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A proper immersion f : M # X represents a
cohomology class of X (which cohomology theory
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Motivation

A proper immersion f : M # X represents a
cohomology class of X (which cohomology theory
depends on the structure of normal bundle)

If f is self-transverse its r-fold self-intersection points
are the image of an immersion ψr(f) : ∆r(f) # X
(Whitney, Lashof, Smale, Koschorke, Sanderson,...)

Steenrod operations in generalised cohomology
theories (Steenrod, Atiyah, tom Dieck,...)

Problem Can we find a formula relating these two types
of operation?
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represents the zero class

So we may exploit our formula to find obstructions to a
given cohomology class containing an embedding
(immersion without double points)/immersion without
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Motivation

If f has no r-fold self-intersections, then ψr(f)
represents the zero class

So we may exploit our formula to find obstructions to a
given cohomology class containing an embedding
(immersion without double points)/immersion without
triple points/...

Regularly homotopic immersions represent the same
cohomology class, so we may find cohomological
obstructions to an immersion being regularly homotopic
to an embedding
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Immersions

Immersions are smooth maps f : Mn−k
# Xn with

dfx : TMx → TXf(x) injective for each x ∈M (integer
k ≥ 0 is called the codimension of f )
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Immersions

Immersions are smooth maps f : Mn−k
# Xn with

dfx : TMx → TXf(x) injective for each x ∈M (integer
k ≥ 0 is called the codimension of f )

The normal bundle of f : Mn−k
# Xn is k-dimensional

bundle νf over M defined by νf ⊕ TM = f∗TX (uses a
metric on X)

Let E
∗ be a generalised cohomology theory. We say

f : M # X is E
∗-oriented if νf has a preferred Thom

class t ∈ Ẽ
k(Tνf ), giving a Thom isomorphism

E
∗(M) ∼= Ẽ

∗+k(Tνf )
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Classes represented by immersions

Let f : Mn−k
# Xn be a proper immersion oriented with

respect to some generalised cohomology theory E
∗. Then f

represents a class [f ] ∈ E
k(X) as follows:
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Classes represented by immersions

Let f : Mn−k
# Xn be a proper immersion oriented with

respect to some generalised cohomology theory E
∗. Then f

represents a class [f ] ∈ E
k(X) as follows:

Choose an embedding f ′ : M →֒ R
ℓ, ℓ large

g = (f, f ′) : M →֒ X × R
ℓ regularly homotopic to

(f, 0) : M # X × {0} →֒ X × R
ℓ, so νg ∼= νf ⊕ εℓ and

Tνg ≃ ΣℓTνf
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Classes represented by immersions

Let f : Mn−k
# Xn be a proper immersion oriented with

respect to some generalised cohomology theory E
∗. Then f

represents a class [f ] ∈ E
k(X) as follows:

Choose an embedding f ′ : M →֒ R
ℓ, ℓ large

g = (f, f ′) : M →֒ X × R
ℓ regularly homotopic to

(f, 0) : M # X × {0} →֒ X × R
ℓ, so νg ∼= νf ⊕ εℓ and

Tνg ≃ ΣℓTνf

[f ] ∈ E
k(X) is image of 1 ∈ E

0(M) under

E
0(M) ∼= Ẽ

k(Tνf ) ∼= Ẽ
k+ℓ(ΣℓTνf ) ∼=

Ẽ
k+ℓ(Tνg) → Ẽ

k+ℓ
(

(X × R
ℓ)+

)

∼= Ẽ
k+ℓ(ΣℓX+) ∼= E

k(X)
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Self-intersections of immersions

f : M # X is self-transverse if whenever x1, . . . , xn ∈M
are distinct points mapping to y ∈ X, the dfxi

TMxi
are in

general position in TXy
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f : M # X is self-transverse if whenever x1, . . . , xn ∈M
are distinct points mapping to y ∈ X, the dfxi

