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The flow and resulting drag force in suspensions consisting of monodisperse, solid spheres, and
non-Newtonian liquids have been studied via direct numerical simulations. The liquids are purely
viscous (i.e., nonelastic) with shear thinning and/or thixotropic (time-dependent) behavior. The
configuration of spheres is static. The interstitial liquid flow is solved by means of the
lattice-Boltzmann method. Only creeping flow conditions have been considered. Thixotropy enters
via a network integrity parameter that relates to the local, apparent viscosity and for which a
transport equation has been solved. The results show that the shear-thinning character of the liquid
manifests itself more pronounced at higher solids volume fractions. Thixotropy tends to increase the
drag force due to the decoupling of locations of high deformation rates and low viscosity. © 2009
American Institute of Physics. [DOI: 10.1063/1.3200946]

I. INTRODUCTION

Dense  solid-liquid  suspensions involving non-
Newtonian carrier fluids are of practical relevance in appli-
cations such as oil sands mining,1 drilling of oil and gas
wells,” and food and pharmaceutical processing.3 Fundamen-
tal insights in the interactions of solid and liquid at the level
of the solid particles could be relevant for a better under-
standing of the processes underlying these applications, and
thus could help in process design and optimization. Also,
process modeling (partly) based on computational fluid dy-
namics (CFD) at the macroscale has become a viable and
widely used approach. Multiphase CFD, however, requires
closure relations for mesoscale phenomena such as the hy-
drodynamic interaction between the phases involved.* A lot
of research effort has been invested in developing and as-
sessing closures for multiphase systems with a Newtonian
carrier phase, such as drag force relations for random particle
assemblies,s’6 and models for turbulent and granular
fluctuations.” In situations where the carrier phase behaves as
a non-Newtonian liquid, the mesoscale fluid mechanics
(hydrodynamic interactions, dispersed phase behavior) po-
tentially becomes more complicated. This may have signifi-
cant implications for the applicability of closures (based on
Newtonian fluid concepts) for the mesoscale phenomena of
suspensions with non-Newtonian liquids.

With the above in mind we have carried out computa-
tional research that aims at assessing non-Newtonian effects
in dense solid-liquid suspensions, with a focus on the drag
force and the way it depends on liquid properties and the
solids volume fraction. The study is limited to suspensions
consisting of monodisperse spheres in a purely viscous (i.e.,
nonelastic) carrier liquid. The sphere assemblies considered
are random and homogeneous; there are no large-scale (sol-
ids volume fraction) gradients. The liquid flow through the
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sphere assemblies is slow, i.e., dominated by viscous forces
rather than inertia forces.

The type of non-Newtonian liquid model adopted in this
study is instigated by the main application of our research
which is on oil sands processing, more specifically the han-
dling of its waste streams (tailings, see e.g., Ref. 1). Tailings
consist of water, clay particles (“small,” surface active solid
particles), coarser sand particles, and residual bitumen. The
clay particles are the source of non-Newtonian behavior;
they tend to form networks, thereby enhancing the consis-
tency of the mixture. The level of integrity of the networks
depends on the local flow conditions: Liquid deformation
breaks down the network thereby reducing the (apparent)
viscosity and thus giving rise to shear-thinning behavior. In
addition, clay suspensions have time-dependent rheology.
Due to ionic transport limitations at the microscale, the net-
work needs time to build up. Also the breakdown as a result
of deformation is not instantaneous. Since the local apparent
viscosity depends on the level of network integrity, the de-
formation history in the liquid influences its rheological be-
havior which is usually termed thixotropy. Note the multi-
scale character of the tailings transport behavior and the way
this study fits in. The clay particles and their interactions are
not explicitly resolved in this study; they are lumped in a
non-Newtonian liquid model for the carrier fluid. The present
focus is on how the non-Newtonian clay suspension interacts
with coarser, solid particles (i.e., sand) that we explicitly
resolve. In research on the macroscopic flow behavior of
tailings in, e.g., pipeline systems the results of the present
study could be used as closures for the interphase (sand-
liquid) momentum transfer.

