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Topological complexity of motion planning

Topological complexity of motion planning

Definition

The sectional category (or Schwarz genus) of a fibration p : E — B,
denoted secat(p), is the minimum & such that B admits a cover by open
sets Uy, Un, ..., U, each of which admits a local section s; : U; — E of p.

For any space X, consider the free path fibration

mx:PX > X xX,  wx(y)= (7(0),~(1)).
Definition (Farber, 2003)
The topological complexity of X, denoted TC(X), is

TC(X) := secat(mx).




Topological complexity of motion planning

Motivation

If X is the configuration space of a mechanical system, then sections of
wx are motion planning algorithms for that system.

The simplest! motion planning algorithms are continuous (this requires X
to be contractible).

The number TC(X) quantifies the minimum complexity® of motion
planning algorithms in systems whose configuration space is homotopy
equivalent to X.

'From the topological viewpoint.



Topological complexity of motion planning

Example: odd spheres

Uo = {(A,B)| A# ~B}

so(A, B) = shortest path, unit speed
—A

Ur={(4,-4)}

s1(A, —A) = geodesic arc with initial
velocity v(A)

This shows TC(5°44) < 1. Then S°44 o x implies TC(S°44) = 1.
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Example: even spheres

A similar construction (using a vector field on SV with one singularity)
gives TC(S5V*") < 2. The lower bound TC(S®V") > 2 comes from

Theorem (Farber)

Suppose there exist cohomology classes
gy ..., u; € ker (A" HY(X x X) - H (X)),

(where A : X — X x X is the diagonal) such that u - - - uy # 0.
Then TC(X) > k.
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Symmetric motion planning

We may impose additional conditions on our motion planning algorithms,
such as that they are:

Symmetric The motion from B to A is the reverse of the
motion from A to B;

Monoidal The motion from A to A is constant at A.

These lead to several variants of TC(X).



Symmetric motion planning

Symmetric topological complexity

Restricting the path fibration 7x : PX — X x X results in a fibration
7y P'X = F(X,2),

where P’ X denotes the space of paths in X with distinct endpoints,
and FI(X,2) ={(z,y) € X x X |z # y}.

Both P'X and F(X,2) are free Zy-spaces, and 7y is equivariant.

Definition (Farber, 2005, Farber—G, 2006)
The symmetric topological complexity of X, denoted TCS(X), is

TCS(X) := secat (' /Zs : P'X/Zy — F(X,2)/Zs) + 1.
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Immersion and embedding dimensions
Given a smooth manifold M, define
Imm(M) = min{k € Z | M immerses in R*},

Emb(M) = min{k € Z | M embeds in R¥}.

Theorem (Farber—Tabachnikov—Yuzvinsky, 2003)
If n £ 1,3,7 then
TC(RP") = Imm(RP").

Theorem (Gonzélez—Landweber, 2009)
If n # 6,7,11,12, 14, 15 then

TC®(RP") = Emb(RP").




Symmetric motion planning

TC®(—) is not a homotopy invariant

Convention: If E =@ = B, then secat(p: E — B) = —1.
With this convention,

TCS(x) = -1+1=0,
whereas a contractible space X with |X| > 1 has

TCY(X)>0+1=1.
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Symmetrized topological complexity

We can consider
ax :PX = X x X,  wx(7) = (4(0),7%(1))

as a Zso-equivariant map.

Definition (Basabe—Gonzalez—Rudyak—Tamaki, 2014)

The symmetrized topological complexity of X, denoted TC*(X), is the
minimum k such that X x X admits a cover by invariant open sets

Uy, Uy, ...,U, each of which admits an equivariant local section

g; . Ul — PX Ole'X,




Symmetric motion planning

TC*(—) has the following properties:

(1) TC*(X) =TC*(Y) if X ~Y;

(2) TC(X) < TC*(X);

(3) TCY(X) —1 < TC¥(X) < TC¥(X) for X an ENR.

From (2), (3) and the fact that TC¥(S™) = 2 for all n, we have

TC*(S**") =2, and

1 < TC¥(S°%) < 2.



Symmetric motion planning

Recall the proof that TC(S°44) < 1.

Although Uy = {(A,B) | A# —B} and U; = {(A,—A)} are invariant,
and sg is equivariant, sq is not equivariant.

B
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Equivariant sectional category

Let G be a compact Lie group.

Definition (Colman-G, 2012)

The equivariant sectional category of a G-fibration p : E — B, denoted
secatg(p), is the minimum k such that B admits a cover by invariant
open sets Uy, ..., U, each of which admits an equivariant local section

Si:Ui—>EOfp.

In particular,
TC*(X) = secatz, (7x).



Equivariant sectional category

The (k + 1)-fold fibred join of a fibration p : E— B is a fibration
pr: J5(E) = B
with fibre J*(F), the (k + 1)-fold join of the fibre of p.

If p is a G-fibration, then so is py for k > 0.

The following generalizes a result of Schwarz.

Proposition (G, 2017)

Let p: E — B be a G-fibration over a paracompact base space. Then
secatg(p) < k if and only if py, : JE(E) — B admits a (global) G-section.




Equivariant sectional category

The obstructions to finding a G-section of py, : J&(E) — B live in Bredon

cohomology groups ‘
H’GH(B; mi(JEF))

where the local coefficients are given by

ri(JEFNGH) = mi( T (F)T) = my(JE(F)).

