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In a fluidized bed, the drag force acts to oppose the downward force of gravity
on a particle, and thus provides the main mechanism for fluidization. Drag
models that are employed in large-scale simulations of fluidized beds are typically
based on either fixed-particle beds or the sedimentation of particles in liquids. In
low-Reynolds-number (Re) systems, these two types of fluidized beds represent
the limits of high Stokes number (St) and low St, respectively. In this work, the
fluid–particle drag behaviour of these two regimes is bridged by investigating the
effect of St on the drag force in low-Re systems. This study is conducted using
fully resolved lattice Boltzmann simulations of a system composed of fluid and
monodisperse spherical particles. In these simulations, the particles are free to translate
and rotate based on the effects of the surrounding fluid. Through this work, three
distinct regimes in the characteristics of the fluid–particle drag force are observed:
low, intermediate and high St. It is found that, in the low-Re regime, a decrease in
St results in a reduction in the fluid–particle drag. Based on the simulation results, a
new drag relation is proposed, which is, unlike previous models, dependent on St.
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1. Introduction
Constitutive models for the fluid–particle drag force are widely utilized in the

analysis of fluidized suspensions of solid particles (Sundaresan 2000). In fluidized
beds, the buoyant weight of particles is principally balanced by the drag force exerted
by the flowing fluid. As a result, the quantitative accuracy of model predictions
depends critically on the accuracy of drag force models. Therefore, in order to
achieve quantitative precision in the study of fluidized beds, such as those used in
the pharmaceuticals or oil industries, it is vital to accurately model the drag force
at the particle-scale level. Despite this fact, there are a number of limitations to the
drag models that are currently available in the literature, one of which is the inability
to account for the effect of particle translation and rotation. This particular limitation
is addressed and remedied through the current work.
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Models for the fluid–particle drag force have arisen through analytical (Brinkman
1947; Kim & Russel 1985; Koch & Sangani 1999), experimental (Darcy 1856;
Kozeny 1927; Carman 1937; Ergun 1952; Richardson & Zaki 1954; Wen & Yu 1966;
Garside & Al-Dibouni 1977; Davis & Acrivos 1985; Gidaspow 1994; Nguyen &
Ladd 2005) and computational methods (Hill, Koch & Ladd 2001; van der Hoef,
Beetstra & Kuipers 2005; Beetstra, van der Hoef & Kuipers 2007; Tenneti, Garg &
Subramaniam 2011). These drag relations seek to account for the interactions between
fluid and particles over a range of particle volume fraction, φ, and Reynolds number,
Re. For a fluid–particle system, the particle volume fraction, φ, is defined as

φ = NVp

Vtot
, (1.1)

where Vp is the particle volume, and N is the number of particles in the system of
interest with volume Vtot, while the Reynolds number is defined as

Re= ρf (1− φ)|us|dp

µf
, (1.2)

where ρf is the fluid density, µf is the dynamic fluid viscosity, dp is diameter of the
particle and us is the slip velocity, which is the difference between the fluid velocity,
uf , and the particle velocity, vp. Constitutive relations for the fluid–particle drag force
are often cast in terms of a dimensionless drag force, F, which is defined as

F= f fp · us

Fd,Stokes · us
, (1.3)

where f fp is the total fluid–particle interaction force minus the generalized buoyancy
arising from the slowly varying stress field, and the Stokes drag relation on a single
spherical particle at infinite dilution in a viscous fluid is given by

Fd,Stokes = 3πµf dpus. (1.4)

Thus, the quantity F can be thought of as a quantitative measure of the deviation from
the ideal Stokes behaviour (φ→ 0 and Re→ 0).

In the literature, two of the more commonly employed fluid–particle drag relations
are the models of Wen & Yu (1966) and Beetstra et al. (2007). In drag studies like
that of Beetstra et al. (2007), highly resolved numerical simulations based on the
lattice Boltzmann method (LBM) are used to study the flow of fluid past a fixed bed
of solid particles. On the other hand, drag relations, like that of Wen & Yu (1966),
are developed from sedimentation experiments. At the low-Re limit, the drag relation
of Beetstra et al. (2007) as a function of φ is given by the model of van der Hoef
et al. (2005):

Fvan der Hoef (φ)= 10φ
1− φ + (1− φ)

3(1+ 1.5
√
φ), (1.5)

while the equation of Wen & Yu (1966) is given by

FWen–Yu = (1− φ)−(n−2), (1.6)

with n= 4.65 (Wen & Yu 1966). In figure 1, the dimensionless drag curves of Wen
& Yu (1966) and van der Hoef et al. (2005) as functions of φ are compared. Key
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FIGURE 1. (Colour online) The dimensionless drag force, F, as a function of the particle
volume fraction, φ, is plotted for both the model of van der Hoef et al. (2005) (low-Re
limit of the model of Beetstra et al. (2007)) and that of Wen & Yu (1966) at the low-Re
limit. From this figure, it is clear that Fvan der Hoef > FWen–Yu over the entire range of φ.