The aim of the paper is to reveal in what way, and to
what extent the shear-thinning and time-dependent rheology
of the continuous phase influences the drag force on static,
random sphere assemblies. The study is purely computa-
tional. The flow of interstitial liquid is directly solved by
means of the lattice-Boltzmann method (LBM). The trans-
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port equation describing network integrity is solved in con-
junction with the liquid flow with a finite volume scheme.
Flow and scalar transport are directly coupled via a relation
between local apparent viscosity and network integrity.

The paper is organized in the following manner: First the
rheology model is introduced. Then the simulation procedure
is outlined. Subsequently verifications regarding system size
and spatial resolution are presented. To relate to earlier work
from literature, these verifications consider Newtonian lig-
uids. Then we present results regarding the flow of shear-
thinning, time-independent (nonthixotropic) liquids through
sphere assemblies. The results regarding the drag force are
interpreted in terms of the mesoscale flow structures. Finally
we consider the effect of thixotropy. At the end the main
observations are reiterated.

Il. THIXOTROPIC RHEOLOGY MODEL

The thixotropy model we have adopted is based on early
work due to Storey and Merrill* and Moore,” more recently
applied by Ferroir et al."® and Mujumdar et al.' In this
purely viscous model we keep track of a scalar \ that varies
between 0 and | and indicates the integrity of the network
(A=0: no network; A=1: fully developed network). Its trans-
port equation reads

N 2N

E+uia—)6i=—klj/)\+k2(l—)\) (1)
(summation over repeated indices implied) with u; the ith
component of the fluid velocity vector, and y= \f'2dijd,»j a gen-
eralized deformation rate; d;;=1/2[(du;/ dx;)+(du;/ dx;)] is
the rate of strain tensor. The first term on the right hand side
of Eq. (1) indicates breakdown of the network due to liquid
deformation; the second term is responsible for build-up of
the network with a time constant 1/k, associated to it. In the
model, the apparent viscosity u, is linked to the network
integrity according to

Mo = o1+ aN), (2)

with u., and «a as model constants.
In a homogeneous shear field with shear rate 7y, the
steady-state solution to Eq. (1) reads

Cky+ky

55 3)
The associated steady-state viscosity is [combine Egs. (2)
and (3)]

k, )
= | 1+ . 4
Mgy = M ( ak17+k2 (4)

The parameter u., can thus be interpreted as the infinite-
shear viscosity. The zero-shear viscosity is uo= w..(1+a). A
typical representation of the steady-state rheology [Eq. (4)]
for >0 is given in Fig. 1. As can be seen, it represents a
shear-thinning liquid making the transition from the zero-
shear viscosity u, to infinite-shear shear viscosity u., around
a characteristic shear rate y,=k,/k;. With the latter defini-
tion, Eq. (4) can also be written as
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FIG. 1. Steady-state rheology with infinite-shear viscosity u.. and zero-
shear viscosity wo. At y="7,, =Moot o)/ 2.
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lll. SIMULATION PROCEDURE
A. Flow geometry and boundary conditions

The flow systems we will be considering consist of ran-
dom solid sphere assemblies with liquid in between. All
spheres in the assembly have the same diameter d. The liquid
flows through the space not occupied by the spheres with a
superficial velocity ug as the result of a body force f acting
on the liquid. The body force f is tuned such that in steady
state a preset value of ug is achieved. The boundaries of the
three-dimensional flow domain are fully periodic. A force
balance then implies that that the average drag force Fp on a
sphere in the assembly is'?

1
FD:fch(g— 1), (6)

with ¢ as the solids volume fraction of the assembly. This
procedure—usually in the context of a lattice-Boltzmann
scheme for solving the flow—has been applied by a number
of authors to study drag forces due to Newtonian fluid flow
as a function of solids volume fraction and/or Reynolds
number.” > More recent simulation studies also involve
the effect of suspensions with particles having different slip
velocities'® and particle size distributions.® Note that Eq. (6)
expresses the convention for the drag force as, e.g., ex-
pressed by Van der Hoef et al.’ among others.'*'®!7 The total
average force by the fluid on a sphere F;_ then is the sum of
Fp and a contribution from the body force (e.g., in its role of
an average pressure gradient): Fy_ ;=Fp+f(7/6)d>. It can be
verified® that Fy_ =Fp/(1—¢).

