Self-intersections of immersions and Steenrod operations

Mark Grant (joint with Peter Eccles)

mark.grant@durham.ac.uk

Edinburgh Topology seminar - p. 1

■ A proper immersion $f: M \hookrightarrow X$ represents a cohomology class of X (which cohomology theory depends on the structure of normal bundle)

- A proper immersion $f: M \hookrightarrow X$ represents a cohomology class of X (which cohomology theory depends on the structure of normal bundle)
- If f is self-transverse its r-fold self-intersection points are the image of an immersion $\psi_r(f): \Delta_r(f) \hookrightarrow X$ (Whitney, Lashof, Smale, Koschorke, Sanderson,...)

- A proper immersion $f: M \hookrightarrow X$ represents a cohomology class of X (which cohomology theory depends on the structure of normal bundle)
- If f is self-transverse its r-fold self-intersection points are the image of an immersion $\psi_r(f) \colon \Delta_r(f) \hookrightarrow X$ (Whitney, Lashof, Smale, Koschorke, Sanderson,...)
- Steenrod operations in generalised cohomology theories (Steenrod, Atiyah, tom Dieck,...)

- A proper immersion $f: M \hookrightarrow X$ represents a cohomology class of X (which cohomology theory depends on the structure of normal bundle)
- If *f* is self-transverse its *r*-fold self-intersection points are the image of an immersion $\psi_r(f)$: $\Delta_r(f) ↔ X$ (Whitney, Lashof, Smale, Koschorke, Sanderson,...)
- Steenrod operations in generalised cohomology theories (Steenrod, Atiyah, tom Dieck,...)
- Problem Can we find a formula relating these two types of operation?

If *f* has no *r*-fold self-intersections, then $\psi_r(f)$ represents the zero class

- If *f* has no *r*-fold self-intersections, then $\psi_r(f)$ represents the zero class
- So we may exploit our formula to find obstructions to a given cohomology class containing an embedding (immersion without double points)/immersion without triple points/...

- If *f* has no *r*-fold self-intersections, then $\psi_r(f)$ represents the zero class
- So we may exploit our formula to find obstructions to a given cohomology class containing an embedding (immersion without double points)/immersion without triple points/...
- Regularly homotopic immersions represent the same cohomology class, so we may find cohomological obstructions to an immersion being regularly homotopic to an embedding

Immersions

■ Immersions are smooth maps $f: M^{n-k} \hookrightarrow X^n$ with $df_x: TM_x \to TX_{f(x)}$ injective for each $x \in M$ (integer $k \ge 0$ is called the *codimension* of f)

Immersions

- Immersions are smooth maps $f: M^{n-k} ⊕ X^n$ with $df_x: TM_x → TX_{f(x)}$ injective for each x ∈ M (integer k ≥ 0 is called the *codimension* of f)
- The normal bundle of $f: M^{n-k} \hookrightarrow X^n$ is k-dimensional bundle ν_f over M defined by $\nu_f \oplus TM = f^*TX$ (uses a metric on X)

Immersions

- Immersions are smooth maps $f: M^{n-k} \hookrightarrow X^n$ with $df_x: TM_x \to TX_{f(x)}$ injective for each $x \in M$ (integer $k \ge 0$ is called the *codimension* of f)
- The normal bundle of $f: M^{n-k} \hookrightarrow X^n$ is k-dimensional bundle ν_f over M defined by $\nu_f \oplus TM = f^*TX$ (uses a metric on X)
- Let E^{*} be a generalised cohomology theory. We say
 f: M ↔ X is E^{*}-oriented if ν_f has a preferred Thom
 class t ∈ E^k(Tν_f), giving a Thom isomorphism
 E^{*}(M) ≅ E^{*+k}(Tν_f)

Let $f: M^{n-k} \hookrightarrow X^n$ be a proper immersion oriented with respect to some generalised cohomology theory E*. Then frepresents a class $[f] \in E^k(X)$ as follows:

