
2 above the non-orientable singularities.

The line field ξ|N lifts canonically to a vector field ξ̃ on Ñ , which extends

to a vector field v on M̃ .

Each pre-image π−1(xi) consists of one or two isolated zeroes of v.
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The proof

Lemma

For each singularity xi of ξ, we have

p ind⊥ξ (xi) =
∑

y∈π−1(xi)

ind⊥v (y).

Intuitively: the number of times ξ is normal to S equals the number of
times v agrees with the outward normal on S̃.
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The proof

Proof of Lemma: The double cover π : M̃ →M induces a 4-fold cover
π : STM̃ |

S̃
→ PTM |S , and there is pullback square

S̃ t S̃ η̃t−η̃ //

ptp
��

STM̃ |
S̃

π

��
S

η // PTM |S

where η̃ : S̃ → STM̃ |
S̃

denotes the outward unit normal to S̃.

It follows that π∗η!(1) = 2 η̃!(1).
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The proof

By a similar argument, π∗ξ!(1) = 2 v!(1). Therefore,

4 p ind⊥ξ (x) = 4 〈η!(1) ∪ ξ!(1), [PTM |S ]〉

= 〈η!(1) ∪ ξ!(1), 4[PTM |S ]〉

= 〈η!(1) ∪ ξ!(1), π∗[STM̃ |S̃ ]〉

= 〈π∗η!(1) ∪ π∗ξ!(1), [STM̃ |
S̃

]〉

= 〈2η̃!(1) ∪ 2v!(1), [STM̃ |
S̃

]〉

= 4
∑

y∈π−1(x)

ind⊥v (y),

and the conclusion follows.
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The proof

We now apply Riemann–Hurwitz and the classical Poincaré–Hopf formula.

2χ(M) = k + χ(M̃) = k +
n∑
i=1

∑
y∈π−1(xi)

indv(y)

= k +
n∑
i=1

∑
y∈π−1(xi)

(
ind⊥v (y) + 1

)

= k + (2n− k) +
n∑
i=1

∑
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Further problems

Further problems

I Extend Hopf’s differential-geometric proof to higher dimensions using
the higher-dimensional Gauss–Bonnet Theorem (Allendoerfer–Weil,
Chern).

I A projective k-frame assigns k pairwise orthogonal lines in the
tangent space at each point. Give complete obstructions to the
existence of a projective k-frame on M .
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