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Topological complexity of motion planning

Topological complexity of motion planning

Definition

The sectional category (or Schwarz genus) of a fibration p : E → B,
denoted secat(p), is the minimum k such that B admits a cover by open
sets U0, U1, . . . , Uk, each of which admits a local section si : Ui → E of p.

For any space X, consider the free path fibration

πX : PX → X ×X, πX(γ) =
(
γ(0), γ(1)

)
.

Definition (Farber, 2003)

The topological complexity of X, denoted TC(X), is

TC(X) := secat(πX).



Topological complexity of motion planning

Motivation

If X is the configuration space of a mechanical system, then sections of
πX are motion planning algorithms for that system.

The simplest1 motion planning algorithms are continuous (this requires X
to be contractible).

The number TC(X) quantifies the minimum complexity1 of motion
planning algorithms in systems whose configuration space is homotopy
equivalent to X.

1From the topological viewpoint.



Topological complexity of motion planning

Example: odd spheres

A

B

A

−A

U0 = {(A,B) | A 6= −B}

s0(A,B) = shortest path, unit speed

U1 = {(A,−A)}

s1(A,−A) = geodesic arc with initial
velocity v(A)

This shows TC(Sodd) ≤ 1. Then Sodd 6' ∗ implies TC(Sodd) = 1.



Topological complexity of motion planning

Example: even spheres

A similar construction (using a vector field on Seven with one singularity)
gives TC(Seven) ≤ 2. The lower bound TC(Seven) ≥ 2 comes from

Theorem (Farber)

Suppose there exist cohomology classes

u1, . . . , uk ∈ ker (∆∗ : H∗(X ×X)→ H∗(X)) ,

(where ∆ : X → X ×X is the diagonal) such that u1 · · ·uk 6= 0.
Then TC(X) ≥ k.



Symmetric motion planning

Symmetric motion planning

We may impose additional conditions on our motion planning algorithms,
such as that they are:

Symmetric The motion from B to A is the reverse of the
motion from A to B;

Monoidal The motion from A to A is constant at A.

These lead to several variants of TC(X).



Symmetric motion planning

Symmetric topological complexity

Restricting the path fibration πX : PX → X ×X results in a fibration

π′X : P ′X → F (X, 2),

where P ′X denotes the space of paths in X with distinct endpoints,
and F (X, 2) = {(x, y) ∈ X ×X | x 6= y}.

Both P ′X and F (X, 2) are free Z2-spaces, and π′X is equivariant.

Definition (Farber, 2005, Farber–G, 2006)

The symmetric topological complexity of X, denoted TCS(X), is

TCS(X) := secat
(
π′X/Z2 : P ′X/Z2 → F (X, 2)/Z2

)
+ 1.



Symmetric motion planning

Immersion and embedding dimensions

Given a smooth manifold M , define

Imm(M) = min{k ∈ Z |M immerses in Rk},

Emb(M) = min{k ∈ Z |M embeds in Rk}.

Theorem (Farber–Tabachnikov–Yuzvinsky, 2003)

If n 6= 1, 3, 7 then
TC(RPn) = Imm(RPn).

Theorem (González–Landweber, 2009)

If n 6= 6, 7, 11, 12, 14, 15 then

TCS(RPn) = Emb(RPn).



Symmetric motion planning

TCS(−) is not a homotopy invariant

Convention: If E = ∅ = B, then secat(p : E → B) = −1.

With this convention,

TCS(∗) = −1 + 1 = 0,

whereas a contractible space X with |X| > 1 has

TCS(X) ≥ 0 + 1 = 1.



Symmetric motion planning

Symmetrized topological complexity

We can consider

πX : PX → X ×X, πX(γ) =
(
γ(0), γ(1)

)
as a Z2-equivariant map.

Definition (Basabe–González–Rudyak–Tamaki, 2014)

The symmetrized topological complexity of X, denoted TCΣ(X), is the
minimum k such that X ×X admits a cover by invariant open sets
U0, U1, . . . , Uk, each of which admits an equivariant local section
σi : Ui → PX of πX .