In Newtonian cases (with dynamic viscosity u) the drag
force [Eq. (6)] is commonly made dimensionless according
to Fj,=Fp/3mpudu,. Simulations are usually carried out with
f and thus Fy, acting in a specific direction with (as a result)
ug having the same direction. The scalar values F'j, and u; are
the vector components in that direction. Computational re-
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sults for monosized spheres and low Reynolds numbers
(with Re=pu,d/ ) have been summarized in correlations in
terms of Fl*), e.g., by Van der Hoef et al.,6

10¢
(1-¢?"

The flow of thixotropic liquids (as defined in Sec. II)
through monosized sphere assemblies can be pinned down
with a set of five dimensionless numbers. In this paper these
have been chosen as Re,,=pu,d/ p..,, Db=u,/dk,, S=v.d/u,,
a, and ¢ (Db is the ratio of the time scale of the liquid 1/k,
and of the flow d/u, termed Deborah number; having a
Deborah number does not imply viscoelasticity). This five-
dimensional parameter space we limit by only considering a
single, low value of Re,,=0.06. We also fix the viscosity ratio
to a+1=16. Since @ >0 the low value of the Reynolds num-
ber implies creeping flow conditions at all times.

The particle configurations are created by randomly
placing a number of spheres in a cubic domain. Since we are
interested in dense suspensions (up to ¢$=0.530) random
placement usually needs to be followed by compacting the
particle assernbly.18 After compaction to the desired volume
fraction, the configuration is randomized again by giving the
spheres random velocities and letting the system evolve for
some time as a granular gas with the particles undergoing
fully elastic, frictionless collisions. Then the configuration is
frozen to be used in the fluid flow simulation procedure.

F= (1= $)(1+1.5Ve). 7)

B. Fluid flow modeling

As in many of the earlier works on the subject of drag on
sphere assemblies, we wused the lattice-Boltzmann
method'*?° to solve for the flow of interstitial liquid. It has a
uniform, cubic grid on which fictitious fluid particle moves
in a specific set of directions, and collides to mimic the be-
havior of an incompressible, viscous fluid. The specific
lattice-Boltzmann (LB) scheme employed here is due to
Somers.”’ The scheme can accurately account for liquids
with nonuniform viscosity as recently demonstrated by Derk-
sen and Prashant.”? The no-slip condition at the spheres’ sur-
faces was dealt with by means of an immersed boundary (or
forcing) method. We have validated and subsequently used
this method extensively to study the interaction of solid par-
ticles and Newtonian fluids.'”**° For instance, simulation
results of a single sphere sedimenting in a closed container
were compared to particle image velocimetry experiments of
the same system and showed good agreement in terms of the
sphere’s trajectory, as well as the flow field induced by the
motion of the falling sphere.23

It should be noted, however, that having a spherical par-
ticle on a cubic grid requires a calibration step, as first real-
ized by Ladd."? He introduced the concept of a hydrody-
namic diameter. The calibration involves placing a sphere
with a given diameter d,, in a fully periodic domain in creep-
ing flow and (computationally) measuring its drag force. The
hydrodynamic diameter d of that sphere is the diameter for
which the measured drag force corresponds to the expression
for the drag force on a simple cubic array of spheres due to
Sangani and Acrivos,26 which is a modification of the ana-
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Iytical expression due to Hasimoto.”’ Usually d is slightly
bigger than d, with d-d, typically equal to one lattice spac-
ing or less. The issue of the hydrodynamic diameter is par-
ticularly important in this study since the deviation of d from
d, is a function of the viscosity of the liquidlz’23 and since in
this study the liquid’s viscosity varies over the sphere’s sur-
face with an a priori unknown distribution. We have dealt
with this issue by assessing the resulting error in the drag
force and reducing it to an acceptable level. The relative
error in the drag force can be controlled by means of the
spatial resolution of the simulations. Since d—d, typically
equals one grid spacing, increasing d relative to the grid
spacing reduces the relative deviation (d—d,)/d, and thus the
relative deviation in the drag force. In the Sec. IV the quan-
titative details are discussed.