similarities between these two drag curves are that F→ 1 as φ→ 0, and F increases
monotonically as φ increases. In the low-Re regime, the dimensionless drag of van der
Hoef et al. (2005) is significantly greater than the drag of Wen & Yu (1966) over the
entire range of φ. The critical distinction between these two types of fluid–particle
systems is that in the case of van der Hoef et al. (2005), the particles are fixed in
place and therefore unable to rotate and translate, while in the case of Wen & Yu
(1966), the rotational and translational velocities of the particles are able to quickly
adapt to the effects of the surrounding flow, which allows the fluid to move through
with less drag. The Stokes number, St, which is defined as

St= ρp(1− φ)|us|dp

18µf
= ρp

ρf

Re
18
, (1.7)

where ρp is the particle density, can be used to characterize this distinction. Here
St is the ratio of the particle relaxation time to the fluid relaxation time, and so it
is a critical parameter for quantifying the resistance of the particles to changes in
their translational and rotational velocities due to the surrounding fluid flow. From
this definition, the fixed bed (in the case of van der Hoef et al. (2005)) represents
the high-St limit of fluidized systems, while the sedimentation of solid particles in
liquid (in the case of Wen & Yu (1966)) represents the low-St limit behaviour.

Even though the drag models of Wen & Yu (1966) and Beetstra et al. (2007) are
derived from starkly different flow conditions and have significantly different values
(figure 1), they are often applied interchangeably. In the work of Igci & Sundaresan
(2011) and Ozel, Fede & Simonin (2013), the model of Wen & Yu (1966) is used
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as the drag closure for the large-scale simulations of a gas–solid fluidized bed, while
in similar studies, Pepiot & Desjardins (2012) and Radl & Sundaresan (2014) instead
employ the model of Beetstra et al. (2007). Thus, there is a great deal of ambiguity
in the fluidization literature about the applicability of the different drag models,
particularly in terms of the different St limits. Li & Kuipers (2003) found that the
predicted flow behaviour of a fluidized bed can be very sensitive to the form of
the fluid–particle drag force, and so achieving precision in large-scale modelling of
fluidized beds relies heavily on using drag relations that are truly applicable to the
system of interest.

The current work looks to determine a drag model that is applicable to low-Re
fluidized systems over a full range of St and φ. Towards this goal, LBM simulations
are employed, in which, unlike the majority of prior LBM drag studies, the particles
are allowed to freely translate and rotate based on the effects of the surrounding fluid.
In doing so, the effects of particle translation and rotation are accounted for in a drag
relation that bridges the transition from the low-St regime (Wen & Yu (1966) type
model) to the high-St regime (van der Hoef et al. (2005) or Beetstra et al. (2007)
model). Due to the fact that the drag model derived from the current work is valid
over the entire range of St and φ, its application to larger-scale simulation studies of
fluidized beds will result in greater quantitative precision.

In § 2, we summarize the simulation method. In § 3, we present the simulation
results and provide the equation for the drag model that accounts for both St and
φ in the low-Re regime. Finally, in § 4, we provide some concluding remarks on the
overall findings of this work.

2. Simulation method
2.1. Numerical set-up for the LBM scheme

In LBM, the fluid flow is simulated by the movement of fluid parcels along a three-
dimensional lattice of nodes (Benzi, Succi & Vergassola 1992). The movement from
one node to its neighbour is governed by the Boltzmann equation, which is discretized
in both time and space. It can be demonstrated that the equations that describe the
fluid dynamics obey the incompressible Navier–Stokes equations in the low-Mach-
number limit (Chen & Doolen 1998; Aidun & Clausen 2010). LBM, which dates
back to the work of McNamara & Zanetti (1988), was first employed in the study
of fluid flows in the works of Higuera & Jimenez (1989), Higuera & Succi (1989)
and Higuera, Succi & Benzi (1989). The scheme used in this study for the evolution
of the fluid density and momentum distributions is described by Somers (1993) and
Eggels & Somers (1995). This implementation is a slight variant of the widely used
LBGK scheme (Qian, d’Humieres & Lallemand 1992), with a more stable behaviour
at low viscosities and second-order accuracy in space and time. LBM was first used to
study the interaction between fluid and solid particles by Ladd (1994). In the current
scheme, the no-slip condition at the boundaries between the fluid and particles is
handled with a forcing scheme, which is similar to the immersed boundary method
(Goldstein, Handler & Sirovich 1993; Derksen & van den Akker 1999; ten Cate et al.
2002). This type of method for resolving the fluid–particle boundary, which utilizes
an internal fluid, is stable for values of ρp/ρf that are sufficiently larger than one (ten
Cate et al. 2002). In this forcing scheme, additional forces are imposed on the fluid at
the surface of the solid sphere, such that the fluid velocity matches the local velocity
of the solid surface. The force and torque that the fluid exerts on a solid particle
are then computed by summing over these local forces that are needed to maintain
a no-slip condition at the particle’s surface.
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There are a number of subgrid particle–particle interaction forces that are explicitly
included in the LBM scheme. As two particles approach each other, the accuracy
of the LBM breaks down due to a lack of spatial resolution in the gap between
the particles (Ladd 1997). An additional particle–particle lubrication force is therefore
introduced in order to account for the contributions of the unresolved part of the flow
field (Kim & Karilla 1991; Nguyen & Ladd 2002). Further details of the numerical
scheme used in our study can be found in the work of Derksen & Sundaresan (2007).