TMxi
are in

general position in TXy

A self-transverse immersion f has r-fold multiple point
manifolds

∆r(f) = {(x1, . . . , xr) ∈M (r) | xi distinct, f(xi) = f(xj)}

∆r(f) = ∆r(f)/Sr, Sr symmetric group
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Self-intersections of immersions

f : M # X is self-transverse if whenever x1, . . . , xn ∈M
are distinct points mapping to y ∈ X, the dfxi

TMxi
are in

general position in TXy

A self-transverse immersion f has r-fold multiple point
manifolds

∆r(f) = {(x1, . . . , xr) ∈M (r) | xi distinct, f(xi) = f(xj)}

∆r(f) = ∆r(f)/Sr, Sr symmetric group

f induces r-fold self-intersection immersions

ψr(f) : ∆r(f) # X, ψr(f) : ∆r(f) # X,

(x1, . . . , xr) 7→ f(x1), [x1, . . . , xr] 7→ f(x1)
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Self-intersections of immersions

If f : Mn−k
# Xn has codimension k then ψr(f) and

ψr(f) have codimension rk

The normal fibre of ψr(f) at [x1, . . . , xr] is the unordered
direct sum of the normal fibres of f at x1, . . . , xr

If f is E
∗-oriented, then ψr(f) may be E

∗-oriented
(related to existence of Steenrod operations in E

∗).

However this does not give a well-defined cohomology
operation [f ] 7→ [ψr(f)]
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Geometric cobordism

Let Γ = O,U, Sp, SO, SU be one of the classical stable Lie
groups, MΓ its Thom spectrum, MΓ∗ the associated
cobordism cohomology theory
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Geometric cobordism

Let Γ = O,U, Sp, SO, SU be one of the classical stable Lie
groups, MΓ its Thom spectrum, MΓ∗ the associated
cobordism cohomology theory

A map f : M → X of manifolds is Γ-orientable if it
admits a factorisation

f : M �

� i
// E

p
// X,

where p : E → X is a smooth vector bundle, i : M →֒ E
an embedding and νi is MΓ∗-orientable
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Geometric cobordism

Let Γ = O,U, Sp, SO, SU be one of the classical stable Lie
groups, MΓ its Thom spectrum, MΓ∗ the associated
cobordism cohomology theory

A map f : M → X of manifolds is Γ-orientable if it
admits a factorisation

f : M �

� i
// E

p
// X,

where p : E → X is a smooth vector bundle, i : M →֒ E
an embedding and νi is MΓ∗-orientable

A Γ-map is a map of manifolds f : M → X together with
an equivalence class of Γ-orientations of f
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Geometric cobordism

Examples The identity id : X → X is trivially a Γ-map.
A Γ-orientation of the map f : M → {pt} is a
Γ-orientation of M
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Examples The identity id : X → X is trivially a Γ-map.
A Γ-orientation of the map f : M → {pt} is a
Γ-orientation of M

f : M # X is MΓ∗-oriented =⇒ f : M → X is
Γ-oriented, since g = (f, f ′) : M →֒ X × R

ℓ has a
canonical Thom class Σℓt, where t ∈MΓk(Tνf ) is Thom
class of νf . Converse is false.
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Geometric cobordism

Examples The identity id : X → X is trivially a Γ-map.
A Γ-orientation of the map f : M → {pt} is a
Γ-orientation of M

f : M # X is MΓ∗-oriented =⇒ f : M → X is
Γ-oriented, since g = (f, f ′) : M →֒ X × R

ℓ has a
canonical Thom class Σℓt, where t ∈MΓk(Tνf ) is Thom
class of νf . Converse is false.

