Symmetrized topological complexity

Mark Grant

Applied Topology, Bedlewo Monday 26th June 2017

Topological complexity of motion planning

Definition

The sectional category (or Schwarz genus) of a fibration $p: E \to B$, denoted $\operatorname{secat}(p)$, is the minimum k such that B admits a cover by open sets U_0, U_1, \ldots, U_k , each of which admits a local section $s_i: U_i \to E$ of p.

For any space X, consider the free path fibration

$$\pi_X: PX \to X \times X, \qquad \pi_X(\gamma) = (\gamma(0), \gamma(1)).$$

Definition (Farber, 2003)

The topological complexity of X, denoted TC(X), is

$$TC(X) := secat(\pi_X).$$

Motivation

If X is the configuration space of a mechanical system, then sections of π_X are motion planning algorithms for that system.

The simplest¹ motion planning algorithms are continuous (this requires X to be contractible).

The number $\mathrm{TC}(X)$ quantifies the minimum complexity of motion planning algorithms in systems whose configuration space is homotopy equivalent to X.

¹From the topological viewpoint.

Example: odd spheres

$$U_0 = \{ (A, B) \mid A \neq -B \}$$

 $s_0(A,B) = {\sf shortest\ path,\ unit\ speed}$

$$U_1 = \{(A, -A)\}$$

 $s_1(A,-A) = \text{geodesic} \text{ arc with initial}$ velocity v(A)

This shows $TC(S^{\text{odd}}) \leq 1$. Then $S^{\text{odd}} \not\simeq *$ implies $TC(S^{\text{odd}}) = 1$.

Example: even spheres

A similar construction (using a vector field on S^{even} with one singularity) gives $\mathrm{TC}(S^{\mathrm{even}}) \leq 2$. The lower bound $\mathrm{TC}(S^{\mathrm{even}}) \geq 2$ comes from

Theorem (Farber)

Suppose there exist cohomology classes

$$u_1, \ldots, u_k \in \ker (\Delta^* : H^*(X \times X) \to H^*(X)),$$

(where $\Delta: X \to X \times X$ is the diagonal) such that $u_1 \cdots u_k \neq 0$. Then $TC(X) \geq k$.

Symmetric motion planning

We may impose additional conditions on our motion planning algorithms, such as that they are:

Symmetric The motion from B to A is the reverse of the motion from A to B;

Monoidal The motion from A to A is constant at A.

These lead to several variants of TC(X).

Symmetric topological complexity

Restricting the path fibration $\pi_X: PX \to X \times X$ results in a fibration

$$\pi_X': P'X \to F(X,2),$$

where P'X denotes the space of paths in X with distinct endpoints, and $F(X,2)=\{(x,y)\in X\times X\mid x\neq y\}.$

Both P'X and F(X,2) are free \mathbb{Z}_2 -spaces, and π'_X is equivariant.

Definition (Farber, 2005, Farber–G, 2006)

The symmetric topological complexity of X, denoted $\mathrm{TC}^S(X)$, is

$$TC^{S}(X) := \operatorname{secat}\left(\pi'_{X}/\mathbb{Z}_{2} : P'X/\mathbb{Z}_{2} \to F(X,2)/\mathbb{Z}_{2}\right) + 1.$$

Immersion and embedding dimensions

Given a smooth manifold M, define

$$\operatorname{Imm}(M) = \min\{k \in \mathbb{Z} \mid M \text{ immerses in } \mathbb{R}^k\},\$$

$$\mathrm{Emb}(M) = \min\{k \in \mathbb{Z} \mid M \text{ embeds in } \mathbb{R}^k\}.$$

Theorem (Farber–Tabachnikov–Yuzvinsky, 2003)

If $n \neq 1, 3, 7$ then

$$TC(\mathbb{R}P^n) = Imm(\mathbb{R}P^n).$$

Theorem (González-Landweber, 2009)

If $n \neq 6, 7, 11, 12, 14, 15$ then

$$TC^S(\mathbb{R}P^n) = Emb(\mathbb{R}P^n).$$

$\mathrm{TC}^S(-)$ is not a homotopy invariant

Convention: If $E = \emptyset = B$, then $secat(p : E \to B) = -1$.

With this convention,

$$TC^S(*) = -1 + 1 = 0,$$

whereas a contractible space X with $\left|X\right|>1$ has

$$TC^S(X) \ge 0 + 1 = 1.$$

Symmetrized topological complexity

We can consider

$$\pi_X: PX \to X \times X, \qquad \pi_X(\gamma) = (\gamma(0), \gamma(1))$$

as a \mathbb{Z}_2 -equivariant map.

Definition (Basabe-González-Rudyak-Tamaki, 2014)

The symmetrized topological complexity of X, denoted $\mathrm{TC}^\Sigma(X)$, is the minimum k such that $X\times X$ admits a cover by invariant open sets U_0,U_1,\ldots,U_k , each of which admits an equivariant local section $\sigma_i:U_i\to PX$ of π_X .