Let $f: M^{n-k} \hookrightarrow X^n$ be a proper immersion oriented with respect to some generalised cohomology theory E*. Then frepresents a class $[f] \in E^k(X)$ as follows:

● Choose an embedding $f': M \hookrightarrow \mathbb{R}^{\ell}$, ℓ large

Let $f: M^{n-k} \hookrightarrow X^n$ be a proper immersion oriented with respect to some generalised cohomology theory E*. Then frepresents a class $[f] \in E^k(X)$ as follows:

- Choose an embedding $f' \colon M \hookrightarrow \mathbb{R}^{\ell}$, ℓ large
- $g = (f, f'): M \hookrightarrow X \times \mathbb{R}^{\ell}$ regularly homotopic to $(f, 0): M \hookrightarrow X \times \{0\} \hookrightarrow X \times \mathbb{R}^{\ell}$, so $\nu_g \cong \nu_f \oplus \varepsilon^{\ell}$ and $T\nu_g \simeq \Sigma^{\ell} T\nu_f$

Let $f: M^{n-k} \hookrightarrow X^n$ be a proper immersion oriented with respect to some generalised cohomology theory E*. Then frepresents a class $[f] \in E^k(X)$ as follows:

• Choose an embedding $f' \colon M \hookrightarrow \mathbb{R}^{\ell}$, ℓ large

• $g = (f, f'): M \hookrightarrow X \times \mathbb{R}^{\ell}$ regularly homotopic to $(f, 0): M \hookrightarrow X \times \{0\} \hookrightarrow X \times \mathbb{R}^{\ell}$, so $\nu_g \cong \nu_f \oplus \varepsilon^{\ell}$ and $T\nu_g \simeq \Sigma^{\ell} T\nu_f$

• $[f] \in E^k(X)$ is image of $1 \in E^0(M)$ under

 $\mathsf{E}^{0}(M) \cong \tilde{\mathsf{E}}^{k}(T\nu_{f}) \cong \tilde{\mathsf{E}}^{k+\ell}(\Sigma^{\ell}T\nu_{f}) \cong$ $\tilde{\mathsf{E}}^{k+\ell}(T\nu_{g}) \to \tilde{\mathsf{E}}^{k+\ell}((X \times \mathbb{R}^{\ell})_{+}) \cong \tilde{\mathsf{E}}^{k+\ell}(\Sigma^{\ell}X_{+}) \cong \mathsf{E}^{k}(X)$

•
 f: M ↔ X is self-transverse if whenever $x_1, \ldots, x_n \in M$ are distinct points mapping to $y \in X$, the $df_{x_i}TM_{x_i}$ are in
 general position in TX_y

- f: M ↔ X is self-transverse if whenever $x_1, \ldots, x_n \in M$ are distinct points mapping to $y \in X$, the $df_{x_i}TM_{x_i}$ are in
 general position in TX_y
- A self-transverse immersion f has r-fold multiple point manifolds

$$\overline{\Delta}_r(f) = \{ (x_1, \dots, x_r) \in M^{(r)} \mid x_i \text{ distinct, } f(x_i) = f(x_j) \}$$
$$\Delta_r(f) = \overline{\Delta}_r(f) / S_r, \quad S_r \text{ symmetric group}$$

- f: M ↔ X is self-transverse if whenever $x_1, \ldots, x_n \in M$ are distinct points mapping to $y \in X$, the $df_{x_i}TM_{x_i}$ are in
 general position in TX_y
- A self-transverse immersion f has r-fold multiple point manifolds

$$\overline{\Delta}_r(f) = \{ (x_1, \dots, x_r) \in M^{(r)} \mid x_i \text{ distinct, } f(x_i) = f(x_j) \}$$