Proposition (Quillen, after Thom-Pontrjagin) If X is a
manifold, one may put a cobordism relation ∼ on the set
of proper Γ-maps to X of codimension k such that

MΓk(X) ∼= {proper Γ-maps f : Mn−k → Xn}/(∼)
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The structure of the Γ-cobordism ring may be interpreted in
terms of proper Γ-maps as follows
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Geometric cobordism

The structure of the Γ-cobordism ring may be interpreted in
terms of proper Γ-maps as follows

Addition given by disjoint union:

[f1 : M1 → X] + [f2 : M2 → X] = [f1 ⊔ f2 : M1 ⊔M2 → X]

Contravariance Homotopy class [g : Y → X] induces
g∗ : MΓ∗(X) →MΓ∗(Y ) by pullback along transverse
representative

Covariance Proper Γ-map h : Xn → Zn+m induces
h∗ : MΓ∗(X) →MΓ∗+m(Z) by [f ] 7→ [h ◦ f ].
(Note that [f ] = f∗(1), where
1 = [id : M →M ] ∈MΓ0(M))
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Geometric cobordism

Exterior Product given by Cartesian product:

[f : M → X] × [g : N → Y ] = [f × g : M ×N → X × Y ]
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[f : M → X] × [g : N → Y ] = [f × g : M ×N → X × Y ]

Interior Product given by

[f1 : M1 → X] ∪ [f2 : M2 → X] = △∗([f1] × [f2])

where △ : X → X ×X is diagonal x 7→ (x, x)
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[f1 : M1 → X] ∪ [f2 : M2 → X] = △∗([f1] × [f2])
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Geometric cobordism

Exterior Product given by Cartesian product:

[f : M → X] × [g : N → Y ] = [f × g : M ×N → X × Y ]

Interior Product given by

[f1 : M1 → X] ∪ [f2 : M2 → X] = △∗([f1] × [f2])

where △ : X → X ×X is diagonal x 7→ (x, x)

Poincaré-Atiyah duality If Xn is a closed Γ-manifold,
then MΓk(X) ∼= MΓn−k(X)

Euler class of a k-dimensional MΓ∗-oriented vector
bundle is e(ξ) = i∗[i] ∈MΓk(X), where i : X → E is zero
section
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Steenrod operations

Cohomology operations derived from commutativity of the
product in a multiplicative cohomology theory. Discovered
in ordinary cohomology by Steenrod (1947), in K-theory by
Atiyah (1966), and in cobordism by tom Dieck (1968)
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Atiyah (1966), and in cobordism by tom Dieck (1968)

We will only discuss Steenrod operations at the prime
p = 2
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Steenrod operations

Cohomology operations derived from commutativity of the
product in a multiplicative cohomology theory. Discovered
in ordinary cohomology by Steenrod (1947), in K-theory by
Atiyah (1966), and in cobordism by tom Dieck (1968)

We will only discuss Steenrod operations at the prime
p = 2

Notation Let Y be a Z2-space, Sℓ sphere with antipodal
involution, and define

Sℓ(Y ) := Sℓ ×Z2
Y, S(Y ) := S∞ ×Z2

Y =
⋃

ℓ

Sℓ(Y )

Edinburgh Topology seminar – p. 12



Steenrod operations

Cohomology operations derived from commutativity of the
product in a multiplicative cohomology theory. Discovered
in ordinary cohomology by Steenrod (1947), in K-theory by
Atiyah (1966), and in cobordism by tom Dieck (1968)

We will only discuss Steenrod operations at the prime
p = 2

Notation Let Y be a Z2-space, Sℓ sphere with antipodal
involution, and define

Sℓ(Y ) := Sℓ ×Z2
Y, S(Y ) := S∞ ×Z2

Y =
⋃

ℓ

Sℓ(Y )

Examples Sℓ(X ×X), where X ×X has a natural
involution T (x, y) = (y, x). If Y is trivial Z2-space,
Sℓ(Y ) = P ℓ × Y
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Steenrod operations

Let E
∗ be a multiplicative cohomology theory, d a positive

integer.
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Steenrod operations

Let E
∗ be a multiplicative cohomology theory, d a positive

integer.