 $\mathrm{TC}^\Sigma(-)$ has the following properties:

(1)
$$TC^{\Sigma}(X) = TC^{\Sigma}(Y)$$
 if $X \simeq Y$;

- (2) $TC(X) \leq TC^{\Sigma}(X)$;
- (3) $TC^S(X) 1 \le TC^{\Sigma}(X) \le TC^S(X)$ for X an ENR.

From (2), (3) and the fact that $TC^S(S^n) = 2$ for all n, we have

$$TC^{\Sigma}(S^{\text{even}}) = 2$$
, and

$$1 \leq \mathrm{TC}^{\Sigma}(S^{\mathrm{odd}}) \leq 2.$$

Recall the proof that $TC(S^{\text{odd}}) \leq 1$.

Although $U_0=\{(A,B)\mid A\neq -B\}$ and $U_1=\{(A,-A)\}$ are invariant, and s_0 is equivariant, s_1 is not equivariant.

Equivariant sectional category

Let G be a compact Lie group.

Definition (Colman-G, 2012)

The equivariant sectional category of a G-fibration $p: E \to B$, denoted $\operatorname{secat}_G(p)$, is the minimum k such that B admits a cover by invariant open sets U_0, \ldots, U_k , each of which admits an equivariant local section $s_i: U_i \to E$ of p.

In particular,

$$TC^{\Sigma}(X) = \operatorname{secat}_{\mathbb{Z}_2}(\pi_X).$$

The (k+1)-fold fibred join of a fibration $p:E\to B$ is a fibration

$$p_k: J_B^k(E) \to B$$

with fibre $J^k(F)$, the (k+1)-fold join of the fibre of p.

If p is a G-fibration, then so is p_k for $k \geq 0$.

The following generalizes a result of Schwarz.

Proposition (G, 2017)

Let $p:E\to B$ be a G-fibration over a paracompact base space. Then $\operatorname{secat}_G(p)\le k$ if and only if $p_k:J_B^k(E)\to B$ admits a (global) G-section.

The obstructions to finding a G-section of $p_k:J_B^k(E)\to B$ live in Bredon cohomology groups

$$H_G^{i+1}(B; \pi_i(J^k\mathscr{F}))$$

where the local coefficients are given by

$$\pi_i(J^k\mathscr{F})(G/H) = \pi_i(J^k(F)^H) = \pi_i(J^k(F^H)).$$

Corollary

Let $p: E \to B$ be a G-fibration, with B a G-CW complex of $\dim B \geq 2$. Assume $\pi_i(F^H) = 0$ for all subgroups $H \leq G$ and all i < s, some $s \geq 0$. Then

$$\operatorname{secat}_G(p) \leq \frac{\dim B}{s+1}.$$

Theorem (G, 2017)

Let X be an s-connected polyhedron. Then

$$TC^{\Sigma}(X) \le \frac{2\dim X}{s+1}.$$

Proof: Apply previous Corollary to $\pi_X: PX \to X \times X$, and note:

- ▶ $X \times X$ can be given a \mathbb{Z}_2 -CW structure;
- ▶ Fibre of π_X is based loop space ΩX , and $\Omega X^{\mathbb{Z}_2} \approx P_0 X$, the based path space.

Compare Farber's (2004) upper bound for TC(X).

Lower bounds for $TC^{\Sigma}(X)$

Lower bounds for $\mathrm{TC}^\Sigma(X)$ are given by 'zero-divisors cup-length' in \mathbb{Z}_2 -equivariant cohomology.

More precisely, if h^{*} is any \mathbb{Z}_{2} -equivariant cohomology theory with products, and there exist

$$u_1, \dots, u_k \in \ker(\Delta^* : h^*(X \times X) \to h^*(X))$$

with $u_1 \cdots u_k \neq 0$, then $TC^{\Sigma}(X) \geq k$.

Can this be used to prove $TC^{\Sigma}(S^{\text{odd}}) \geq 2$?

With $h^*(-) = H^*(E\mathbb{Z}_2 \times_{\mathbb{Z}_2} -)$ (Borel cohomology, constant coefficients), there are insufficient products.

With $h^*(-)=H^*_{\mathbb{Z}_2}(-)$ (Bredon cohomology), very few computations of cup products are known.

Finally we tried the most naïve thing, $h^*(-) = H^*(-/\mathbb{Z}_2)$, the cohomology of the orbit space.

Let $SP^2(X) = (X \times X)/\mathbb{Z}_2$, the symmetric square of X.

Denote by $dX \subseteq SP^2(X)$ the image of the diagonal $\Delta X \subseteq X \times X$.

Theorem (G, 2017)

Suppose there are $u_1, \ldots, u_k \in H^*(SP^2(X))$ which restrict to zero in $H^*(dX)$, such that $u_1 \cdots u_k \neq 0$. Then $TC^{\Sigma}(X) \geq k$.

Theorem (G, 2017)

We have $TC^{\Sigma}(S^n) = 2$ for n > 1 odd.

Proof: Nakaoka (1956) made extensive computations of the cohomology rings of symmetric powers.