In order to facilitate the computational scheme for modelling the particle–particle
collisions, the particles are assigned a degree of softness. This softness is characterized
by a collision time, tc, between two particles. The Hookean spring constant, k, for the
elastic collisions is defined as

k= π3ρpd3
p

6t2
c

. (2.1)

A particle–particle interaction force therefore arises due to these soft collisions. In this
work, the collision between particles is assumed to be elastic and frictionless. For all
of the simulations in the current study, tc is taken to be 10 LBM time steps, which
corresponds to a maximum particle–particle overlap of about 0.001dp. The total force
and torque acting on each particle are then used in the equations of motion to update
each particle’s velocity and position.

Spherical monodisperse particles are used in the current LBM simulations. The
input diameter, in units of lattice spacing, is specified for the particles. Because the
spherical particle is defined over a cubic grid, the effective hydrodynamic diameter
of the spherical particle, dp, differs slightly from the input diameter. A calibration
procedure, based on the work of Ladd (1994), is used to determine dp from the input
diameter and kinematic viscosity, νf , of the fluid. Larger values of dp correspond to
a more fully resolved fluid flow profile and thus a finer grid resolution.

Throughout the current study, fully periodic boundary conditions in all three
dimensions are employed. Furthermore, a body force is applied to both the particles
and fluid in order to drive flow in the system, as described by Derksen & Sundaresan
(2007). This body force can be interpreted as the superposition of a downward gravity
force and an upward pressure gradient. In this periodic system, the strength of the
pressure gradient is set such that the total body force on the fluid and particles is
zero. Since ρp > ρf , the net body force on the particles is downward, while the net
body force on the fluid is upward. Since the lattice units are dimensionless, the lattice
spacing, ∆, and the time step are simply taken to be 1. For a given simulation system,
the key parameters that need to be provided are dp, νf , the particle-to-fluid density
ratio, ρp/ρf , the strength of the applied external body force, fext, the total number of
particles, N, and the dimensions of the lattice, nx, ny and nz. Additionally, the initial
coordinates of each of the particles are provided. From (1.1), the domain-averaged
particle volume fraction, φ, is determined from N, dp and the system dimensions.
For a typical simulation in the current study, dp is taken to be 12, νf is taken to
be 0.1 and nx, ny and nz are all taken to be 6dp. A study of the sensitivity of the
observed fluid–particle dynamics to changes in the grid resolution is provided in
§ 3.2.2. Furthermore, fext and ρp/ρf are both varied over a range of values, such
that the flow remains in the low-Re regime but a large range of St is sampled.
It is important to note that because Re and St are both functions of us, they are
not set a priori. Instead, these parameters are determined from the results of the
simulations.

In this study, we also investigated the characteristics of systems at the two limits of
St: a high-St limit bed (fixed bed) and a low-St limit bed. The additional constraints
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that must be applied to simulations of high-St and low-St limit beds are discussed in
the following section.

2.2. Simulating high- and low-St limit cases
In order to gain a more complete understanding of the behaviour of fluidized beds
at the two St limits, high and low, we look to simulate these two cases using the
LBM scheme. However, in order to simulate the proper dynamics of these two
limiting cases, additional constraints are necessary. These constraints are ascertained
by analysing the effect of Re and St on the governing equations of motion.

The equation of motion for the position of a single particle is given as

dxp

dt
= vp, (2.2)

where xp is the position of the particle. In a fluidized suspension, the linear
momentum balance for a spherical particle is given by

ρp
π

6
d3

p
dvp

dt
= (ρp − ρ)π6 d3

p g+ f fp, (2.3)

where ρ=φρp+ (1−φ)ρf is the mixture density and g is the gravitational acceleration
vector. Other forces, like particle–particle contact, which are included in the LBM
simulations, can be added to the right-hand side of (2.3), but for the purposes of
simplifying the current analysis, they are not included. Furthermore, the angular
momentum balance for the spherical particle is given by

ρp
π

60
d5

p
dΩp

dt
= T, (2.4)

where Ωp is the angular velocity of the particle and T is the torque of the fluid acting
on the particle.

The equations of motion for the fluid phase are given as

∂(ρf (1− φ))
∂t

+∇ · (ρf (1− φ)uf )= 0, (2.5)

Df

Dt
(ρf (1− φ)uf )=−(1− φ)∇p′ + (1− φ)(ρf − ρ)g− (1− φ)∇ · τf − 6

π

φ

d3
p

f fp,

(2.6)

where τf is the deviatoric fluid stress tensor and Df /Dt is the total fluid material
derivative with respect to time. ∇p′ is the rapidly varying pressure gradient term,
where the total pressure gradient, ∇p, is given by ∇p = ρg + ∇p′. At the surface
of each particle, no-slip and no-penetration boundary conditions are imposed.