Definition An external Steenrod operation of type
(Z2, d) in E

∗ is a series of natural transformations

R = Rdk : E
dk(X) → E

2dk
(

S(X ×X)
)

, k ∈ Z

satisfying i∗R(x) = x× x, where i : X ×X → S(X ×X)
induced by inclusion of a point in S∞
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Steenrod operations

Let E
∗ be a multiplicative cohomology theory, d a positive

integer.

Definition An external Steenrod operation of type
(Z2, d) in E

∗ is a series of natural transformations

R = Rdk : E
dk(X) → E

2dk
(

S(X ×X)
)

, k ∈ Z

satisfying i∗R(x) = x× x, where i : X ×X → S(X ×X)
induced by inclusion of a point in S∞

Definition Composing with the map induced by the
extended diagonal △2 : P∞ ×X →֒ S(X ×X),
([v], x) 7→ [v, x, x] gives a Steenrod operation

R = R
dk : E

dk(X) → E
2dk(P∞ ×X), k ∈ Z
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Steenrod operations

Example Steenrod’s original operation (of type (Z2, 1))

R : Hk(X; Z2) → H2k(S(X ×X); Z2)

R : Hk(X; Z2) → H2k(P∞ ×X; Z2)
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Steenrod operations

Example Steenrod’s original operation (of type (Z2, 1))

R : Hk(X; Z2) → H2k(S(X ×X); Z2)

R : Hk(X; Z2) → H2k(P∞ ×X; Z2)

Since H∗(P∞ ×X; Z2) ∼= Z2[µ] ⊗H∗(X; Z2), can define
internal operations Sqi : Hk(X; Z2) → Hk+i(X; Z2) by

R(α) =
∞

∑

i=0

µk−i ⊗ Sqi(α), α ∈ Hk(X; Z2)
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Steenrod-tom Dieck operations

Proposition (tom Dieck) For Γ = O,U, Sp, SO, SU there is a
Steenrod operation R of type (Z2, d) in MΓ∗, where
d = 1, 2, 4, 2, 4.
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Steenrod-tom Dieck operations

Proposition (tom Dieck) For Γ = O,U, Sp, SO, SU there is a
Steenrod operation R of type (Z2, d) in MΓ∗, where
d = 1, 2, 4, 2, 4.

We interpret these Steenrod-tom Dieck operations
geometrically in terms of proper Γ-maps
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Steenrod-tom Dieck operations

Proposition (tom Dieck) For Γ = O,U, Sp, SO, SU there is a
Steenrod operation R of type (Z2, d) in MΓ∗, where
d = 1, 2, 4, 2, 4.

We interpret these Steenrod-tom Dieck operations
geometrically in terms of proper Γ-maps

Let f : Mn−dk → Xn be a proper Γ-map of codimension
dk, and consider the proper codimension 2dk map

Sℓ(f × f) = 1 ×Z2
(f × f) : Sℓ(M ×M) → Sℓ(X ×X)

Edinburgh Topology seminar – p. 15



Steenrod-tom Dieck operations

Proposition (tom Dieck) For Γ = O,U, Sp, SO, SU there is a
Steenrod operation R of type (Z2, d) in MΓ∗, where
d = 1, 2, 4, 2, 4.

We interpret these Steenrod-tom Dieck operations
geometrically in terms of proper Γ-maps

Let f : Mn−dk → Xn be a proper Γ-map of codimension
dk, and consider the proper codimension 2dk map

Sℓ(f × f) = 1 ×Z2
(f × f) : Sℓ(M ×M) → Sℓ(X ×X)

Sℓ(f × f) has a canonical Γ-orientation coming from
Γ-orientation of f and MΓ∗-orientation of extended
power bundles S

(

Γ(d∗) × Γ(d∗)
)
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Steenrod-tom Dieck operations

We set Rℓ[f ] = [Sℓ(f × f)] ∈MΓ2dk
(

Sℓ(X ×X)
)
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Steenrod-tom Dieck operations