 $\Delta_r(f) = \overline{\Delta}_r(f) / S_r, \quad S_r \text{ symmetric group}$

• f induces r-fold self-intersection immersions

 $\overline{\psi}_r(f) \colon \overline{\Delta}_r(f) \hookrightarrow X, \quad \psi_r(f) \colon \Delta_r(f) \hookrightarrow X,$ $(x_1, \dots, x_r) \mapsto f(x_1), \quad [x_1, \dots, x_r] \mapsto f(x_1)$

• If $f: M^{n-k} \hookrightarrow X^n$ has codimension k then $\overline{\psi}_r(f)$ and $\psi_r(f)$ have codimension rk

- If $f: M^{n-k} \hookrightarrow X^n$ has codimension k then $\overline{\psi}_r(f)$ and $\psi_r(f)$ have codimension rk
- The normal fibre of $\psi_r(f)$ at $[x_1, \ldots, x_r]$ is the unordered direct sum of the normal fibres of f at x_1, \ldots, x_r

- If $f: M^{n-k} \hookrightarrow X^n$ has codimension k then $\overline{\psi}_r(f)$ and $\psi_r(f)$ have codimension rk
- The normal fibre of $\psi_r(f)$ at $[x_1, \ldots, x_r]$ is the unordered direct sum of the normal fibres of f at x_1, \ldots, x_r
- If f is E*-oriented, then $\psi_r(f)$ may be E*-oriented (related to existence of Steenrod operations in E*).

However this does *not* give a well-defined cohomology operation $[f] \mapsto [\psi_r(f)]$

Let $\Gamma = O, U, Sp, SO, SU$ be one of the classical stable Lie groups, $M\Gamma$ its Thom spectrum, $M\Gamma^*$ the associated cobordism cohomology theory

Let $\Gamma = O, U, Sp, SO, SU$ be one of the classical stable Lie groups, $M\Gamma$ its Thom spectrum, $M\Gamma^*$ the associated cobordism cohomology theory

• A map $f: M \to X$ of manifolds is Γ -orientable if it admits a factorisation

$$f: M \xrightarrow{i} E \xrightarrow{p} X,$$

where $p: E \to X$ is a smooth vector bundle, $i: M \hookrightarrow E$ an embedding and ν_i is $M\Gamma^*$ -orientable

Let $\Gamma = O, U, Sp, SO, SU$ be one of the classical stable Lie groups, $M\Gamma$ its Thom spectrum, $M\Gamma^*$ the associated cobordism cohomology theory

• A map $f: M \to X$ of manifolds is Γ -orientable if it admits a factorisation

$$f: M \xrightarrow{i} E \xrightarrow{p} X,$$

where $p: E \to X$ is a smooth vector bundle, $i: M \hookrightarrow E$ an embedding and ν_i is $M\Gamma^*$ -orientable

• A Γ -map is a map of manifolds $f: M \to X$ together with an equivalence class of Γ -orientations of f

Examples The identity $id: X \to X$ is trivially a Γ -map. A Γ -orientation of the map $f: M \to {pt}$ is a Γ -orientation of M

- **Examples** The identity $id: X \to X$ is trivially a Γ -map. A Γ -orientation of the map $f: M \to {pt}$ is a Γ -orientation of M
- $f: M \hookrightarrow X$ is $M\Gamma^*$ -oriented $\implies f: M \to X$ is Γ -oriented, since $g = (f, f'): M \hookrightarrow X \times \mathbb{R}^{\ell}$ has a canonical Thom class $\Sigma^{\ell}t$, where $t \in M\Gamma^k(T\nu_f)$ is Thom class of ν_f . Converse is false.