C. Scalar transport modeling

Having a thixotropic liquid requires solving a transport
equation in the network integrity parameter, Eq. (1). This we
do by means of a finite volume scheme on the same (uniform
and cubic) grid as the lattice-Boltzmann discretization. An
advantage of employing a finite volume formulation (over,
e.g., also using the LBM for scalar transport modeling) is the
availability of methods for suppressing numerical diffusion.
This is particularly important in the present application since
Eq. (1) does not have a molecular or turbulent diffusion
term; in order to correctly solve Eq. (1) we cannot afford to
have significant numerical diffusion. As in previous works,?®
total variation diminishing discretization with the Superbee
flux limiter for the convective fluxes® was employed. We
step in time according to an Euler explicit scheme. The de-
formation y=\2d;;d;; and the liquid velocity u; come from
the LBM; the distribution of \ is fed back to the flow solver
part by running the LBM with the apparent viscosity field wu,
stemming from Eq. (2). This makes the scalar transport and
the LBM part of the simulation procedure two way coupled.
The above procedure for performing flow simulations in-
volving thixotropic fluids has been successfully verified by
comparing simulation results with semianalytical solutions
for a few canonical flows.”

At the spherical solid-liquid interfaces the dJ\/dn=0
boundary condition is imposed via interpolation: Grid points
inside the sphere, close to the surface, are given a value of A
equal to the interpolated value of A, one outward normal unit
vector away from that point. These “ghost” values of \ in-
side the spheres are used as boundary conditions in the ex-
plicit update of the M\-transport equation in the liquid
volume.”®

IV. VERIFICATION

As explained above, the issue of the hydrodynamic di-
ameter versus the given diameter and the dependence on the
viscosity of the former require careful consideration. Calibra-
tions according to Ladd'? were performed with a Newtonian
fluid at kinematic viscosity »=0.04 (in lattice units) such that
a set of spheres was created with hydrodynamic diameters of
d=12, 16, 24, and 32 lattice spacings. Spheres were placed
in a random assembly in a cubic domain with vertex length

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



083302-4 J. J. Derksen
14
* A
F, |
12r “
10} X R
& 20 '

4ac’)(lu)

FIG. 2. Dimensionless drag force Fj, for a Newtonian simulation at
Re=0.06 and ¢=0.373 as a function of the spatial resolution of the simula-
tion expressed in the number of lattice-spacings spanning the diameter d.
Squares: v=0.04 (the viscosity at which d was calibrated); triangles:
v=0.01; plusses: v=0.16.

L=6.25d at a solid volume fraction of ¢=0.373. First a
Newtonian liquid with »=0.04 (i.e., the same viscosity with
which the calibrations were done) was forced through this
assembly at the four resolutions considered, all four at
Re=u,d/v=0.06. The results are given in Fig. 2 (square
symbols). The relative placement of the spheres is the same
in the four simulations; the only difference is the spatial res-
olution. In terms of F}, the results at the three highest reso-
lutions differ less than 5% and can be considered grid inde-
pendent. Subsequently, we performed simulations with a
viscosity being a factor of 4 higher, and a factor of 4 lower
than the default viscosity of 0.04 (still Newtonian fluid, still
Re=0.06). Now we clearly see the effect of the hydrody-
namic diameter being dependent on the viscosity: At the
lower viscosity Fj, gets overpredicted (triangles); at the
higher viscosity it gets underpredicted (plusses). As antici-
pated, however, the deviations are a pronounced function of
the resolution. At the highest resolution (d=36) the devia-
tions are typically *£3% at the one but highest resolution
(d=24) of =5%. These deviations are worst-case deviations.
In our non-Newtonian simulations the maximum ratio of
highest over lowest viscosity is a+1=16, with the center
kinematic viscosity (u..+uo)/2p equal to 0.04. Given the
large parameter space and (consequently) large number of
simulations to be done, it was decided to perform the remain-
der of the simulations with a resolution of d=24 and to keep
the £5% error in mind when interpreting the results.