Using a scaling analysis, in which we look to retain all of the contributions to the
net force (right-hand side in (2.3) and (2.6)) and assume that ρf does not vary, we
obtain the following set of non-dimensional governing equations:

dx̃p

dt̃
= ṽp, (2.7)

Stc
dṽp

dt̃
= g̃+ f̃ fp, (2.8)
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Stc
dΩ̃p

dt̃
= T̃ . (2.9)

∂(1− φ)
∂ t̃

+ ∇̃ · ((1− φ)ũf )= 0, (2.10)

Rec
Df

Dt̃
((1− φ)ũf )=−(1− φ)∇̃p̃′ − 18

(
ρ − ρf

ρp − ρ
)
(1− φ)g̃− (1− φ)∇̃ · τ̃f − 18φ f̃ fp,

(2.11)

where x̃p = xp/dp, ṽp = vp/uc, t̃ = t/(dp/uc), g̃ = g/g, f̃ fp = f fp/(3πdpµf uc),
Ω̃p =Ωp/(uc/dp), T̃ = T/(3πd2

pµf uc/10), ∇̃ = dp∇, ũf = uf /uc, p̃′ = p′/(µf uc/dp) and
τ̃f = τf /(µf uc/dp). In these expressions, the characteristic superficial slip velocity is
uc= (1− φc)|us,c|, where the subscript c denotes a characteristic quantity, and g= |g|.
Furthermore, the characteristic Stokes number, Stc, and characteristic Reynolds number,
Rec, are given by

Stc = ρpucdp

18µf
, (2.12)

Rec = ρf ucdp

µf
. (2.13)

It is clear that (2.12) and (2.13) have the same form as (1.7) and (1.2), respectively.
Furthermore, uc is chosen such that the drag force balances the force of gravity and
the effects of the imposed pressure gradient on a single particle at infinite dilution:

uc =
(ρp − ρ)d2

pg

18µf
. (2.14)

From this non-dimensionalization, the effect of St and Re on the equations governing
particles and fluid can be ascertained.

Focusing on the left-hand side of (2.7)–(2.11), it is observed that Re multiplies
the term (Df /Dt̃)((1 − φ)ũf ), St multiplies the terms dṽp/dt̃ and dΩ̃p/dt̃, and the
term dx̃p/dt̃ is multiplied by 1. The high- and low-St limit cases are then cast in
terms of these dimensionless groups: Re, St and 1. Since the current study focuses
on the low-Re regime, Re� 1. Thus, in the high-St limit, Re� 1� St, and so the
particle velocities (both linear and angular) evolve over a much longer time than do
the particle positions, which, in turn, evolve over a much longer time than does the
fluid velocity. Thus, the fluid velocity field is in a quasisteady state (QSS) relative
to the particle positions and velocities. In the low-St limit, Re, St � 1, and so the
particle positions evolve over a much longer time than do the particle velocities and
fluid velocity. The fluid and particle velocities, therefore, are in a QSS relative to the
particle positions.

It is important to specify that Re refers to the Reynolds number based on the mean
slip velocity. We can express vp and Ωp as

vp = 〈vp〉 + v′p, (2.15)

Ωp = 〈Ωp〉 +Ω ′p, (2.16)

where 〈vp〉 and 〈Ωp〉 are the average linear and angular velocities, respectively,
of all of the particles in the simulation region. We use v′p and Ω ′p to denote the
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corresponding fluctuations from the mean value. Since 〈Ωp〉 = 0 in our systems
of interest, we can consider two additional Reynolds numbers based on the two
fluctuation velocities:

ReT = ρf dp

µf

√
1
3
〈v′p · v′p〉, (2.17)

ReΩ =
ρf d2

p

µf

√
1
3
〈Ω ′p ·Ω ′p〉, (2.18)

where the notation 〈 〉 is used to designate a quantity that is averaged over all of
the particles in the system. In this study, we limit our attention to ReT, ReΩ, Re� 1.
In gas–solid systems of moderate to high Re, Wylie, Koch & Ladd (2003) and
Kriebitzsch, van Der Hoef & Kuipers (2013) demonstrated the significance of the
effect of fluctuations in the velocities of the particles, quantified by the granular
temperature, on the fluid–particle drag force. However, in low-Re systems, these
effects of granular temperature are found to be less pronounced. Furthermore, recent
work by Zhou & Fan (2014) has used LBM simulations to look at additional
contributions to the fluid–particle interaction force besides the drag force, namely
the Magnus lift force, which arises due to the effects of strong particle rotation.
However, in the current study, the flow conditions are such that the drag force is the
single dominant contribution to the overall interaction force. In these systems, the
fluid–particle interaction forces that are perpendicular to the slip velocity, like the
Magnus lift force, represent less than 1 % of the total interaction force.