- **Examples** The identity $id: X \to X$ is trivially a Γ -map. A Γ -orientation of the map $f: M \to {pt}$ is a Γ -orientation of M
- $f: M \hookrightarrow X$ is $M\Gamma^*$ -oriented $\implies f: M \to X$ is Γ -oriented, since $g = (f, f'): M \hookrightarrow X \times \mathbb{R}^{\ell}$ has a canonical Thom class $\Sigma^{\ell}t$, where $t \in M\Gamma^k(T\nu_f)$ is Thom class of ν_f . Converse is false.
- Proposition(Quillen, after Thom-Pontrjagin) If X is a manifold, one may put a *cobordism* relation ~ on the set of proper Γ-maps to X of codimension k such that

$$M\Gamma^k(X) \cong \{ \text{proper } \Gamma \text{-maps } f \colon M^{n-k} \to X^n \} / (\sim)$$

The structure of the Γ -cobordism ring may be interpreted in terms of proper Γ -maps as follows

The structure of the Γ -cobordism ring may be interpreted in terms of proper Γ -maps as follows

Addition given by disjoint union:

 $[f_1: M_1 \to X] + [f_2: M_2 \to X] = [f_1 \sqcup f_2: M_1 \sqcup M_2 \to X]$

The structure of the Γ -cobordism ring may be interpreted in terms of proper Γ -maps as follows

Addition given by disjoint union:

 $[f_1: M_1 \to X] + [f_2: M_2 \to X] = [f_1 \sqcup f_2: M_1 \sqcup M_2 \to X]$

• Contravariance Homotopy class $[g: Y \to X]$ induces $g^*: M\Gamma^*(X) \to M\Gamma^*(Y)$ by pullback along transverse representative

The structure of the Γ -cobordism ring may be interpreted in terms of proper Γ -maps as follows

Addition given by disjoint union:

 $[f_1: M_1 \to X] + [f_2: M_2 \to X] = [f_1 \sqcup f_2: M_1 \sqcup M_2 \to X]$

• Contravariance Homotopy class $[g: Y \to X]$ induces $g^*: M\Gamma^*(X) \to M\Gamma^*(Y)$ by pullback along transverse representative

• Covariance Proper Γ -map $h: X^n \to Z^{n+m}$ induces $h_*: M\Gamma^*(X) \to M\Gamma^{*+m}(Z)$ by $[f] \mapsto [h \circ f]$. (Note that $[f] = f_*(1)$, where $1 = [\mathrm{id}: M \to M] \in M\Gamma^0(M)$)

Exterior Product given by Cartesian product:

 $[f\colon M\to X]\times [g\colon N\to Y] = [f\times g\colon M\times N\to X\times Y]$

Exterior Product given by Cartesian product:

 $[f\colon M\to X]\times [g\colon N\to Y] = [f\times g\colon M\times N\to X\times Y]$

Interior Product given by

 $[f_1\colon M_1 \to X] \cup [f_2\colon M_2 \to X] = \triangle^*([f_1] \times [f_2])$

where $\triangle \colon X \to X \times X$ is diagonal $x \mapsto (x, x)$

Exterior Product given by Cartesian product:

 $[f\colon M\to X]\times [g\colon N\to Y] = [f\times g\colon M\times N\to X\times Y]$

Interior Product given by

 $[f_1: M_1 \to X] \cup [f_2: M_2 \to X] = \triangle^*([f_1] \times [f_2])$

where $\triangle : X \to X \times X$ is diagonal $x \mapsto (x, x)$

 Poincaré-Atiyah duality If X^n is a closed Γ-manifold, then $MΓ^k(X) \cong MΓ_{n-k}(X)$

Exterior Product given by Cartesian product:

 $[f\colon M\to X]\times [g\colon N\to Y] = [f\times g\colon M\times N\to X\times Y]$

Interior Product given by

 $[f_1: M_1 \to X] \cup [f_2: M_2 \to X] = \triangle^*([f_1] \times [f_2])$

where $\triangle : X \to X \times X$ is diagonal $x \mapsto (x, x)$

- Poincaré-Atiyah duality If Xⁿ is a closed Γ-manifold, then $MΓ^k(X) \cong MΓ_{n-k}(X)$
- Euler class of a *k*-dimensional $M\Gamma^*$ -oriented vector bundle is $e(\xi) = i^*[i] \in M\Gamma^k(X)$, where $i: X \to E$ is zero section