In terms of computational cost, also the size of the flow
domain (the ratio of domain size over sphere diameter L/d)
is a relevant parameter. Its influence is most strongly felt in
terms of statistical fluctuations, i.e., the extent to which the
average drag force F), changes from configuration to con-
figuration at constant ¢. Very large L/d will show minor
changes but are computationally expensive, smaller L/d will
show stronger case-to-case fluctuations, and at some level
will lead to artifacts related to the small system size and
periodic boundary conditions. The impact of L/d has been
measured in terms of the standard deviation of F, as a func-
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FIG. 3. Standard deviation of FJ, as a result of variations in the particle
configuration as a function of system size L (relative to sphere diameter d).
Newtonian simulations with Re=0.06 and ¢=0.373.

tion of system size (Fig. 3). At L/d=6.25, o(Fp)/F}, is less
than 0.02, which, given the other uncertainties, is considered
acceptable. In the remainder we will stick to L/d=6.25. Fur-
thermore, many of the F}, data points presented are the result
of averaging over a number (usually 3) of statistically inde-
pendent sphere configurations.

So far the performance of our simulations procedure has
been verified by internal comparisons (comparing simula-
tions done with the same computer code, however, with dif-
ferent numerical and physical settings). Since the immersed
boundary method used in this paper23’30 differs from more
common ways to impose no-slip conditions at curved sur-
faces in the lattice-Boltzmann method (the de facto standard
being set by Ladd'?), drag force results have also been com-
pared to results from literature; more specifically the results
due to Van der Hoef ef al.® on drag in random, monosized
sphere assemblies as a function of the solids volume fraction
¢ at creeping flow conditions and with Newtonian liquids.
They summarized their results with the correlation given in
Eq. (7). In Fig. 4 that correlation is compared to our simula-

30
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0|.5 )

FIG. 4. FJ, as a function of solids volume fraction ¢ for Newtonian flow
at Re=0.06. Solid curve: Eq. (7) [correlation due to Van der Hoef er al.
(Ref. 6)]; squares: present simulations.
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FIG. 5. (Color online) xz-cross sections through the flow domains, with the
horizontal (x) direction the direction of the mean flow. Shear-thinning, time-
independent liquids. Shades/colors indicate the apparent viscosity. From top
to bottom ¢=0.373, 0.459, and 0.530. From left to right S=1, 4, and 16,
respectively.

tions at the default settings (Re=0.06, resolution d=24, sys-
tem size L/d=6.25, v=0.04, and the hydrodynamic diameter
calibrated for this viscosity) showing good agreement. The
data points are the average of three sphere configurations.
Apparently the resolution is sufficiently high and the
Reynolds number sufficiently low to accurately reproduce
the empirical correlation [Eq. (7)].

V. RESULTS
A. Shear-thinning, time-independent liquids

Now we turn to drag force results for non-Newtonian
liquids. As discussed above, of the five dimensionless num-
bers governing the flow system, Re,, and the viscosity ratio
a+1 have fixed values, 0.06 and 16, respectively. Initially
only shear-thinning, time-independent liquids will be consid-
ered. Time-independent liquids have k,—cc so that Db=0.
The two degrees of freedom left are the solids volume frac-
tion ¢ and S=1,.d/u, All data points presented in this sec-
tion of the paper are average values of three statistically in-
dependent spherical particle configurations.

In Fig. 5 we show contour plots of the distribution of the
apparent viscosity in a cross section through the suspension
after steady state has been reached. The cross sections span
the xz-plane of the cubic periodic domain with the
x-direction the streamwise direction. The white circular disks
are cross sections through the spherical particles. The higher
the S, the higher the apparent viscosity in the suspension
gets. This is not surprising. At higher S (and thus higher y,)
the transition from zero-shear viscosity to infinite-shear vis-
cosity takes place at higher deformation rates (see Fig. 1).
Also the range of viscosities encountered in the suspension is
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FIG. 6. Doubly normalized drag force F), (top), average apparent viscosity
(u,) (middle), and root-mean-square values of the apparent viscosity
rms(u,) as a function of S for three solids volume fractions: from left to
right: ¢$=0.373, 0.459, and 0.530. Shear-thinning, time-independent liquids.

a function of S: If the characteristic shear rate y, of the liquid
is of the same order as the shear rates encountered in the
interstitial liquid, a relatively broad range of viscosities is
anticipated.