2.2.1. High-St limit
At the high-St limit (Re� 1� St), the fluid relaxes very quickly compared with the

particles, and so the fluid is in a QSS relative to the particles. In the reference frame
where 〈vp〉 = 0, the high-St fluidized system is characterized by a mean fluid velocity,
〈uf 〉, v′p and Ω ′p. Since ReT, ReΩ, Re� 1, this system can be interpreted as a linear
superposition of the following three systems: (1) a fixed-bed system, in which there
is a mean fluid velocity, 〈uf 〉, but v′p = Ω ′p = 0; (2) a system in which the particles
have fluctuations in their linear velocities, but 〈uf 〉 = Ω ′p = 0; and (3) a system in
which the particles have fluctuations in their angular velocities, but 〈uf 〉=v′p=0. Since
there is no mean flow in systems (2) and (3), these systems do not contribute to the
overall fluid–particle drag force. Thus, the drag force for the overall high-St fluidized
system arises solely from system (1). Thus, the high-St limit case can be represented
by a fixed-particle bed. In the LBM simulations of the high-St limit case, the fluid
moves around the fixed particles, and eventually a QSS flow distribution is established
for a given particle configuration and external driving force. Since the particles do
not translate or rotate in any way to adjust to the surrounding flow, the high-St limit
provides the upper limit for the dimensionless drag force, F, in the low-Re regime.

2.2.2. Low-St limit
At the low-St limit (Re, St � 1), the fluid and particle velocities are in a QSS

relative to the particle positions. In this case, the velocities (linear and angular) of the
particles evolve much faster than their positions, as the particles respond immediately
to the flow. Lattice Boltzmann simulations, in which the particle positions are frozen,
are used as a computational method for finding the QSS velocities of the particles and
fluid. At each step in the simulations, the particle velocities are updated, as usual,
based on the net forces and torques acting on each particle. The particle positions,
on the other hand, are not changed. As these simulations converge to a steady state,
the net force and torque on each particle approach zero. The computed equilibrium
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velocity profile provides the dynamics for a low-St limit bed at a single instant in
time. Since the linear and angular velocities of the particles adjust very quickly to
the flow of the surrounding fluid, the low-St limit provides the lower limit for F in a
low-Re fluidized bed.

3. Simulation results
3.1. High-St limit with a random array of particles

The high-St limiting behaviour is established by simulating a fixed-particle bed, as
motivated in § 2.2.1. It is understood that all of the relevant Reynolds numbers are
small, leaving St and φ as the only dimensionless quantities of interest for the present
study. For each simulation, the particles are arranged in a random, homogeneous
configuration. To obtain each random configuration, the particles are thermalized
using a discrete element method (DEM) simulation. This thermalization method
places particles in the DEM simulation box at random, assigning each particle a
random velocity from a Gaussian distribution. The particles are then allowed to move
around and collide without the effects of the fluid or gravity. After each particle has
undergone many collisions, a snapshot of the DEM simulation is taken. The random,
homogeneous configuration of particles for the LBM simulations is then obtained
from this DEM snapshot. In this case and throughout the study, the dimensionless
drag force, F (1.3), is computed by averaging the fluid velocity, particle velocities
and fluid–particle interaction forces over the entire domain (Euler–Euler approach). In
these domain-averaged calculations, the values of φ and φ are equivalent. The data
that are used to compute F for a fixed bed are taken from a snapshot of the system
after the steady state has been reached. A particle diameter of dp= 12 and a kinematic
fluid viscosity of νf = 0.1 are used for these simulations. These fixed-bed simulations
are conducted over a wide range of φ values. For each value of φ, the results are
averaged over a large number (between 10 and 60) of random, homogeneous particle
configurations. Since the particle positions are held fixed and all of the simulations
are conducted in the low-Re regime, the high-St drag results are independent of fext
and ρp/ρf . In figure 2, the results for F as a function of φ are presented for three
different cubic periodic domain sizes: nx = 6dp, 9dp and 12dp. From figure 2, we see
that the effect of the domain size on the high-St limit case is negligible. Furthermore,
from figure 2, we see that the high-St limit drag curve matches very closely the drag
curve (1.5) of van der Hoef et al. (2005), which was also computed for fixed-particle
systems. This result confirms the validity of the current LBM numerical scheme. This
same set of parameters, with a cubic domain size of nx = 6dp and a grid resolution
of dp = 12 and νf = 0.1, is used for the majority of the current study.

3.2. Simulations of fluidized beds
Relaxing the constraint that the particles have to be held fixed in place, we then look
to study the dynamics of a fluidized bed, in which the particles are free to translate
and rotate based on the forces and torques that act on them. For each fluidized bed
simulation, fext and ρp/ρf are specified. The initial configuration of particles is random
and homogeneous, and is obtained using a DEM thermalization technique. As time
evolves, the particle positions change as particle structures and voids form in the
system. The data that are used to compute F for a fluidized bed are taken from
snapshots of the system after a statistical steady state has been reached. At each
of these snapshots in time, taken from simulations of fluidized beds, we extract the
particle positions, fluid and particle velocities, as well as the fluid–particle interaction
forces. The criterion for determining the statistical steady state is based on the time
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FIGURE 2. (Colour online) The dimensionless drag force, F, is computed over a range
of domain-averaged particle volume fractions, φ, for a fixed-particle bed (high-St limit),
for three different cubic periodic domain sizes: nx= 6dp, 9dp and 12dp. The effects of the
domain size appear to be negligible for the high-St limit case. These drag curves match
very closely the drag curve of van der Hoef et al. (2005).

evolution of the domain-averaged slip velocity (as shown in the inset to figure 3). Due
to the mobility of the particles, the slip velocity does not approach a single steady-
state value, as in the fixed-bed simulations, so the statistical steady state is based on
the time-averaged slip velocity approaching a constant value. As in the high-St limit
case, an Euler–Euler averaging approach is used for determining the values of F. For
each set of ρp/ρf , fext and φ, the value of F is determined by averaging over the
results of 10 different initial particle configurations. Since St is a function of the slip
velocity, it is determined, like F, by averaging over the results of the different initial
particle configurations.