Cohomology operations derived from commutativity of the product in a multiplicative cohomology theory. Discovered in ordinary cohomology by Steenrod (1947), in *K*-theory by Atiyah (1966), and in cobordism by tom Dieck (1968)

Cohomology operations derived from commutativity of the product in a multiplicative cohomology theory. Discovered in ordinary cohomology by Steenrod (1947), in *K*-theory by Atiyah (1966), and in cobordism by tom Dieck (1968)

We will only discuss Steenrod operations at the prime p=2

Cohomology operations derived from commutativity of the product in a multiplicative cohomology theory. Discovered in ordinary cohomology by Steenrod (1947), in *K*-theory by Atiyah (1966), and in cobordism by tom Dieck (1968)

- We will only discuss Steenrod operations at the prime p=2
- Notation Let Y be a \mathbb{Z}_2 -space, S^ℓ sphere with antipodal involution, and define

$$S^{\ell}(Y) := S^{\ell} \times_{\mathbb{Z}_2} Y, \quad S(Y) := S^{\infty} \times_{\mathbb{Z}_2} Y = \bigcup_{\ell} S^{\ell}(Y)$$

Cohomology operations derived from commutativity of the product in a multiplicative cohomology theory. Discovered in ordinary cohomology by Steenrod (1947), in *K*-theory by Atiyah (1966), and in cobordism by tom Dieck (1968)

- We will only discuss Steenrod operations at the prime p=2
- Notation Let Y be a \mathbb{Z}_2 -space, S^ℓ sphere with antipodal involution, and define

$$S^{\ell}(Y) := S^{\ell} \times_{\mathbb{Z}_2} Y, \quad S(Y) := S^{\infty} \times_{\mathbb{Z}_2} Y = \bigcup_{\ell} S^{\ell}(Y)$$

• **Examples** $S^{\ell}(X \times X)$, where $X \times X$ has a natural involution T(x, y) = (y, x). If Y is trivial \mathbb{Z}_2 -space, $S^{\ell}(Y) = P^{\ell} \times Y$

Let E^* be a multiplicative cohomology theory, d a positive integer.

Let E^* be a multiplicative cohomology theory, d a positive integer.

Definition An *external Steenrod operation* of type (\mathbb{Z}_2, d) in E^{*} is a series of natural transformations

$$R = R^{dk} \colon \mathsf{E}^{dk}(X) \to \mathsf{E}^{2dk}\big(S(X \times X)\big), \quad k \in \mathbb{Z}$$

satisfying $i^*R(x) = x \times x$, where $i: X \times X \to S(X \times X)$ induced by inclusion of a point in S^{∞}

Let E^* be a multiplicative cohomology theory, d a positive integer.

Definition An *external Steenrod operation* of type (\mathbb{Z}_2, d) in E^{*} is a series of natural transformations

$$R = R^{dk} \colon \mathsf{E}^{dk}(X) \to \mathsf{E}^{2dk}\big(S(X \times X)\big), \quad k \in \mathbb{Z}$$

satisfying $i^*R(x) = x \times x$, where $i: X \times X \to S(X \times X)$ induced by inclusion of a point in S^{∞}

• **Definition** Composing with the map induced by the extended diagonal $\triangle_2 : P^{\infty} \times X \hookrightarrow S(X \times X)$, $([v], x) \mapsto [v, x, x]$ gives a Steenrod operation

$$\mathscr{R} = \mathscr{R}^{dk} \colon \mathsf{E}^{dk}(X) \to \mathsf{E}^{2dk}(P^{\infty} \times X), \quad k \in \mathbb{Z}$$