The above observations are presented in a more quanti-
tative sense in Fig. 6. The figure shows (for three
solids volume fractions) the doubly normalized drag force
Fy=Fp/Fpls. In these non-Newtonian cases Fj, is
based on the infinite-shear viscosity: Fj,=Fp/3mu..du; and
Fpls—o (by definition) is the Newtonian drag force at the
specific solids volume fraction normalized with 37 u..du,.
Figure 6 also shows the average apparent viscosity in
the suspension, and (as a measure of the spread in viscosities
in the liquid domain) the root-mean-square (rms) values
of the deviations from the mean apparent viscosity:
rms(u,) = \/(1/Vf)fvf(,ua—<,ua>)2dV with V; as the volume
of (interstitial) fluid. Interestingly rms(u,) goes through a
maximum with the location of the maximum dependent on
the solids volume fraction: The higher the ¢, the further the
maximum shifts to higher S. At higher ¢, the space between
the spheres gets narrower and (since the superficial velocity
has a fixed value) the deformation rates in the liquid in-
crease. As a result, the distribution of viscosities gets widest
for higher 7., i.e., higher S.

The increase in the drag force with increasing S as wit-
nessed in Fig. 6 is not solely due to an increase in the aver-
age apparent viscosity: If we normalize drag with (u,) in-
stead of w., ie., define F, ,  =Fp/3m(p,)du, and plot

Fy 0= FD () Fpls=o the values are significantly lower than

1, see Fig. 7. This is due to the apparent viscosity being
lower than the average in high-shear flow regions. The even-
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FIG. 7. Normalized drag force Fp ', \=Fp ,\/Fplss with Fp .
=Fp/3m(u,)dug as a function of S for three solids volume fractions—from
left to right: ¢=0.373, 0.459, and 0.530. Shear-thinning, time-independent
liquids.

tual drag force is the result of an interplay between the liquid
flow through the suspension and the resulting spatial viscos-
ity distribution.

The notion of the interaction between 7, and deforma-
tion rates in the suspensions has proven helpful in scaling the
doubly normalized drag force F},. Critical regions in the
suspension are the waist-shape gaps between neighboring
spheres. As a measure for the typical size of these waists we
take S=d[(¢p/ $)"*~1] with ¢y, as the solids volume
fraction at random close packing. For the latter we took
all cases with time-independent rheology (Db=0) consid-
ered. The drag force behaves fairly consistently over the
wide range of solids volume fractions considered (¢ from
0.330 to 0.530). Also for the viscosity distribution [as char-
acterized by (u,) and rms(u,)], the dimensionless group
6Y./u, approximately captures the effect of the solids vol-
ume fraction, see Fig. 9. The figure also shows that the ratio
u,/ 61s a useful deformation rate measure for determining the
average viscosity in the suspension.

B. Thixotropic liquids

Finally we investigate the effect of thixotropy (time-
dependent rheology) on the liquid flow and resulting drag
force in the suspension. The (now three) relevant dimension-
less numbers are Db=u,/dk,, S=7.d/u,, and ¢. As before

Aok =)

FD 0 0.330 4

FIG. 8. Doubly averaged drag force as a function of .6/u, with & defined
in the text. The different symbols relate to different solids volume fraction as
indicated. Shear-thinning, time-independent liquids.
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FIG. 9. Average viscosity (u,) and rms(u,) as a function of ¥,6/u,. The
different symbols relate to different solids volume fractions as indicated.
The curve on the top panel represents Eq. (5) with y=u,/ 8. Shear-thinning,
time-independent liquids.

we fixed Re,=0.06 and a+1=16. Given the three-
dimensional parameter space and the resulting large number
of simulation cases to be considered, we limited ourselves to
only one spherical particle configuration per solid volume
fraction. The interpretation of the thixotropic liquid results
will be mainly by comparing them with corresponding re-
sults with Db=0. In doing this, we compare (per value of ¢)
simulations with the same configuration of spheres only.