3.2.1. Effect of domain size on the dynamics of fluidized beds
In figure 3, the results for F over a range of φ for a St = 11.5 fluidized bed are

presented for three different cubic periodic domain sizes: nx = 6dp, 9dp and 12dp.
The value of fext is set such that Re is of the order of 0.1, and properly adjusted
in order to achieve the desired value of St, which we show in § 3.6 is the key
parameter for the current study. From figure 3, over the entire range of φ, there is
a significant decrease in F as the domain size, nx, increases. Due to the mobility of
particles in the fluidized case, as the domain size increases, the length scale over
which particle structures form increases, which leads to an increase in the extent of
flow-induced inhomogeneities in the distribution of particles. Increases in the extent
of inhomogeneities lead to the formation of larger voids in the system. The fluid is
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FIGURE 3. (Colour online) F is computed over a range of domain-averaged particle
volume fractions, φ, for a St= 11.5 fluidized bed for three different cubic periodic domain
sizes: nx= 6dp, 9dp and 12dp. For all of these cases, dp= 12 and νf = 0.1. As nx increases,
there is a decrease in the value of F. This drag reduction is due to an increase in the
extent of inhomogeneities in the particle configuration that comes from increases in the
domain size. In the inset to this figure, the magnitude of the fluid–particle slip velocity,
|us|, is plotted as a function of time for the case of φ = 0.3, nx = 6dp. This type of plot
is used to determine when the fluidized bed has reached a statistical steady state.

able to preferentially move through these larger voids, leading to a smaller overall
fluid–particle drag force, thus explaining the reduction in F as nx increases. While
there is a clear effect of domain size on the drag results for a fluidized bed, the
current study looks to draw conclusions about the effect of particle translation and
rotation on the fluid–particle drag force that are applicable to essentially homogeneous
systems. Thus, we focus on studying the dynamics of fluidized beds with a cubic
periodic domain size of nx = 6dp, and then look to form conclusions that can be
extended to homogeneous systems.

3.2.2. Effect of grid resolution on the dynamics of fluidized beds
In order to assess the sensitivity of the simulation dynamics of the fluidized bed to

changes in the grid resolution, the drag curve is determined for a fluidized bed for
several different grid resolutions. Keeping νf fixed at a value of 0.1, the effect of grid
resolution on the fluid–particle drag force is assessed by analysing systems with three
different particle diameters: dp= 8, 12 and 18. The results of this grid resolution study
are shown in figure 4, where F is plotted as a function of φ for a St= 11.5 fluidized
bed. From figure 4, we observe that there is a very small difference in drag between
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FIGURE 4. (Colour online) F is computed over a range of domain-averaged particle
volume fractions, φ, for a St = 11.5 fluidized bed for three different grid resolutions (or
particle diameters): dp = 8, 12 and 18. For all of these cases, νf = 0.1. From this grid
sensitivity analysis, a small difference between the dp = 12 and dp = 18 drag curves is
observed. Therefore, a value of dp = 12 is taken to provide a sufficient amount of grid
resolution for the current study.

the dp = 12 and dp = 18 cases. Thus, we conclude from this grid sensitivity analysis
that a value of dp= 12 provides a sufficient amount of resolution. System parameters
of dp = 12 and νf = 0.1 are used for the remainder of this study.

3.2.3. Comparison of the drag curve for the high-St limit and fluidized beds
In figure 5, the results for F as a function of φ for a St = 11.5 fluidized bed are

compared with the high-St limit (fixed-particle bed) drag values. From figure 5, the
drag values for the St= 11.5 fluidized bed are clearly smaller than those for the high-
St limit case. This drag reduction in the fluidized bed relative to the fixed bed is due
to a combination of two factors: the ability of the particles to translate and rotate due
to the effects of the surrounding fluid, and the development of inhomogeneities in the
particle configuration. Through this work, we look to better understand each of these
effects on the drag force.