Corollary
Let p: E — B be a G-fibration, with B a G-CW complex of dimB > 2.
Assume ;(FH) = 0 for all subgroups H < G and all i < s, some s > 0.

Then
dimB

s+1°

secat(p) <




Equivariant sectional category

Theorem (G, 2017)
Let X be an s-connected polyhedron. Then

2dimX

TC(X) < ,
C() s+ 1

Proof: Apply previous Corollary to 7x : PX — X x X, and note:
» X x X can be given a Zo-CW structure;

» Fibre of 7y is based loop space 2X, and QX?%2 ~ Py X, the based
path space.

Compare Farber's (2004) upper bound for TC(X).
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Lower bounds for TC*(X)

Lower bounds for TC¥(X) are given by ‘zero-divisors cup-length’ in
Zo-equivariant cohomology.

More precisely, if h* is any Zs-equivariant cohomology theory with
products, and there exist

uy, ..., u € ker(A*: h*(X x X) = h*(X))

with wy - - -uy, # 0, then TCZ(X) > k.

Can this be used to prove TC*(5°44) > 27




. mY v
ower bounds for TC~ (X))

With h*(—) = H*(EZa Xz, —) (Borel cohomology, constant coefficients),
there are insufficient products.

With h*(—) = Hj, (—) (Bredon cohomology), very few computations of
cup products are known.

Finally we tried the most naive thing, h*(—) = H*(—/Z>), the
cohomology of the orbit space.



Lower bounds for TC> (X)

Let SP?(X) = (X x X)/Zs, the symmetric square of X.
Denote by dX C SP?(X) the image of the diagonal AX C X x X.

Theorem (G, 2017)

Suppose there are uy, ..., ux € H*(SP?(X)) which restrict to zero in
H*(dX), such that uy - --uy, # 0. Then TC¥(X) > k.




c T
Lower bounds for (2

Theorem (G, 2017)
We have TC*(S") = 2 for n > 1 odd.

Proof: Nakaoka (1956) made extensive computations of the cohomology
rings of symmetric powers.

In particular, his work shows there is an element x € H"(SP(S™); Z2)
which restricts to zero in H"(dS™; Zs) and has 22 # 0.

Therefore TC*(S™) > 2. O



c T
Lower bounds for (2

Remarks

» Gonzélez (2017) has applied symmetric squares and Nakaoka's results
to prove that

TC¥(RP?) = TCS(RP*) = Emb(RP*) = 2¢*1  fore > 1.

> Since SP2(S') ~ Mob ~ S', we cannot deduce that TC*(S') > 2.
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Monoidal topological complexity

The definition of TC¥(X) does not incorporate the condition

Monoidal The motion from A to A is constant at A.

Definition (lwase—Sakai, 2010)

The monoidal topological complexity of X, denoted TCM (X)), is the
minimum k such that X x X admits a cover by open sets Uy, Uy, ..., U,
each of which contains the diagonal AX and admits a local section

si : Uy — PX of mx satisfying s;(A, A) = const 4.




Monoidal symmetrized topological complexity

When X is an ENR, lwase-Sakai showed that

TC(X) < TCM(X) < TC(X) + 1.

Conjecture (lwase—Sakai, 2012)
For any locally finite simplicial complex X, we have TCM (X) = TC(X).

v

Theorem (Dranishnikov, 2014)

Let X be an s-connected simplicial complex such that
(s +1)(TC(X)+1) > dimX + 1.

Then TCM(X) = TC(X).
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Monoidal symmetrized topological complexity

Definition

The monoidal symmetrized topological complexity of X, denoted
TCM2(X), is the minimum k such that X x X admits a cover by
invariant open sets U, Uy, . .., Uy, each of which contains the diagonal
AX and admits a local equivariant section s; : U; — PX of mx satisfying
si(A, A) = const 4.
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Theorem (G, 2017)
Let X be a paracompact ENR. Then TCM:*(X) = TC*(X).

Proof: Using relative Zso-homotopy lifting, deform an equivariant section
o0:X x X — J% (PX) to another such o’ which has o’|ax given by
constant paths.

This requires:

» AX — X x X is a Zs-cofibration.
> (mx)k: I (PX) — X x X is a Zo-fibration.

> JF(QX72) ~ x,
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Corollary

Let X be a paracompact ENR. Suppose there are relative classes
Uy, ..., up € H*(SP?(X),dX) such that uy - --uy # 0.

Then TC¥(X) = TCM=(X) > k.

Proof uses the long exact sequence of a triple (SP?(X),U;,dX).
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Theorem (G, 2017)
TC*(S) = 2.

Proof: Since (SP%(S!),dS') ~ (Méb, d Mob), it is sufficient to find
u € HY(Mbb, d M&b; Zs) such that u? # 0.

We may take u to be the Poincaré dual of the core circle.




Monoidal symmetrized topolog

Remarks

» Don Davis (2017) has proved TC*(S!) = 2 using theorems from
general topology.

» Jesis Gonzélez (2017) has used Nakaoka's results to show that
TC(S! x S') > 3, which combined with the product inequality

TC¥(X xY) < TCE(X) + TC*(Y)

also implies the above result.
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Further work

» Analogues of all our results hold for symmetrized higher topological
complexity TC (X). However, we do not know if

TCS (S =m  forall m > 2.
» Find a homotopically interesting space X with TC*(X) < TC%(X).

» Define rational symmetrized topological complexity TC%(X), and
describe it in terms of equivariant minimal models.
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