We set Rℓ[f ] = [Sℓ(f × f)] ∈MΓ2dk
(

Sℓ(X ×X)
)

Next we define Rℓ[f ] = (△ℓ
2)

∗Rℓ[f ], so Rℓ[f ] is
represented by g in the pullback diagram

Σ //

g

��

Sℓ(M ×M)

Sℓ(f×f)
��

P ℓ ×X
△

′

// Sℓ(X ×X)

(Here △′ ≃ △ℓ
2 is transverse to Sℓ(f × f))
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Steenrod-tom Dieck operations

We set Rℓ[f ] = [Sℓ(f × f)] ∈MΓ2dk
(

Sℓ(X ×X)
)

Next we define Rℓ[f ] = (△ℓ
2)

∗Rℓ[f ], so Rℓ[f ] is
represented by g in the pullback diagram

Σ //

g

��

Sℓ(M ×M)

Sℓ(f×f)
��

P ℓ ×X
△

′

// Sℓ(X ×X)

(Here △′ ≃ △ℓ
2 is transverse to Sℓ(f × f))

Then Rℓ = ι∗ℓ ◦ R, where ιℓ : P ℓ ×X → P∞ ×X is
inclusion
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Statement of result

Let f : Mn−dk
# Xn be a proper, self-transverse

MΓ∗-oriented immersion (so f represents [f ] ∈MΓdk(X))
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Statement of result

Let f : Mn−dk
# Xn be a proper, self-transverse

MΓ∗-oriented immersion (so f represents [f ] ∈MΓdk(X))

Theorem (Eccles, G) For any natural number ℓ,

Rℓ[f ] = [Sℓ
(

ψ2(f)
)

] + (1 × f)∗e(γℓ ⊗ νf ) ∈MΓ2dk(P ℓ ×X)

Here γℓ is the canonical line bundle over P ℓ, and ⊗ denotes
exterior tensor product of vector bundles
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Statement of result

Let f : Mn−dk
# Xn be a proper, self-transverse

MΓ∗-oriented immersion (so f represents [f ] ∈MΓdk(X))

Theorem (Eccles, G) For any natural number ℓ,

Rℓ[f ] = [Sℓ
(

ψ2(f)
)

] + (1 × f)∗e(γℓ ⊗ νf ) ∈MΓ2dk(P ℓ ×X)

Here γℓ is the canonical line bundle over P ℓ, and ⊗ denotes
exterior tensor product of vector bundles

Remark Quillen (1971) showed that when f is embedding,

Rℓ[f ] = (1 × f)∗e(γℓ ⊗ νf ) ∈MΓ2dk(P ℓ ×X)
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Possible applications

The class [Sℓ
(

ψ2(f)
)

] = Rℓ[f ] − (1 × f)∗e(γℓ ⊗ νf ) is an
obstruction to f being cohomologous to an embedding
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The class [Sℓ
(

ψ2(f)
)

] = Rℓ[f ] − (1 × f)∗e(γℓ ⊗ νf ) is an
obstruction to f being cohomologous to an embedding

Problem Find an MΓ∗-oriented immersion f with
[Sℓ

(

ψ2(f)
)

] 6= 0 ∈MΓ2dk(P ℓ ×X)
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Possible applications

The class [Sℓ
(

ψ2(f)
)

] = Rℓ[f ] − (1 × f)∗e(γℓ ⊗ νf ) is an
obstruction to f being cohomologous to an embedding

Problem Find an MΓ∗-oriented immersion f with
[Sℓ

(

ψ2(f)
)

] 6= 0 ∈MΓ2dk(P ℓ ×X)

It vanishes when mapped to Z2-cohomology, giving the
relation

Sqi[f ] = f∗wi(νf ) for all i,

where wi denotes i-th Stiefel-Whitney class
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Possible applications