A numerical issue to be dealt with when having thixo-
tropic liquids is how to reach steady state. Since Re..=0.06
and since we have fixed v,=u../p=0.01 (related to the
spheres’ hydrodynamic diameter calibration) the superficial
velocity has to be u,=2.5X 107>, We anticipate significant
effects of the Deborah number on the drag force if the former
is in a (broad) range around 1. In order to reach a steady flow
and \-field, simulations have to run for at least few times the
liquid’s time scale 1/k,. At Db=1, running a simulation for a
time span of 1/k, would imply performing 960 000 time
steps. This number increases linearly with Db; the highest
Db considered in this study is of the order 100. Running so
many time steps for so many cases is impractical. The com-
putational effort can be reduced drastically, however, if we
realize that we are after steady-state solutions only. Then
solving the scalar transport equation [Eq. (1)] can be more
loosely coupled to solving the flow with the lattice-
Boltzmann method.

In our time stepping approach we alternate between
solving the scalar transport equation in the network param-
eter N and solving the flow with the lattice-Boltzmann
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FIG. 10. Iteration history of the volume-averaged network parameter (\)
(dashed line) and the body force to enforce the superficial velocity f, (solid
line). Both are normalized with their initial value. Each iteration consists of
400 scalar transport steps with Ar=1000, followed by 400 LB time steps
with (by definition) Ar=1.

method. We start with the steady-state solution obtained at
Db=0. We freeze that flow field and solve Eq. (1) for a
number of time steps, where (unlike in the lattice-Boltzmann
scheme) we can take time steps much bigger than 1, usually
Ar=0(10%). Then we freeze the scalar field and take a num-
ber of LB time steps to let the flow field adapt to the newly
developed scalar field. We again freeze the flow field and
again solve the scalar, etc. A typical way the system develops
is given in Fig. 10, where the evolution of the volume-
averaged scalar and the body force to drive the flow are
given. In the portions where the force is constant only the
scalar equation is solved, in the portions where the average
scalar is constant only LB steps are performed. The fluctua-
tions in the force signal are the result of a fairly stiff, how-
ever fast control algorithm used to force the superficial ve-
locity to its desired value. For one case with a relatively
small Deborah number (Db=0.2) the above iteration ap-
proach has been compared to the direct approach (solving
flow and scalar transport simultaneously). The differences in
the steady-state solutions (both scalar and flow) were insig-
nificant (of the order of ten times the machine accuracy).
Examples of steady-state results are given in Fig. 11 that
shows a cross section through one of the suspensions in

FIG. 11. (Color online) xz-cross sections through one flow domain, with the
horizontal (x) direction the direction of the mean flow. ¢$=0.420, S=4.
Thixotropic simulations with (from left to right and top to bottom) Db=0,
0.2, 1.0, 5.0, 25.0, and 125.0. Shades/colors indicate the apparent viscosity.
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FIG. 12. Simulation results with thixotropic liquids. From left to right: triply
normalized drag force, rms of viscosity, and average viscosity as a function
of Db. From top to bottom: ¢=0.330, 0.373. 0.420, 0.459, 0.500, and 0.530.
The different symbols denote different values of S as indicated.

terms of the apparent viscosity (note that the shades/color
scale in Fig. 11 is different from Fig. 5). The most visible
effect of thixotropy is a smearing-out of the viscosity fluc-
tuations. This effect sets in beyond Db=0.2 (the viscosity
fields at Db=0 and Db=0.2 are almost the same). The
smearing-out is due to the time it takes to build up or break
down the network. In an infinitely fast (Db=0) liquid, loca-
tions where the network is formed or broken down coincide
with places of respectively low (e.g., bigger voids in the
suspension) and high (shear layers at solid surfaces) defor-
mation rates. If the liquid needs time to respond to deforma-
tion conditions (Db>0) the break-down and build-up pro-
cesses are less localized with a smoother apparent viscosity
field as the result.