Symmetric motion planning

TCΣ(−) has the following properties:

(1) TCΣ(X) = TCΣ(Y ) if X ' Y ;

(2) TC(X) ≤ TCΣ(X);

(3) TCS(X)− 1 ≤ TCΣ(X) ≤ TCS(X) for X an ENR.

From (2), (3) and the fact that TCS(Sn) = 2 for all n, we have

TCΣ(Seven) = 2, and

1 ≤ TCΣ(Sodd) ≤ 2.



Symmetric motion planning

Recall the proof that TC(Sodd) ≤ 1.

Although U0 = {(A,B) | A 6= −B} and U1 = {(A,−A)} are invariant,
and s0 is equivariant, s1 is not equivariant.
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Equivariant sectional category

Equivariant sectional category

Let G be a compact Lie group.

Definition (Colman–G, 2012)

The equivariant sectional category of a G-fibration p : E → B, denoted
secatG(p), is the minimum k such that B admits a cover by invariant
open sets U0, . . . , Uk, each of which admits an equivariant local section
si : Ui → E of p.

In particular,
TCΣ(X) = secatZ2(πX).



Equivariant sectional category

The (k + 1)-fold fibred join of a fibration p : E → B is a fibration

pk : Jk
B(E)→ B

with fibre Jk(F ), the (k + 1)-fold join of the fibre of p.

If p is a G-fibration, then so is pk for k ≥ 0.

The following generalizes a result of Schwarz.

Proposition (G, 2017)

Let p : E → B be a G-fibration over a paracompact base space. Then
secatG(p) ≤ k if and only if pk : Jk

B(E)→ B admits a (global) G-section.



Equivariant sectional category

The obstructions to finding a G-section of pk : Jk
B(E)→ B live in Bredon

cohomology groups
H i+1

G (B;πi(J
kF ))

where the local coefficients are given by

πi(J
kF )(G/H) = πi(J

k(F )H) = πi(J
k(FH)).

Corollary

Let p : E → B be a G-fibration, with B a G-CW complex of dimB ≥ 2.
Assume πi(F

H) = 0 for all subgroups H ≤ G and all i < s, some s ≥ 0.
Then

secatG(p) ≤ dimB

s+ 1
.



Equivariant sectional category

Theorem (G, 2017)

Let X be an s-connected polyhedron. Then

TCΣ(X) ≤ 2 dimX

s+ 1
.

Proof: Apply previous Corollary to πX : PX → X ×X, and note:

I X ×X can be given a Z2-CW structure;

I Fibre of πX is based loop space ΩX, and ΩXZ2 ≈ P0X, the based
path space.

Compare Farber’s (2004) upper bound for TC(X).



Lower bounds for TCΣ(X)

Lower bounds for TCΣ(X)

Lower bounds for TCΣ(X) are given by ‘zero-divisors cup-length’ in
Z2-equivariant cohomology.

More precisely, if h∗ is any Z2-equivariant cohomology theory with
products, and there exist

u1, . . . , uk ∈ ker
(
∆∗ : h∗(X ×X)→ h∗(X)

)
with u1 · · ·uk 6= 0, then TCΣ(X) ≥ k.

Can this be used to prove TCΣ(Sodd) ≥ 2?



Lower bounds for TCΣ(X)

With h∗(−) = H∗(EZ2 ×Z2 −) (Borel cohomology, constant coefficients),
there are insufficient products.

With h∗(−) = H∗Z2
(−) (Bredon cohomology), very few computations of

cup products are known.

Finally we tried the most näıve thing, h∗(−) = H∗(−/Z2), the
cohomology of the orbit space.



Lower bounds for TCΣ(X)

Let SP 2(X) = (X ×X)/Z2, the symmetric square of X.

Denote by dX ⊆ SP 2(X) the image of the diagonal ∆X ⊆ X ×X.

Theorem (G, 2017)

Suppose there are u1, . . . , uk ∈ H∗(SP 2(X)) which restrict to zero in
H∗(dX), such that u1 · · ·uk 6= 0. Then TCΣ(X) ≥ k.



Lower bounds for TCΣ(X)

Theorem (G, 2017)

We have TCΣ(Sn) = 2 for n > 1 odd.

