Sectional category weight and topological complexity

(joint with Michael Farber)

Mark Grant

mark.grant@durham.ac.uk

Path-connected space X of configurations (of mechanical system, robot,...)

- Path-connected space X of configurations (of mechanical system, robot,...)
- Find algorithm which has as input $A, B \in X$ (initial and final states) and as output a path $\gamma \colon I \to X$ with $\gamma(0) = A$ and $\gamma(1) = B$

- Path-connected space X of configurations (of mechanical system, robot,...)
- Find algorithm which has as input $A, B \in X$ (initial and final states) and as output a path $\gamma \colon I \to X$ with $\gamma(0) = A$ and $\gamma(1) = B$

- Path-connected space X of configurations (of mechanical system, robot,...)
- Find algorithm which has as input $A, B \in X$ (initial and final states) and as output a path $\gamma \colon I \to X$ with $\gamma(0) = A$ and $\gamma(1) = B$

- Path-connected space X of configurations (of mechanical system, robot,...)
- Find algorithm which has as input $A, B \in X$ (initial and final states) and as output a path $\gamma \colon I \to X$ with $\gamma(0) = A$ and $\gamma(1) = B$

- Path-connected space X of configurations (of mechanical system, robot,...)
- Find algorithm which has as input $A, B \in X$ (initial and final states) and as output a path $\gamma \colon I \to X$ with $\gamma(0) = A$ and $\gamma(1) = B$

- Path-connected space X of configurations (of mechanical system, robot,...)
- Find algorithm which has as input $A, B \in X$ (initial and final states) and as output a path $\gamma \colon I \to X$ with $\gamma(0) = A$ and $\gamma(1) = B$

- Path-connected space X of configurations (of mechanical system, robot,...)
- Find algorithm which has as input $A, B \in X$ (initial and final states) and as output a path $\gamma \colon I \to X$ with $\gamma(0) = A$ and $\gamma(1) = B$

Corresponds to finding a section $s: X \times X \to X^I$ of the path fibration

$$\pi \colon X^I \to X \times X, \quad \pi(\gamma) = (\gamma(0), \gamma(1))$$

Theorem (Farber) There exists a *continuous* section s of π if and only if X is contractible

- **Theorem** (Farber) There exists a *continuous* section s of π if and only if X is contractible
- A subset $U \subseteq X \times X$ is called a *local domain* if there is a continuous map $\sigma \colon U \to X^I$ with $\pi \circ \sigma = \mathrm{Id}_U$

- **Theorem** (Farber) There exists a *continuous* section s of π if and only if X is contractible
- A subset $U \subseteq X \times X$ is called a *local domain* if there is a continuous map $\sigma \colon U \to X^I$ with $\pi \circ \sigma = \mathrm{Id}_U$
- **Definition** The *Topological Complexity* of X, $\mathbf{TC}(X)$ is the min. k s.t. $X \times X = U_1 \cup \cdots \cup U_k$
 - where a) The U_i are local domains
 - b) $i \neq j \Rightarrow U_i \cap U_j = \emptyset$
 - c) Each U_i is an ENR

- **Theorem** (Farber) There exists a *continuous* section s of π if and only if X is contractible
- A subset $U \subseteq X \times X$ is called a *local domain* if there is a continuous map $\sigma \colon U \to X^I$ with $\pi \circ \sigma = \mathrm{Id}_U$
- **Definition** The *Topological Complexity* of X, $\mathbf{TC}(X)$ is the min. k s.t. $X \times X = U_1 \cup \cdots \cup U_k$
 - where a) The U_i are local domains
 - b) $i \neq j \Rightarrow U_i \cap U_j = \emptyset$
 - c) Each U_i is an ENR
- Theorem (Farber) $X \simeq Y \Rightarrow \mathbf{TC}(X) = \mathbf{TC}(Y)$

Why study TC?

 Practical applications in design of automated mechanical systems

Why study TC?

- Practical applications in design of automated mechanical systems
- Connection with immersion problem: Thm (Farber, Tabachnikov, Yuzvinsky)

$$\mathbf{TC}(\mathbb{R}P^n) = \begin{cases} I_n & n = 1, 3, 7, \\ I_n + 1 & \text{else} \end{cases}$$

where I_n is the smallest dim of Euclidean space in which $\mathbb{R}P^n$ immerses

Why study TC?