Example Steenrod's original operation (of type $(\mathbb{Z}_2, 1)$)

$$R\colon H^k(X;\mathbb{Z}_2)\to H^{2k}(S(X\times X);\mathbb{Z}_2)$$

 $\mathscr{R}: H^k(X;\mathbb{Z}_2) \to H^{2k}(P^\infty \times X;\mathbb{Z}_2)$

Example Steenrod's original operation (of type $(\mathbb{Z}_2, 1)$)

$$R\colon H^k(X;\mathbb{Z}_2)\to H^{2k}(S(X\times X);\mathbb{Z}_2)$$

$$\mathscr{R}: H^k(X;\mathbb{Z}_2) \to H^{2k}(P^\infty \times X;\mathbb{Z}_2)$$

• Since $H^*(P^{\infty} \times X; \mathbb{Z}_2) \cong \mathbb{Z}_2[\mu] \otimes H^*(X; \mathbb{Z}_2)$, can define internal operations $\operatorname{Sq}^i \colon H^k(X; \mathbb{Z}_2) \to H^{k+i}(X; \mathbb{Z}_2)$ by

$$\mathscr{R}(\alpha) = \sum_{i=0}^{\infty} \mu^{k-i} \otimes \operatorname{Sq}^{i}(\alpha), \quad \alpha \in H^{k}(X; \mathbb{Z}_{2})$$

Proposition(tom Dieck) For $\Gamma = O, U, Sp, SO, SU$ there is a Steenrod operation \mathscr{R} of type (\mathbb{Z}_2, d) in $M\Gamma^*$, where d = 1, 2, 4, 2, 4.

Proposition(tom Dieck) For $\Gamma = O, U, Sp, SO, SU$ there is a Steenrod operation \mathscr{R} of type (\mathbb{Z}_2, d) in $M\Gamma^*$, where d = 1, 2, 4, 2, 4.

We interpret these Steenrod-tom Dieck operations geometrically in terms of proper Γ-maps

Proposition(tom Dieck) For $\Gamma = O, U, Sp, SO, SU$ there is a Steenrod operation \mathscr{R} of type (\mathbb{Z}_2, d) in $M\Gamma^*$, where d = 1, 2, 4, 2, 4.

- We interpret these Steenrod-tom Dieck operations geometrically in terms of proper Γ-maps
- Let $f: M^{n-dk} \to X^n$ be a proper Γ -map of codimension dk, and consider the proper codimension 2dk map

$$S^{\ell}(f \times f) = 1 \times_{\mathbb{Z}_2} (f \times f) \colon S^{\ell}(M \times M) \to S^{\ell}(X \times X)$$

Proposition(tom Dieck) For $\Gamma = O, U, Sp, SO, SU$ there is a Steenrod operation \mathscr{R} of type (\mathbb{Z}_2, d) in $M\Gamma^*$, where d = 1, 2, 4, 2, 4.

- We interpret these Steenrod-tom Dieck operations geometrically in terms of proper Γ-maps
- Let $f: M^{n-dk} \to X^n$ be a proper Γ -map of codimension dk, and consider the proper codimension 2dk map

$$S^{\ell}(f \times f) = 1 \times_{\mathbb{Z}_2} (f \times f) \colon S^{\ell}(M \times M) \to S^{\ell}(X \times X)$$

• $S^{\ell}(f \times f)$ has a canonical Γ -orientation coming from Γ -orientation of f and $M\Gamma^*$ -orientation of extended power bundles $S(\Gamma(d*) \times \Gamma(d*))$

• We set $R_{\ell}[f] = [S^{\ell}(f \times f)] \in M\Gamma^{2dk}(S^{\ell}(X \times X))$

- We set $R_{\ell}[f] = [S^{\ell}(f \times f)] \in M\Gamma^{2dk}(S^{\ell}(X \times X))$
- Next we define $\mathscr{R}_{\ell}[f] = (\bigtriangleup_{2}^{\ell})^{*}R_{\ell}[f]$, so $\mathscr{R}_{\ell}[f]$ is represented by g in the pullback diagram