In particular, his work shows there is an element $x \in H^n(SP(S^n); \mathbb{Z}_2)$ which restricts to zero in $H^n(dS^n; \mathbb{Z}_2)$ and has $x^2 \neq 0$.

Therefore
$$TC^{\Sigma}(S^n) \geq 2$$
.

Remarks

► González (2017) has applied symmetric squares and Nakaoka's results to prove that

$$\mathrm{TC}^\Sigma(\mathbb{R}P^{2^e})=\mathrm{TC}^S(\mathbb{R}P^{2^e})=\mathrm{Emb}(\mathbb{R}P^{2^e})=2^{e+1}\qquad\text{ for }e\geq 1.$$

▶ Since $SP^2(S^1) \approx \text{M\"ob} \simeq S^1$, we cannot deduce that $TC^{\Sigma}(S^1) \geq 2$.

Monoidal topological complexity

The definition of $\mathrm{TC}^\Sigma(X)$ does not incorporate the condition

Monoidal The motion from A to A is constant at A.

Definition (Iwase–Sakai, 2010)

The monoidal topological complexity of X, denoted $\mathrm{TC}^M(X)$, is the minimum k such that $X\times X$ admits a cover by open sets U_0,U_1,\ldots,U_k , each of which contains the diagonal ΔX and admits a local section $s_i:U_i\to PX$ of π_X satisfying $s_i(A,A)=\mathrm{const}_A$.

When X is an ENR, Iwase–Sakai showed that

$$TC(X) \le TC^M(X) \le TC(X) + 1.$$

Conjecture (Iwase-Sakai, 2012)

For any locally finite simplicial complex X, we have $\mathrm{TC}^M(X)=\mathrm{TC}(X)$.

Theorem (Dranishnikov, 2014)

Let X be an s-connected simplicial complex such that

$$(s+1)(TC(X)+1) > \dim X + 1.$$

Then $TC^M(X) = TC(X)$.

Monoidal symmetrized topological complexity

Definition

The monoidal symmetrized topological complexity of X, denoted $\mathrm{TC}^{M,\Sigma}(X)$, is the minimum k such that $X\times X$ admits a cover by invariant open sets U_0,U_1,\ldots,U_k , each of which contains the diagonal ΔX and admits a local equivariant section $s_i:U_i\to PX$ of π_X satisfying $s_i(A,A)=\mathrm{const}_A$.

Theorem (G, 2017)

Let X be a paracompact ENR. Then $TC^{M,\Sigma}(X) = TC^{\Sigma}(X)$.

Proof: Using relative \mathbb{Z}_2 -homotopy lifting, deform an equivariant section $\sigma: X \times X \to J^k_{X \times X}(PX)$ to another such σ' which has $\sigma'|_{\Delta X}$ given by constant paths.

This requires:

- ▶ $\Delta X \hookrightarrow X \times X$ is a \mathbb{Z}_2 -cofibration.
- \bullet $(\pi_X)_k: J^k_{X\times X}(PX) \to X\times X$ is a \mathbb{Z}_2 -fibration.
- $J^k(\Omega X^{\mathbb{Z}_2}) \simeq *.$

Corollary

Let X be a paracompact ENR. Suppose there are relative classes $u_1, \ldots, u_k \in H^*(SP^2(X), dX)$ such that $u_1 \cdots u_k \neq 0$. Then $TC^{\Sigma}(X) = TC^{M,\Sigma}(X) \geq k$.

Proof uses the long exact sequence of a triple $(SP^2(X), \bar{U}_i, dX)$.

Theorem (G, 2017)

$$TC^{\Sigma}(S^1) = 2.$$

Proof: Since $(SP^2(S^1), dS^1) \approx (\text{M\"ob}, \partial \text{M\"ob})$, it is sufficient to find $u \in H^1(\text{M\"ob}, \partial \text{M\"ob}; \mathbb{Z}_2)$ such that $u^2 \neq 0$.

We may take u to be the Poincaré dual of the core circle.

Remarks

- ▶ Don Davis (2017) has proved $TC^{\Sigma}(S^1) = 2$ using theorems from general topology.
- ▶ Jesús González (2017) has used Nakaoka's results to show that $TC^{\Sigma}(S^1 \times S^1) \geq 3$, which combined with the product inequality

$$\mathrm{TC}^{\Sigma}(X \times Y) \leq \mathrm{TC}^{\Sigma}(X) + \mathrm{TC}^{\Sigma}(Y)$$

also implies the above result.

Further work

• Analogues of all our results hold for symmetrized higher topological complexity $\mathrm{TC}_m^\Sigma(X)$. However, we do not know if

$$\mathrm{TC}_m^\Sigma(S^{\mathrm{odd}}) = m$$
 for all $m > 2$.

- ▶ Find a homotopically interesting space X with $TC^{\Sigma}(X) < TC^{S}(X)$.
- ▶ Define rational symmetrized topological complexity $\mathrm{TC}^\Sigma_\mathbb{Q}(X)$, and describe it in terms of equivariant minimal models.

Reference

M. Grant, Symmetrized topological complexity, arXiv:1703.07142

Thanks for listening!