Monadic Predicate Logic is Decidable

Boolos et al, *Computability and Logic* (textbook, 4th Ed.)
Nota>on
These slides use
A instead of ∀
E instead of ∃
& instead of ∧
¬ instead of ¬
Equality statements are atomic formulas:
x=y, a=b, x=a, etc
“sentence” = formula with no free variables
Monadic First-Order Predicate Logic (FOPL)

• The fragment of Predicate logic that uses no predicates with more than 1 argument

• In: \[\text{Ex } F(x) \land \text{Ey } -F(y) \]
 \[\text{AxEy } -(x=y) \] (equality statements permitted!)
 \[G(a) \lor G(b) , \text{ etc.} \]

• Out: \[\text{AxEy } (R(x,y)) \]
 \[R(a,b,b) \lor \text{Ex } F(x) \]
 (because they use a dyadic/triadic/etc predicates)
Some reasoning tasks

• For given sentences ϕ and ψ, does ψ follow from ϕ? ("Does ϕ have ψ as a logical consequence?")
 – More precisely: Is it true that for all models M,
 if $M \models \phi$ then $M \models \psi$?

• For given a sentence ϕ, is ϕ satisfiable? We mean:
 – Is there a model that M such that $M \models \phi$?
 – E.g., $\exists x F(x) \land \exists x \neg F(x)$ is satisfiable

• Analogous for formulas with free variables
Monadic FOPL satisfiability is decidable
Key theorem
(Lőwenheim-Skolem 1915)

• If S is a monadic sentence that has a model, then S is true in some model whose domain consist of at most $2^k.r$ members, where k is the number of predicate letters in S and r the number of variables in S.

• Part 1, proof: The Key Theorem

• Part 2, proof: It follows that monadic FOPL is decidable
Proof of Part 1 (= Key Theorem)

- Let S be a sentence of monadic FOPL. Its predicates are P_1, \ldots, P_k
- Let $M \models S$, and let D be the domain of M
 - D may be infinite
- Let the signature of d in D (henceforth $\text{sig}(d)$) be the sequence $<j_1, \ldots, j_k>$ where $j_i = 1$ if M specifies that P_i is true of d and $j_i = 0$ otherwise
 - $\text{sig}(d)$ tell us which predicates in S are true of d
 - given S, there are exactly 2^k different possible signatures
• We call d and d’ similar if \(\text{sig}(d) = \text{sig}(d’) \)

 – This means that d and d’ happen to share all their properties \(P_1, \ldots, P_k \).

• “similar” is an equivalence relation, so each d in D belongs to an equivalence class of similar domain elements

 – Each equivalence class is a subset of D
 – there are at most \(2^k \) equivalence classes
Towards a **smaller model** M'

- Construct a subset $E \subseteq D$ as follows:
- Choose r elements from each equivalence class
 - If a class has fewer than r elements then choose them all
- E cannot have more than $2^k \cdot r$ elements (r for each equivalence class)
- Define: M' is the restriction of M to E
 - just like M, but defined for elements of E only
- To be proven: $|M'| = S$
A useful concept: match

• Informally: Two sequences of elements of E that are of the same length match if their elements are similar and differences within each sequence are “respected” in the other:

• Formally: $c_1,..,c_n$ matches $d_1,..,d_n$ iff
 1. c_i is similar to d_i (for every $1 <= i <= n$)
 2. $c_i = c_j$ iff $d_i = d_j$ (for every $1 <= i,j <= n$)
Example

These 2 sequences of domain objects do not match:

\[c_1, \ldots, c_n = a, b, a \]
\[d_1, \ldots, d_n = a, b, c \]

If a and c are similar then clause 1 is fulfilled, but clause 2 is not (because \(c_1 = c_3 \) but \(d_1 \neq d_3 \))

Reason behind clause 2: equality statements in FOPL (e.g. in the sentence \(A x E y - (x=y) \))
Another useful concept

• A formula ϕ containing at most the free variables $x_1,..,x_n$ is **satisfied by elements $d_1,..,d_n$ in a model M iff**

$$M \models \phi (x_1:=d_1,..,x_n:=d_n)$$

(A simple extension of the idea of satisfiability)
Lemma

Let

• $G(x_1,..,x_n)$ be any subformula of S, containing at most the free variables $x_1,..,x_n$
• $d_1,..,d_n$ a sequence of elements of D (the original domain)
• $e_1,..,e_n$ a sequence of elements of E (dom constructed above)
• $d_1,..,d_n$ matches sequence $e_1,..,e_n$

Then

$G(x_1,..,x_n)$ is satisfied by $d_1,..,d_n$ in M iff $G(x_1,..,x_n)$ is satisfied by $e_1,..,e_n$ in M'
Why does this lemma hold? (informally)

• As far as the predicates P_1, \ldots, P_k occurring in S are concerned, each element d_i is just like e_i
 – Clause 1 of “match”

• The only other thing that can matter (because of equality statements!) is whether two elements in a given sequence are identical
 – Clause 2 of “match”
Sketch of a formal proof (by formula induction)

• **Base Cases:** G is atomic. G is of the form $P_i(t)$ or of the form $t_1 = t_2$ (t, t_1, and t_2 are variables or constants)

1. Let $G = P_i(t)$. We need to prove:

 $P_i(t)$ is satisfied by d_1 in M iff
 $P_i(t)$ is satisfied by e_1 in M'

 But d_1 and e_1 are similar, hence the same predicates hold true of d_1 and e_1 (including the predicate P_i). This proves the first Base Case.
Sketch of proof by formula induction

- **Base Cases**: G is atomic. G is of the form $P_i(t)$ or of the form $t_1=t_2$.