3.3. Effect of particle translation and rotation: high-St versus low-St limit
The extent to which the particles are able to translate and rotate in response to the
effects of the surrounding fluid decreases as St increases. As discussed in § 3.1, the
fixed-particle bed represents the high-St limit case. At the other extreme is the low-St
limit case, for which the linear and angular velocities of the particles evolve much
faster than the particle positions, as discussed in § 2.2.2. The drag curve for the low-St
limit case is determined using simulations, in which the configuration of particles
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FIGURE 5. (Colour online) The drag values, F, over a range of φ are compared for a
St=11.5 fluidized bed and a high-St limit (fixed-particle) bed. For both sets of simulations,
the following set of parameters are used: dp = 12, νf = 0.1 and nx = 6dp. It is found that
there is a drag reduction going from the high-St limit curve to the fluidized bed curve.

is random, homogeneous and static. In order to ensure that there is no bias from
the particle configurations when comparing the results of the low-St limit with those
of the high-St limit, the same random configurations that were obtained using DEM
simulations for the high-St limit case are used for the low-St limit case. Like the
high-St simulations, the low-St simulations are conducted over a wide range of φ
values. For each value of φ, the results are averaged over a large number (between 10
and 60) of random, homogeneous particle configurations. Since the particles are held
at their initial positions and all of the simulations are conducted in the low-Re regime,
the low-St drag results are independent of fext and ρp/ρf .

3.3.1. Effect of domain size on the low-St limit simulations
We start by analysing the effect of the domain size on the fluid–particle drag in

the low-St limit case. In figure 6, the results for F as a function of φ are presented
for three different cubic periodic domain sizes: nx= 6dp, 9dp and 12dp. From figure 6,
there is a clear reduction in drag in the low-St limit case as the domain size increases.
In contrast to the fluidized bed case, as an equilibrium velocity profile is established
in the low-St limit simulations, the development of flow-induced inhomogeneities is
suppressed by keeping the particles fixed in place. Thus, the effects of periodicity (or
domain size) can be eliminated by extrapolating the low-St limit drag results to an
infinite domain size. Using a 1/nx dependence, as shown in the inset of figure 6 for
the φ= 0.3 case, the drag results are extrapolated to an infinite domain size (nx→∞).
While the drag curve given by (1.6) has a constant exponent, n, the nx →∞ drag
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FIGURE 6. (Colour online) F is computed over a range of domain-averaged particle
volume fractions, φ, for a low-St limit bed for three different cubic periodic domain sizes:
nx = 6dp, 9dp and 12dp. System parameters of dp = 12 and νf = 0.1 are used for all of
these simulations. Using a 1/nx dependence, these results are extrapolated to an infinite
domain size (nx→∞), as shown in the inset for the case φ = 0.3. The drag curve for
the nx→∞ low-St limit matches very closely the drag curve (1.6) of Wen & Yu (1966)
type, with a φ-dependent exponent: n(φ)= 6.2− 2.5φ.

results are best fitted with an exponent that varies with φ: n(φ)= 6.2− 2.5φ. Outside
the dilute limit, this value of n primarily lies in the range 4.65–5.5 given by the
sedimentation experiments of Richardson & Zaki (1954), Wen & Yu (1966) and
Garside & Al-Dibouni (1977). Furthermore, this drag curve has a similar form to the
analytical approximation of Brady & Durlofsky (1988) for the hindered sedimentation
velocity. Such a result confirms that the low-St limit simulations indeed provide an
accurate depiction of the fluid–particle interactions in liquid–solid sedimentation.

3.3.2. High-St limit versus low-St limit
As discussed in § 3.2.1, our goal is to form conclusions about the dynamics of fluid–

particle interactions that can be extended to nearly homogeneous systems by using
periodic simulation cells of domain size nx= 6dp. Towards this goal, we compare the
high-St and low-St drag curves using results obtained from simulation cells of domain
size nx= 6dp. These results for F as a function of φ are shown in figure 7, where we
observe a significant reduction in drag when moving from the high-St limit curve to
the low-St limit curve. This drag reduction ranges from 10 % for φ = 0.05 to 19 %
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FIGURE 7. (Colour online) F as a function of φ is compared for (1) the high-St limit
case, (2) the high-St limit case with particle rotation, (3) the low St limit case without
particle rotation and (4) the low-St limit case. The results for all of these cases are taken
from periodic cells with a domain size of nx= 6dp. In order to ensure that there is no bias
due to the configuration of particles, all four cases use the same random, homogeneous
particle configurations. It is clear that the low-St limit case has the lowest drag over the
entire range of φ. This drag reduction on moving from the high-St limit to the low-St limit
is due to the evolution of the linear and angular velocities of the low-St limit particles in
response to the fluid velocity field.

for φ= 0.5. Since the high- and low-St limit cases are both simulated using identical
random, homogeneous particle configurations, this drag reduction is not a result of
changes in the extent of inhomogeneities. Instead, this drag reduction is due to the
evolution of the linear and angular velocities of the particles in response to the effects
of the surrounding fluid in the low-St limit case. Since the low-St limit particles are
able to adapt to the fluid velocity field, there is less fluid–particle drag in the low-St
limit case when compared with the high-St limit case, where the particles are not able
to adjust at all to the effects of the surrounding fluid. From this analysis, we conclude
that for any given particle configuration in the low-Re regime, the high-St limit case
maximizes the fluid–particle drag in the system, while the low-St limit case minimizes
the drag. Figure 7 is analogous to figure 1 where the curve of van der Hoef et al.
(2005) is compared with that of Wen & Yu (1966).