- Practical applications in design of automated mechanical systems
- Connection with immersion problem:Thm (Farber, Tabachnikov, Yuzvinsky)

$$\mathbf{TC}(\mathbb{R}P^n) = \left\{ egin{array}{ll} I_n & n = 1, 3, 7, \\ I_n + 1 & \mathrm{else} \end{array} \right.$$

where I_n is the smallest dim of Euclidean space in which $\mathbb{R}P^n$ immerses

Interesting in its own right, for example **Problem** (Farber) For an abstract group G compute $\mathbf{TC}(G) = \mathbf{TC}(K(G, 1))$

Let $p \colon E \to B$ be a fibration

- Let $p \colon E \to B$ be a fibration
- **Definition** The *Schwarz genus* of p, genus(p), is min. k s.t. $B = U_1 \cup \cdots \cup U_k$ with each U_i open in B and local sections $s_i \colon U_i \to E$ (with $p \circ s_i = \mathrm{Id}_{U_i}$)

- Let $p \colon E \to B$ be a fibration
- **Definition** The *Schwarz genus* of p, genus(p), is min. k s.t. $B = U_1 \cup \cdots \cup U_k$ with each U_i open in B and local sections $s_i \colon U_i \to E$ (with $p \circ s_i = \operatorname{Id}_{U_i}$)
- **Theorem** (Farber) For nice spaces X,

$$\mathbf{TC}(X) = \mathrm{genus}(\pi \colon X^I \to X \times X)$$

- Let $p \colon E \to B$ be a fibration
- **Definition** The *Schwarz genus* of p, genus(p), is min. k s.t. $B = U_1 \cup \cdots \cup U_k$ with each U_i open in B and local sections $s_i \colon U_i \to E$ (with $p \circ s_i = \mathrm{Id}_{U_i}$)
- **Theorem** (Farber) For nice spaces X,

$$\mathbf{TC}(X) = \mathrm{genus}(\pi \colon X^I \to X \times X)$$

Other examples include $cat(X) = genus(p: PX \rightarrow X)$ where p is Serre path fibration, and work of S Smale and V Vassiliev on complexity of algorithms for solving polynomial equations

Assume $H^*(X \times X) \cong H^*(X) \otimes H^*(X)$ as algebras, where product on the right is

$$(\alpha \otimes \beta)(\gamma \otimes \delta) = (-1)^{|\beta||\gamma|} \alpha \gamma \otimes \beta \delta$$

Assume $H^*(X \times X) \cong H^*(X) \otimes H^*(X)$ as algebras, where product on the right is

$$(\alpha \otimes \beta)(\gamma \otimes \delta) = (-1)^{|\beta||\gamma|} \alpha \gamma \otimes \beta \delta$$

Let $I = \ker \left(\bigcup : H^*(X) \otimes H^*(X) \to H^*(X) \right)$ be ideal of *zero-divisors*

Assume $H^*(X \times X) \cong H^*(X) \otimes H^*(X)$ as algebras, where product on the right is

$$(\alpha \otimes \beta)(\gamma \otimes \delta) = (-1)^{|\beta||\gamma|} \alpha \gamma \otimes \beta \delta$$

- Let $I = \ker \left(\bigcup : H^*(X) \otimes H^*(X) \to H^*(X) \right)$ be ideal of *zero-divisors*
- Then

$$TC(X) > \text{cup-length}(I)$$

Assume $H^*(X \times X) \cong H^*(X) \otimes H^*(X)$ as algebras, where product on the right is

$$(\alpha \otimes \beta)(\gamma \otimes \delta) = (-1)^{|\beta||\gamma|} \alpha \gamma \otimes \beta \delta$$

- Let $I = \ker \left(\bigcup : H^*(X) \otimes H^*(X) \to H^*(X) \right)$ be ideal of *zero-divisors*
- Then

$$TC(X) > \text{cup-length}(I)$$

More generally $genus(p) > cup-length(ker p^*)$ for any fibration p (Schwarz)

■ Main result: The above lower bound for TC can be sharpened using cohomology operations

- Main result: The above lower bound for TC can be sharpened using cohomology operations
- Fadell, Husseini (92)- Improved classical cup-length lower bd for LS-cat by assigning an integer weight $\operatorname{cwgt}(u)$ to $u \in H^*(X)$ and noting that if $u_1 \cdots u_k \neq 0$ then

$$cat(X) > \sum_{i=1}^{k} cwgt(u_i)$$

- Main result: The above lower bound for TC can be sharpened using cohomology operations
- Fadell, Husseini (92)- Improved classical cup-length lower bd for LS-cat by assigning an integer weight $\operatorname{cwgt}(u)$ to $u \in H^*(X)$ and noting that if $u_1 \cdots u_k \neq 0$ then

$$\operatorname{cat}(X) > \sum_{i=1}^{k} \operatorname{cwgt}(u_i)$$

This can be generalised to $genus(p: E \rightarrow B)$ and applied to $\mathbf{TC} = genus(\pi)$