The class [Sℓ
(

ψ2(f)
)

] = Rℓ[f ] − (1 × f)∗e(γℓ ⊗ νf ) is an
obstruction to f being cohomologous to an embedding

Problem Find an MΓ∗-oriented immersion f with
[Sℓ

(

ψ2(f)
)

] 6= 0 ∈MΓ2dk(P ℓ ×X)

It vanishes when mapped to Z2-cohomology, giving the
relation

Sqi[f ] = f∗wi(νf ) for all i,

where wi denotes i-th Stiefel-Whitney class

Extensions Use twisted integer cohomology to get
more refined results? Steenrod operations at primes
p 6= 2?
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Sub-cartesian diagrams

Definition (Ronga) The diagram of proper immersions

Z
β

//

α
��

B

f
��

A g
// X

is sub-cartesian if:
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Sub-cartesian diagrams

Definition (Ronga) The diagram of proper immersions

Z
β

//

α
��

B

f
��

A g
// X

is sub-cartesian if:

(α, β) : Z → A×B is embedding onto
A×X B = {(a, b) ∈ A×B | g(a) = f(b)};
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Sub-cartesian diagrams

Definition (Ronga) The diagram of proper immersions

Z
β

//

α
��

B

f
��

A g
// X

is sub-cartesian if:

(α, β) : Z → A×B is embedding onto
A×X B = {(a, b) ∈ A×B | g(a) = f(b)};

the following sequence of bundles is exact

0 → TZ
dα⊕dβ
−→ α∗TA⊕ β∗TB

dg−df
−→ α∗g∗TX
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Sub-cartesian diagrams

Definition (Ronga) The diagram of proper immersions

Z
β

//

α
��

B

f
��

A g
// X

is sub-cartesian if:

(α, β) : Z → A×B is embedding onto
A×X B = {(a, b) ∈ A×B | g(a) = f(b)};

the following sequence of bundles is exact

0 → TZ
dα⊕dβ
−→ α∗TA⊕ β∗TB

dg−df
−→ α∗g∗TX

The bundle ξ = coker(dg − df) is called the excess bundle
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Sub-cartesian diagrams

Proposition (Ronga) Suppose that in the sub-cartesian
diagram

Z
β

//

α
��

B

f
��

A g
// X

the bundles ξ = coker(dg − df) and νf are E
∗-oriented.

Then for any c ∈ E
∗(B) we have

g∗f∗(c) = α∗
(

e(ξ) · β∗(c)
)

∈ E
∗(A)
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Idea of proof

Lemma The following diagram is sub-cartesian:

Sℓ
(

∆2(f)
)

⊔ P ℓ ×M //

Sℓ

(

ψ
2
(f)

)

⊔1×f
��

Sℓ(M ×M)

Sℓ(f×f)
��

P ℓ ×X
△

ℓ

2

// Sℓ(X ×X).

The excess bundle is zero over Sℓ
(

∆2(f)
)

, and Sℓ(νf ) over
Sℓ(M) = P ℓ ×M , where νf is regarded as a Z2-bundle over
the trivial Z2-space M via v 7→ −v.
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Idea of proof

Lemma The following diagram is sub-cartesian:

Sℓ
(

∆2(f)
)

⊔ P ℓ ×M //

Sℓ

(

ψ
2
(f)

)

⊔1×f
��

Sℓ(M ×M)

Sℓ(f×f)
��

P ℓ ×X
△

ℓ

2

// Sℓ(X ×X).

The excess bundle is zero over Sℓ
(

∆2(f)
)

, and Sℓ(νf ) over
Sℓ(M) = P ℓ ×M , where νf is regarded as a Z2-bundle over
the trivial Z2-space M via v 7→ −v.

The Theorem follows on applying the Proposition to this
square, with c = 1 ∈MΓ0

(

Sℓ(M ×M)
)

, since
Sℓ(νf ) ∼= γℓ ⊗ νf
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