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The Motion Planning problem

= Path-connected spacé of configurations (of
mechanical system, robot,...)
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Path-connected spacé of configurations (of
mechanical system, robot,...)

Find algorithm which has as input, B € X (initial
and final states) and as output a path/ — X with
v(0) = Aandy(1) = B

Corresponds to finding a sectien X x X — X!
of the path fibration

T XD = X x X, 71(7) = ((0),7(1))
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The Motion Planning problem

= Theorem (Farber) There exists @ntinuous section
s of 7 if and only if X is contractible
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m A subsetU C X x X Is called docal domain if

there is a continuous map U — X! with
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Theorem (Farber) There exists @ntinuous section
s of = If and only If X Is contractible

A subsetU C X x X Is called docal domain if

there is a continuous map: U — X' with
moo = ldy

Definition The Topological Complexity of X,
TC(X)istheminkst. X x X =U,U---UU

where a) Thd/; are local domains
b)i#£j=UnU;=10
c) EachU; i1s an ENR
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Theorem (Farber) There exists @ntinuous section
s of = If and only If X Is contractible

A subsetU C X x X Is called docal domain if

there is a continuous map: U — X' with
moo = ldy

Definition The Topological Complexity of X,
TC(X)istheminkst. X x X =U,U---UU

where a) Thd/; are local domains
b)i#£j=UnU;=10
c) EachU; i1s an ENR

Theorem (Farber)X ~ Y = TC(X) = TC(Y)
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Why study TC?

= Practical applications in design of automated
mechanical systems
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Practical applications in design of automated
mechanical systems

Connection with immersion problem:
Thm (Farber, Tabachnikov, Yuzvinsky)

I, n=123,7,

TCRPY) = { I, +1 else

wherel, Is the smallest dim of Euclidean space In
which RP" immerses
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Practical applications in design of automated
mechanical systems

Connection with immersion problem:
Thm (Farber, Tabachnikov, Yuzvinsky)

I, n=123,7,

TCRP") = { I, +1 else

wherel, Is the smallest dim of Euclidean space In
which RP" immerses

Interesting In its own right, for example
Problem (Farber) For an abstract grodpcompute

TC(G) = TC(K (G, 1))
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Schwarz genus

m Letp: E — B be afibration

= Definition The Schwarz genus of p, genus(p), IS
min.ks.t. B =U; U---UU; with eachU; open InB
and local sections;: U; — E (withpo s; = Idy.)
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Theorem (Farber) For nice spaces,

TC(X) = genus(m: X! — X x X)
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Letp: £ — B be a fibration

Definition The Schwarz genus of p, genus(p), IS
min.k s.t. B = U, U---UU; with eachU; open InB

and local sections;: U; — E (withpo s; = Idy.)
Theorem (Farber) For nice spaces,

TC(X) = genus(m: X! — X x X)

Other examples includent(X) = genus(p: PX — X)
wherep is Serre path fibration, and work of S Smale and
V Vassiliev on complexity of algorithms for solving
polynomial equations
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Lower bounds for TC

m AssumeH* (X x X) =2 H*(X)® H*(X) as
algebras, where product on the right is

(@@ P)(y®d) = (-1)"May @ G5
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(@@ P)(y®d) = (-1)"May @ G5

m Let] = ker (U: H*(X) R H*(X) — H*(X)) be
Ideal of zero-divisors
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TC(X) > cup-lengthl)
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AssumeH* (X x X) = H*(X) ® H*(X) as
algebras, where product on the right is

(@@ P)(y®d) = (-1)"May @ G5

Let I = ker (U: H*(X)® H*(X) — H*(X)) be
Ideal of zero-divisors
Then

TC(X) > cup-lengthl)

More generallygenus(p) > cup-lengthker p*) for
any fibrationp (Schwarz)
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Lower bounds for TC

= Main result: The above lower bound farC can be
sharpened using cohomology operations
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Main result: The above lower bound faFC can be
sharpened using cohomology operations

Fadell, Husseini (92)- Improved classical cup-length
lower bd for LS-cat by assigning an integer weight
cwet(u) touw € H*(X) and noting that if

uq - - - up = 0 then

cat(X) > Z cwgt (u;)
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Main result: The above lower bound faFC can be
sharpened using cohomology operations

Fadell, Husseini (92)- Improved classical cup-length
lower bd for LS-cat by assigning an integer weight
cwet(u) touw € H*(X) and noting that if

uq - - - up = 0 then

cat(X) > Z cwgt (u;)

This can be generalised genus(p: £ — B) and
applied toTC = genus(7)
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Sectional category weight

p: E — B fibration,u € H*(B) (any coefficients)