(Here $\triangle' \simeq \triangle_2^{\ell}$ is transverse to $S^{\ell}(f \times f)$)

• We set
$$R_{\ell}[f] = [S^{\ell}(f \times f)] \in M\Gamma^{2dk}(S^{\ell}(X \times X))$$

Next we define $\mathscr{R}_{\ell}[f] = (\bigtriangleup_2^{\ell})^* R_{\ell}[f]$, so $\mathscr{R}_{\ell}[f]$ is represented by g in the pullback diagram

(Here $\triangle' \simeq \triangle_2^{\ell}$ is transverse to $S^{\ell}(f \times f)$)

• Then $\mathscr{R}_{\ell} = \iota_{\ell}^* \circ \mathscr{R}$, where $\iota_{\ell} \colon P^{\ell} \times X \to P^{\infty} \times X$ is inclusion

Statement of result

Let $f: M^{n-dk} \hookrightarrow X^n$ be a proper, self-transverse $M\Gamma^*$ -oriented immersion (so f represents $[f] \in M\Gamma^{dk}(X)$)

Statement of result

Let $f: M^{n-dk} \hookrightarrow X^n$ be a proper, self-transverse $M\Gamma^*$ -oriented immersion (so f represents $[f] \in M\Gamma^{dk}(X)$)

Theorem(Eccles, G) For any natural number ℓ ,

 $\mathscr{R}_{\ell}[f] = [S^{\ell}(\overline{\psi}_2(f))] + (1 \times f)_* e(\gamma_{\ell} \otimes \nu_f) \in M\Gamma^{2dk}(P^{\ell} \times X)$

Here γ_{ℓ} is the canonical line bundle over P^{ℓ} , and \otimes denotes exterior tensor product of vector bundles

Statement of result

Let $f: M^{n-dk} \hookrightarrow X^n$ be a proper, self-transverse $M\Gamma^*$ -oriented immersion (so f represents $[f] \in M\Gamma^{dk}(X)$)

Theorem(Eccles, G) For any natural number ℓ ,

 $\mathscr{R}_{\ell}[f] = [S^{\ell}(\overline{\psi}_2(f))] + (1 \times f)_* e(\gamma_{\ell} \otimes \nu_f) \in M\Gamma^{2dk}(P^{\ell} \times X)$

Here γ_{ℓ} is the canonical line bundle over P^{ℓ} , and \otimes denotes exterior tensor product of vector bundles

Remark Quillen (1971) showed that when f is embedding,

$$\mathscr{R}_{\ell}[f] = (1 \times f)_* e(\gamma_{\ell} \otimes \nu_f) \in M\Gamma^{2dk}(P^{\ell} \times X)$$

• The class $[S^{\ell}(\overline{\psi}_2(f))] = \mathscr{R}_{\ell}[f] - (1 \times f)_* e(\gamma_{\ell} \otimes \nu_f)$ is an obstruction to f being cohomologous to an embedding

- The class $[S^{\ell}(\overline{\psi}_2(f))] = \mathscr{R}_{\ell}[f] (1 \times f)_* e(\gamma_{\ell} \otimes \nu_f)$ is an obstruction to f being cohomologous to an embedding
- **Problem** Find an $M\Gamma^*$ -oriented immersion f with $[S^{\ell}(\overline{\psi}_2(f))] \neq 0 \in M\Gamma^{2dk}(P^{\ell} \times X)$