2. Let $G = t_1=t_2$. We need to prove

 $t_1=t_2$ is satisfied by d_1, d_2 in M iff

 $t_1=t_2$ is satisfied by e_1, e_2 in M'

 But the sequences $d_1 d_2$ and $e_1 e_2$ match, hence $d_1 = d_2$ iff $e_1 = e_2$. This proves the second Base Case.
Sketch of proof by formula induction

Inductives Cases: [Proofs omitted, but see Questions for the Practical] It suffices to address -, v, A.

1. Assume the Lemma holds for ϕ. Prove that it holds for $\neg \phi$.
2. Assume the Lemma holds for ϕ and ψ. Prove that it holds for $\phi \lor \psi$.
3. Assume the Lemma holds for ϕ. Prove that it holds for $\forall x \phi$.
• S is itself a subformula of S, hence it follows directly (with n=0) from the Lemma that

\[
S \text{ is true in } M \text{ iff } S \text{ is true in } M'
\]

Recall: M may be infinite, but M’ is finite, with at most \(2^k \cdot r\) elements
Proof of Part 2

• Let S be a FOPL sentence
• Associate with S a quantifier-free formula S’ such that $\text{S’ is satisfiable iff S is.}$ (Next page)

If we manage to do this then we deduce:

• The satisfiability of S can be decided using truth tables (since these suffice for deciding the satisfiability of S’)
• Hence the satisfiability of S can be decided
Proof of Part 2

Making use of Part 1, associate with S a quantifier-free formula S' which is satisfiable iff S is. As follows:

Inductively associate a quantifier-free H' with each subformula H of S, as follows:

- If H is atomic: $H' = H$ (no change!)
- If H is a truth functional compound: $H' = H$
- If $H = \text{Ex}F$: $H' = F(a_1)v..vF(a_m)$ $m = 2^k.r$
- If $H = \text{Ax}F$: $H' = F(a_1)&..&F(a_m)$ $m = 2^k.r$

S itself is a subformula of S, so this constructs a quantifier-free S' as well. The construction guarantees:

S' is satisfiable iff S is satisfiable
Example (using an arbitrary S)

Consider $S =$

$$(((\text{Ex}F(x) \& \text{Ex}G(x)) \& -\text{(Ex}(F(x)\&G(x))))$$

Here $k=2$, $r=3$, so $2^k.r=12$

The following formula is constructed:

$$F(a_1) \lor .. \lor F(a_{12}) \& G(a_1) \lor .. \lor G(a_{12}) \&$$

$$- ((F(a_1)\&G(a_1)) \lor .. \lor (F(a_{12})\&G(a_{12}))))$$
Example

\[
F(a_1) \lor \ldots \lor F(a_{12}) \land G(a_1) \lor \ldots \lor G(a_{12}) \land
- ((F(a_1) \land G(a_1)) \lor \ldots \lor (F(a_{12}) \land G(a_{12})))
\]

Propositional formula with 24 atoms
Each can be True or False => truth table has \(2^{24}\) rows. Try to find a row that is True. Example:

\[
\begin{array}{cccccccc}
F(a_1), F(a_2), \ldots F(a_{12}), G(a_1), G(a_2), G(a_3), \ldots G(a_{12}) \\
T & F & F & F & F & T & F & F
\end{array}
\]
Example

F(a_1), F(a_2), \ldots F(a_{12}), G(a_1), G(a_2), G(a_3), \ldots G(a_{12})

\begin{array}{cccccccc}
T & F & F & F & F & T & F & F \end{array}

We can read off from this a model with 12 elements that satisfies the formula. The same model must satisfy the original (quantified) formula S too.
Concluding

• The proof suggests an algorithm for deciding whether a formula is satisfiable
 – Not satisfiable \Rightarrow no row of the truth table is True
 – Also applicable to logical consequence
 – Implementations exist
• 2^k implies Exponential in complexity (though faster methods exist)
• Decidability proofs often tell us something about the **worst-case runtime** of a program
Other FOPL fragments

• For every n, it is decidable whether a given formula of FOPL has a model of size $m \leq n$
 – Not proven here
• However, dyadic FOPL is undecidable
 – If time permits, we will prove this later
 – For now, just one observation
Observe:

- Key Theorem does not hold for dyadic FOPL
- Example: the following FOPL sentence does not have a finite model

 $\forall x \exists y (x = x) \& \exists x \forall y (x < y) \& \forall x \forall y \forall z ((x < y \& y < z) \rightarrow x < z) \& \forall x \neg (x < x)$

Why not?