Proof: Nakaoka (1956) made extensive computations of the cohomology
rings of symmetric powers.

In particular, his work shows there is an element x ∈ Hn(SP (Sn);Z2)
which restricts to zero in Hn(dSn;Z2) and has x2 6= 0.

Therefore TCΣ(Sn) ≥ 2.



Lower bounds for TCΣ(X)

Remarks

I González (2017) has applied symmetric squares and Nakaoka’s results
to prove that

TCΣ(RP 2e) = TCS(RP 2e) = Emb(RP 2e) = 2e+1 for e ≥ 1.

I Since SP 2(S1) ≈ Möb ' S1, we cannot deduce that TCΣ(S1) ≥ 2.



Monoidal symmetrized topological complexity

Monoidal topological complexity

The definition of TCΣ(X) does not incorporate the condition

Monoidal The motion from A to A is constant at A.

Definition (Iwase–Sakai, 2010)

The monoidal topological complexity of X, denoted TCM (X), is the
minimum k such that X ×X admits a cover by open sets U0, U1, . . . , Uk,
each of which contains the diagonal ∆X and admits a local section
si : Ui → PX of πX satisfying si(A,A) = constA.



Monoidal symmetrized topological complexity

When X is an ENR, Iwase–Sakai showed that

TC(X) ≤ TCM (X) ≤ TC(X) + 1.

Conjecture (Iwase–Sakai, 2012)

For any locally finite simplicial complex X, we have TCM (X) = TC(X).

Theorem (Dranishnikov, 2014)

Let X be an s-connected simplicial complex such that

(s+ 1)(TC(X) + 1) > dimX + 1.

Then TCM (X) = TC(X).



Monoidal symmetrized topological complexity

Monoidal symmetrized topological complexity

Definition

The monoidal symmetrized topological complexity of X, denoted
TCM,Σ(X), is the minimum k such that X ×X admits a cover by
invariant open sets U0, U1, . . . , Uk, each of which contains the diagonal
∆X and admits a local equivariant section si : Ui → PX of πX satisfying
si(A,A) = constA.



Monoidal symmetrized topological complexity

Theorem (G, 2017)

Let X be a paracompact ENR. Then TCM,Σ(X) = TCΣ(X).

Proof: Using relative Z2-homotopy lifting, deform an equivariant section
σ : X ×X → Jk

X×X(PX) to another such σ′ which has σ′|∆X given by
constant paths.

This requires:

I ∆X ↪→ X ×X is a Z2-cofibration.

I (πX)k : Jk
X×X(PX)→ X ×X is a Z2-fibration.

I Jk(ΩXZ2) ' ∗.



Monoidal symmetrized topological complexity

Corollary

Let X be a paracompact ENR. Suppose there are relative classes
u1, . . . , uk ∈ H∗(SP 2(X), dX) such that u1 · · ·uk 6= 0.
Then TCΣ(X) = TCM,Σ(X) ≥ k.

Proof uses the long exact sequence of a triple (SP 2(X), Ūi, dX).



Monoidal symmetrized topological complexity

Theorem (G, 2017)

TCΣ(S1) = 2.

Proof: Since (SP 2(S1), dS1) ≈ (Möb, ∂Möb), it is sufficient to find
u ∈ H1(Möb, ∂Möb;Z2) such that u2 6= 0.

We may take u to be the Poincaré dual of the core circle.



Monoidal symmetrized topological complexity

Remarks

I Don Davis (2017) has proved TCΣ(S1) = 2 using theorems from
general topology.

I Jesús González (2017) has used Nakaoka’s results to show that
TCΣ(S1 × S1) ≥ 3, which combined with the product inequality

TCΣ(X × Y ) ≤ TCΣ(X) + TCΣ(Y )

also implies the above result.



Monoidal symmetrized topological complexity

Further work

I Analogues of all our results hold for symmetrized higher topological
complexity TCΣ

m(X). However, we do not know if

TCΣ
m(Sodd) = m for all m > 2.

I Find a homotopically interesting space X with TCΣ(X) < TCS(X).

I Define rational symmetrized topological complexity TCΣ
Q(X), and

describe it in terms of equivariant minimal models.
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