- The class $[S^{\ell}(\overline{\psi}_2(f))] = \mathscr{R}_{\ell}[f] (1 \times f)_* e(\gamma_{\ell} \otimes \nu_f)$ is an obstruction to f being cohomologous to an embedding
- **Problem** Find an $M\Gamma^*$ -oriented immersion f with $[S^{\ell}(\overline{\psi}_2(f))] \neq 0 \in M\Gamma^{2dk}(P^{\ell} \times X)$
- It vanishes when mapped to \mathbb{Z}_2 -cohomology, giving the relation

$$\operatorname{Sq}^{i}[f] = f_{*}w_{i}(\nu_{f})$$
 for all i ,

where w_i denotes *i*-th Stiefel-Whitney class

- The class $[S^{\ell}(\overline{\psi}_2(f))] = \mathscr{R}_{\ell}[f] (1 \times f)_* e(\gamma_{\ell} \otimes \nu_f)$ is an obstruction to f being cohomologous to an embedding
- **Problem** Find an $M\Gamma^*$ -oriented immersion f with $[S^{\ell}(\overline{\psi}_2(f))] \neq 0 \in M\Gamma^{2dk}(P^{\ell} \times X)$
- It vanishes when mapped to \mathbb{Z}_2 -cohomology, giving the relation

$$\operatorname{Sq}^{i}[f] = f_{*}w_{i}(\nu_{f})$$
 for all i ,

where w_i denotes *i*-th Stiefel-Whitney class

• Extensions Use twisted integer cohomology to get more refined results? Steenrod operations at primes $p \neq 2$?

Definition(Ronga) The diagram of proper immersions

is *sub-cartesian* if:

Definition(Ronga) The diagram of proper immersions

is sub-cartesian if:

• $(\alpha, \beta): Z \to A \times B$ is embedding onto $A \times_X B = \{(a, b) \in A \times B \mid g(a) = f(b)\};$

Definition(Ronga) The diagram of proper immersions

is sub-cartesian if:

- $(\alpha, \beta): Z \to A \times B$ is embedding onto $A \times_X B = \{(a, b) \in A \times B \mid g(a) = f(b)\};$
- the following sequence of bundles is exact $0 \to TZ \xrightarrow{d\alpha \oplus d\beta} \alpha^* TA \oplus \beta^* TB \xrightarrow{dg-df} \alpha^* g^* TX$

Definition(Ronga) The diagram of proper immersions

is sub-cartesian if:

- $(\alpha, \beta): Z \to A \times B$ is embedding onto $A \times_X B = \{(a, b) \in A \times B \mid g(a) = f(b)\};$
- the following sequence of bundles is exact $0 \to TZ \xrightarrow{d\alpha \oplus d\beta} \alpha^*TA \oplus \beta^*TB \xrightarrow{dg-df} \alpha^*g^*TX$

The bundle $\xi = \operatorname{coker}(dg - df)$ is called the *excess bundle*

Proposition(Ronga) Suppose that in the sub-cartesian diagram

the bundles $\xi = \operatorname{coker}(dg - df)$ and ν_f are E*-oriented.

Then for any $c \in E^*(B)$ we have

$$g^*f_*(c) = \alpha_*(e(\xi) \cdot \beta^*(c)) \in \mathsf{E}^*(A)$$

Idea of proof

Lemma The following diagram is sub-cartesian:

The excess bundle is zero over $S^{\ell}(\overline{\Delta}_2(f))$, and $S^{\ell}(\nu_f)$ over $S^{\ell}(M) = P^{\ell} \times M$, where ν_f is regarded as a \mathbb{Z}_2 -bundle over the trivial \mathbb{Z}_2 -space M via $v \mapsto -v$.

Idea of proof

Lemma The following diagram is sub-cartesian:

The excess bundle is zero over $S^{\ell}(\overline{\Delta}_2(f))$, and $S^{\ell}(\nu_f)$ over $S^{\ell}(M) = P^{\ell} \times M$, where ν_f is regarded as a \mathbb{Z}_2 -bundle over the trivial \mathbb{Z}_2 -space M via $v \mapsto -v$.

The Theorem follows on applying the Proposition to this square, with $c = 1 \in M\Gamma^0(S^\ell(M \times M))$, since $S^\ell(\nu_f) \cong \gamma_\ell \otimes \nu_f$