In Fig. 12 the results of all of our thixotropic simulations
(150 in total) are displayed, with Db as the independent
variable. The triply normalized drag force is defined as
Fp*=Fp /| Fy |pp=o- The smoothing effect on the viscosity
field shows as rms(u,) being a monotonically decreasing
function of Db in all cases. The average apparent viscosity,
in general slightly, reduces as a result of thixotropy (by some
20% maximum). The net effect is an increase in the drag; in
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all cases considered: F';,” > 1. The effect of thixotropy on the
drag force is not very big; the maximum increase is approxi-
mately 20% (which still is significantly more than our 5%
uncertainty measure related to calibration issues), occurring
for high Db in situations where the corresponding Db=0
system had a large rms(u,).

The increased drag force, also in cases for which the
average viscosity decreases demonstrates the relevance of
the viscosity distribution in the suspension. In the critical
regions between closely spaced sphere surfaces shear-
thinning liquids reduce drag as a result of the locally high
deformation rates. Thixotropy largely decouples locations of
high shear with those of low viscosity thereby increasing the
stresses in the critical regions, and thus increasing drag.

VI. SUMMARY

With a variety of applications in mind, the interaction of
solid particles and non-Newtonian (although purely viscous)
liquids has been studied. In homogeneous, steady shear the
liquids would show shear-thinning behavior. In addition, the
liquids are time dependent (thixotropic). By means of direct
simulations, the flow of liquid between random assemblies of
monosized spheres has been determined. The main interest is
in the (average) drag force on a sphere, and the way it de-
pends on the solids volume fraction, and the properties of the
liquid. Only creeping flow conditions have been considered.

Solving the flow is done with the lattice-Boltzmann
method on a uniform, cubic lattice. Having spherical
(curved) solid-liquid interfaces in the cubic lattice requires a
calibration in determining the sphere’s dimension.'** Since
this calibration depends on the viscosity, specific care was
required to control the error made this way. By choosing a
high (in comparison with similar studies on Newtonian
drag6’16) spatial resolution of d=24, the relative error was
limited to 5%.

After it was demonstrated that Newtonian drag force re-
sults could be reproduced accurately, first time-independent,
shear-thinning liquids were simulated. The strongly nonho-
mogeneous flow in the suspension generates an apparent vis-
cosity field with a distribution that depends on the interplay
between the flow topology (largely characterized by the sol-
ids volume fraction ¢) and the liquid properties (most promi-
nently its characteristic shear rate y,). The viscosity distribu-
tion is widest if y.~u,/ & with & as a measure for the typical
waist size of the space in between neighboring spheres. The
effect of the shear-thinning liquid properties on the drag
force (scaled with its Newtonian, infinite-shear-viscosity
counterpart) can be described fairly well as a unique function
of the dimensionless parameter .0/ u,, thereby capturing the
effect of the solids volume fraction.

Adding thixotropy to the physical picture can signifi-
cantly change the distribution of apparent viscosities in the
suspension. If the time scale of the liquid is comparable or
bigger than the characteristic flow time scale (for the latter
we take d/uy), i.e., if Db=1, the gradients in the viscosity
field get smoothed (in the limit of very large Db the viscosity
field would get uniform). The net effect is an increase in the
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drag force due to an increase in the viscosity in critical (high-
shear) locations in the suspension.

The results presented in this paper are clearly not uni-
versal; they specifically depend on the relatively simple rhe-
ology model [Egs. (1) and (2)] chosen. They do show, how-
ever, interesting interactions between the flow and the
apparent viscosity field, and its consequences for the drag
force. They also show the role of time dependence in the
liquid in a steady-state flow (dynamic properties acting on
steady-state phenomena).

In future work we plan to study dynamic systems (mov-
ing spheres) to see if and to what extent non-Newtonian be-
havior (shear thinning, time dependence) impacts on the in-
stabilities as, e.g., observed in fluidization/sedimentation. In
this respect also the potential promotion of agglomerative
behavior of particl<3532 as a result of more complex liquids
can be studied.
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