= Definition Thesectional category weight of u wrt p,
wgt, (u), is min. k. s.t. whenevef: Y — Bis a

map withgenus(f*p) < k then f*(u) = 0
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Sectional category weight

p: E — B fibration,u € H*(B) (any coefficients)

= Definition Thesectional category weight of u wrt p,
wgt, (u), is min. k. s.t. whenevef: Y — Bis a

map withgenus(f*p) < k thenf*(u) =

= Proposition If u; - - - u = 0 then

genus(p) > wgt, ( ) > ngt u; )

= Proposition wgt, (u) > 1 if and only if p*(u) = 0
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Applications to TC

= In particular theT' C-weight of u € H*(X x X) is
wgt (u), wherer: X! — X x X is the path
fibration. Ifu; ---up # 0 € H*(X x X) then
TC(X) > > wgt,(u;)
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Applications to TC

= In particular theT' C-weight of u € H*(X x X) is
wgt (u), wherer: X! — X x X is the path
fibration. Ifu; ---up # 0 € H*(X x X) then
TC(X) > > wgt,(u;)

= We haver*(u) = 0 < A*(u) =0, sowgt_(u) > 1
If and only If v Is a zero-divisor
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In particular theT'C-weight of u € H*(X x X) is
wegt (u), wherer: X! — X x X is the path
fibration. Ifu; ---up # 0 € H*(X x X) then
TC(X) > > wgt,(u;)

We haver*(u) = 0 & A*(u) =0, sowgt_(u) > 1
If and only If v Is a zero-divisor

Hence the previous lower bound can be sharpened
by finding indecomposableswith wgt_(u) > 2
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Applications to TC

Letf: H*(—; R) — H**'(—;S) be a stable cohomology
operation

= Defineexcess of 0, e(#), to be the largest st
f(u) = 0 for all u with dim(u) <n

= e.0.¢(Sq") =i, e(P") = 2i ande(3) = 1
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Letd: H*(—; R) — H*t'(—; S) be a stable cohomology
operation

Defineexcess of 6, ¢(), to be the largest st
f(u) = 0 for all u with dim(u) <n
e.g.e(Sq") = 4, e(P?) = 2i ande(3) = 1

Theorem (Farber, G) Supposg¢) = n and
u € H"(X; R). Then the element

Olu) =1x0(u) —0(u) x 1 € H"™(X x X;9)

haswgt_(6(u)) > 2
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Applications to TC

The proof is a simple Mayer-Vietoris argument, using the
following Lemma:
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The proof is a simple Mayer-Vietoris argument, using the
following Lemma:

Lemmalet f = (p,v): Y — X x X beamap
whereyp, 1) denote the projections gfonto the
factors of X x X. Thengenus(f*7) < 2 if and only
If Y = AU B, whereA andB are open inY” and

pla = Y|4, vlB = Y|B
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ExXample: Lens spaces

= L = S*"*/7,, podd prime
« H'(L3:Z,) = Ag 2] ® Z,ly)/ (")

m Here|z| =1, |y| = 2 andy = Bz where
B: H"(—;Z,) — H""'(—;Z,) is mod p Bockstein
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ExXample: Lens spaces

= L = S*"*/7,, podd prime
« H'(L3:Z,) = Ag 2] ® Z,ly)/ (")

m Here|z| =1, |y| = 2 andy = Bz where
B6: H"(—;Z,) — H""'(—;Z,) is mod p Bockstein

= Compute(z ® 2)5*" = (—1)" (") zy" ® zy" in
H* (L)) ® H*(L})

= HenceTC(L)) > 1+ 2(2n) = 4n + 1 provided
pt (27). InfactTC(L) = 4n + 2 in such cases
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Theorem (G) Letp: E — B be a fibration, and
suppose the Massey prodyet (3, v) is defined and
non-zero. Then

genus(p) > wgt, () + min{wgt,(a), wgt, ()}
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Theorem (G) Letp: E — B be a fibration, and

suppose the Massey prodyet (3, v) is defined and
non-zero. Then

genus(p) > wgt, () + min{wgt,(a), wgt, ()}

WhenX = S° — B, complement of Borromean
rings, this givesI'C(X) > 3 while
cup-length/) = 2

O
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Theorem (G) Letp: E — B be a fibration, and
suppose the Massey prodyet (3, v) is defined and
non-zero. Then

genus(p) > wgt,(5) + min{wgt,(«), wgt,(v)}
WhenX = S% — B, complement of Borromean
rings, this givesI'C(X) > 3 while

cup-length/) = 2

Conjecture If u € H"(X) hascwgt(u) > 2 then

u e H"(X x X) haswgt_(u) > 2, for n in a range
depending oronn(X)

(true If X Is simply-connected)
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