 $p \colon E \to B$ fibration, $u \in H^*(B)$ (any coefficients)

 $p \colon E \to B$ fibration, $u \in H^*(B)$ (any coefficients)

Definition The sectional category weight of u wrt p, wgt $_p(u)$, is min. k. s.t. whenever $f: Y \to B$ is a map with genus $(f^*p) \le k$ then $f^*(u) = 0$

 $p \colon E \to B$ fibration, $u \in H^*(B)$ (any coefficients)

- **Definition** The sectional category weight of u wrt p, $\operatorname{wgt}_p(u)$, is min. k. s.t. whenever $f \colon Y \to B$ is a map with $\operatorname{genus}(f^*p) \leq k$ then $f^*(u) = 0$
- **Proposition** If $u_1 \cdots u_k \neq 0$ then

$$\operatorname{genus}(p) > \operatorname{wgt}_p(u_1 \cdots u_k) \ge \sum_{i=1}^k \operatorname{wgt}_p(u_i)$$

 $p \colon E \to B$ fibration, $u \in H^*(B)$ (any coefficients)

- **Definition** The sectional category weight of u wrt p, wgt $_p(u)$, is min. k. s.t. whenever $f: Y \to B$ is a map with genus $(f^*p) \le k$ then $f^*(u) = 0$
- **Proposition** If $u_1 \cdots u_k \neq 0$ then

$$\operatorname{genus}(p) > \operatorname{wgt}_p(u_1 \cdots u_k) \ge \sum_{i=1}^{\kappa} \operatorname{wgt}_p(u_i)$$

Proposition $\operatorname{wgt}_p(u) \geq 1$ if and only if $p^*(u) = 0$

In particular the \mathbf{TC} -weight of $u \in H^*(X \times X)$ is $\operatorname{wgt}_{\pi}(u)$, where $\pi \colon X^I \to X \times X$ is the path fibration. If $u_1 \cdots u_k \neq 0 \in H^*(X \times X)$ then $\mathbf{TC}(X) > \sum \operatorname{wgt}_{\pi}(u_i)$

- In particular the \mathbf{TC} -weight of $u \in H^*(X \times X)$ is $\operatorname{wgt}_{\pi}(u)$, where $\pi \colon X^I \to X \times X$ is the path fibration. If $u_1 \cdots u_k \neq 0 \in H^*(X \times X)$ then $\mathbf{TC}(X) > \sum \operatorname{wgt}_{\pi}(u_i)$
- We have $\pi^*(u) = 0 \Leftrightarrow \triangle^*(u) = 0$, so $\operatorname{wgt}_{\pi}(u) \geq 1$ if and only if u is a zero-divisor

- In particular the \mathbf{TC} -weight of $u \in H^*(X \times X)$ is $\operatorname{wgt}_{\pi}(u)$, where $\pi \colon X^I \to X \times X$ is the path fibration. If $u_1 \cdots u_k \neq 0 \in H^*(X \times X)$ then $\mathbf{TC}(X) > \sum \operatorname{wgt}_{\pi}(u_i)$
- We have $\pi^*(u) = 0 \Leftrightarrow \triangle^*(u) = 0$, so $\operatorname{wgt}_{\pi}(u) \geq 1$ if and only if u is a zero-divisor
- Hence the previous lower bound can be sharpened by finding indecomposables u with $\operatorname{wgt}_{\pi}(u) \geq 2$

Let $\theta \colon H^*(-;R) \to H^{*+i}(-;S)$ be a stable cohomology operation

Let $\theta \colon H^*(-;R) \to H^{*+i}(-;S)$ be a stable cohomology operation

- Define excess of θ , $e(\theta)$, to be the largest n st $\theta(u) = 0$ for all u with $\dim(u) < n$
- e.g. $e(\operatorname{Sq}^i) = i$, $e(\operatorname{P}^i) = 2i$ and $e(\beta) = 1$

Let $\theta \colon H^*(-;R) \to H^{*+i}(-;S)$ be a stable cohomology operation

- Define excess of θ , $e(\theta)$, to be the largest n st $\theta(u) = 0$ for all u with $\dim(u) < n$
- e.g. $e(\operatorname{Sq}^i) = i$, $e(\operatorname{P}^i) = 2i$ and $e(\beta) = 1$
- **Theorem** (Farber, G) Suppose $e(\theta) = n$ and $u \in H^n(X; R)$. Then the element

$$\overline{\theta(u)} = 1 \times \theta(u) - \theta(u) \times 1 \in H^{n+i}(X \times X; S)$$

has
$$\operatorname{wgt}_{\pi}(\overline{\theta(u)}) \geq 2$$

The proof is a simple Mayer-Vietoris argument, using the following Lemma:

The proof is a simple Mayer-Vietoris argument, using the following Lemma:

Lemma Let $f = (\varphi, \psi)$: $Y \to X \times X$ be a map where φ , ψ denote the projections of f onto the factors of $X \times X$. Then $\operatorname{genus}(f^*\pi) \leq 2$ if and only if $Y = A \cup B$, where A and B are open in Y and $\varphi|_A \simeq \psi|_A$, $\varphi|_B \simeq \psi|_B$

 $L_p^n = S^{2n+1}/\mathbb{Z}_p$, p odd prime

- $L_p^n = S^{2n+1}/\mathbb{Z}_p$, p odd prime
- $\blacksquare H^*(L_p^n; \mathbb{Z}_p) \cong \Lambda_{\mathbb{Z}_p}[x] \otimes \mathbb{Z}_p[y]/(y^{n+1})$
- Here |x| = 1, |y| = 2 and $y = \beta x$ where $\beta \colon H^n(-; \mathbb{Z}_p) \to H^{n+1}(-; \mathbb{Z}_p)$ is mod p Bockstein

- $L_p^n = S^{2n+1}/\mathbb{Z}_p$, p odd prime
- $\blacksquare H^*(L_p^n; \mathbb{Z}_p) \cong \Lambda_{\mathbb{Z}_p}[x] \otimes \mathbb{Z}_p[y]/(y^{n+1})$
- Here |x| = 1, |y| = 2 and $y = \beta x$ where $\beta \colon H^n(-; \mathbb{Z}_p) \to H^{n+1}(-; \mathbb{Z}_p)$ is mod p Bockstein
- Compute $(x \otimes x)\bar{y}^{2n} = (-1)^n \binom{2n}{n} xy^n \otimes xy^n$ in $H^*(L^n_p) \otimes H^*(L^n_p)$

- $L_p^n = S^{2n+1}/\mathbb{Z}_p$, p odd prime
- $\blacksquare H^*(L_p^n; \mathbb{Z}_p) \cong \Lambda_{\mathbb{Z}_p}[x] \otimes \mathbb{Z}_p[y]/(y^{n+1})$
- Here |x| = 1, |y| = 2 and $y = \beta x$ where $\beta \colon H^n(-; \mathbb{Z}_p) \to H^{n+1}(-; \mathbb{Z}_p)$ is $\operatorname{mod} p$ Bockstein
- Compute $(x \otimes x)\bar{y}^{2n} = (-1)^n \binom{2n}{n} x y^n \otimes x y^n$ in $H^*(L_p^n) \otimes H^*(L_p^n)$
- Hence $\mathbf{TC}(L_p^n) > 1 + 2(2n) = 4n + 1$ provided $p \nmid \binom{2n}{n}$. In fact $\mathbf{TC}(L_p^n) = 4n + 2$ in such cases

Further work

Theorem (G) Let $p \colon E \to B$ be a fibration, and suppose the Massey product $\langle \alpha, \beta, \gamma \rangle$ is defined and non-zero. Then

$$\operatorname{genus}(p) > \operatorname{wgt}_p(\beta) + \min\{\operatorname{wgt}_p(\alpha), \operatorname{wgt}_p(\gamma)\}$$

Further work

Theorem (G) Let $p \colon E \to B$ be a fibration, and suppose the Massey product $\langle \alpha, \beta, \gamma \rangle$ is defined and non-zero. Then genus $(p) > \mathrm{wgt}_p(\beta) + \min\{\mathrm{wgt}_p(\alpha), \mathrm{wgt}_p(\gamma)\}$

When $X = S^3 - B$, complement of Borromean rings, this gives $\mathbf{TC}(X) > 3$ while cup-length(I) = 2

Further work

- **Theorem** (G) Let $p \colon E \to B$ be a fibration, and suppose the Massey product $\langle \alpha, \beta, \gamma \rangle$ is defined and non-zero. Then genus $(p) > \mathrm{wgt}_p(\beta) + \min\{\mathrm{wgt}_p(\alpha), \mathrm{wgt}_p(\gamma)\}$
- When $X = S^3 B$, complement of Borromean rings, this gives $\mathbf{TC}(X) > 3$ while cup-length(I) = 2
- Conjecture If $u \in H^n(X)$ has $\operatorname{cwgt}(u) \geq 2$ then $\bar{u} \in H^n(X \times X)$ has $\operatorname{wgt}_{\pi}(\bar{u}) \geq 2$, for n in a range depending on $\operatorname{conn}(X)$ (true if X is simply-connected)

Thanks for listening!