In figure 7, the drag results for two additional hypothetical cases are shown:
high-St limit with particle rotation (to achieve zero net torque) and low-St limit
without particle rotation. Due to the ability of the particles to rotate in response to
the surrounding fluid in the case of the high-St limit with rotation, there is a small
reduction in drag when compared with the case of the regular high-St limit. This
drag reduction ranges from 1 % for φ = 0.05 to 4 % for φ = 0.5. Furthermore, when
the particles are not allowed to rotate in the low-St limit, there is a small increase
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in drag when compared with the case of the regular low-St limit. This increase in
drag ranges from 2 % for φ = 0.05 to 6 % for φ = 0.5. Thus, the difference in F
between the high-St and low-St limits is mostly due to the ability of the particles in
the latter case to attain non-zero translational velocity in order to achieve zero net
force. In the Appendix, further details of the impact of particle velocity fluctuations
on drag are given. It is demonstrated there that in the low-St limit, the fluctuations
are coherent and lead to a reduction of drag as compared to fixed beds (i.e. the
high-St limit). It is also shown that random, uncorrelated velocity fluctuations do not
induce a drag-reducing effect.

3.4. Effect of flow-induced inhomogeneities
In order to assess the importance of flow-induced inhomogeneities on the fluid–particle
drag, we isolate the effects of inhomogeneities from that of particle translation and
rotation by simulating high- and low-St limit beds using what we refer to as ‘frozen’
fluidized particle configurations. These ‘frozen’ configurations are obtained by taking
a snapshot from a fluidized bed simulation long after a statistical steady state has
been reached. Due to the formation of particle clusters and voids in the fluidized beds,
these ‘frozen’ configurations are inhomogeneous. High-St and low-St limit simulations
are then conducted using these inhomogeneous configurations. The same set of
inhomogeneous configurations are used for both the high- and low-St limit cases. In
figure 8, the results of F over a range of φ for the inhomogeneous high-St (figure 8a)
and low-St (figure 8b) limit cases are compared with their respective values taken
from random, homogeneous configurations. The inhomogeneous configurations are
taken from fluidized beds with St= 11.5. In the high-St limit case (figure 8a), when
moving from the homogeneous curve to the inhomogeneous curve, there is a small
but noticeable reduction in drag at lower particle volume fractions (φ < 0.3), and no
change in drag as the packing fraction approaches the close packing limit (φ > 0.3).
From these results, the development of inhomogeneities appears to be hindered at
higher particle volume fractions. In the low-St limit case (figure 8b), when moving
from the homogeneous curve to the inhomogeneous curve, there is a significant
reduction in drag over the entire range of φ. Thus, it appears that inhomogeneities in
the particle configuration have a stronger effect on the fluid–particle drag when the
particle velocities are able to adjust to the effects of the surrounding fluid. Overall,
inhomogeneities have a noticeable effect on the fluid–particle interactions, and must
therefore be accounted for when devising a drag model.

The goal of this study is to obtain a drag model that can be applied to larger-scale
numerical studies of fluidized beds. For studies of this type, the drag relations are
typically applied at length scales over which the particle configuration is taken to
be approximately homogeneous. Therefore, we seek to obtain a drag relation that is
applicable to fluidized beds with homogeneous particle configurations. To achieve this
goal, we need to isolate the effects of particle translation and rotation from the effects
of inhomogeneities.

3.5. Quantification of relative fluidized bed behaviour
In order to isolate the effect of particle translation and rotation from the effect of
inhomogeneities, we compare the dimensionless drag curves taken from the following
three systems: (1) St = Stgiven fluidized bed, (2) the high-St limit bed that uses the
inhomogeneous configuration of particles taken from snapshots of the Stgiven fluidized
bed, and (3) the low-St limit bed that uses the inhomogeneous configuration of
particles also taken from the Stgiven fluidized bed. In doing so, we are comparing
these three different types of systems by taking drag data from snapshots that contain
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FIGURE 8. (Colour online) The values of F over a range of φ taken from the ‘frozen’,
inhomogeneous fluidized configurations are compared with values taken from a random,
homogeneous configuration for both (a) the high-St limit case and (b) the low-St limit
case. The inhomogeneous configurations are obtained by taking snapshots of St = 11.5
fluidized beds long after a statistical steady state has been achieved. In the high-St limit
case, when moving from the homogeneous curve to the inhomogeneous curve, there is
a small reduction in drag in the range φ < 0.3, and no effect on the drag in the range
φ> 0.3. In the low-St limit case, the inhomogeneous drag curve is significantly lower than
the homogeneous curve over the entire range of φ. Overall, the effects of inhomogeneities
tend to result in a drag reduction.

identical configurations of particles. Thus, the observed differences in the drag values
are solely a result of the differences in the abilities of the particles to translate and
rotate. In figure 9, these three drag curves are shown for particle configurations taken
from St= 11.5 fluidized bed simulations. We see that, as expected, the high-St limit
case maximizes the drag, while the low-St limit case minimizes the drag for any
given configuration. The drag for the fluidized bed lies in between these two limits
over the full range of φ.

The relative behaviour of the fluidized bed compared with the high- and low-St limit
cases is quantified using the ratio α, which we define as

α = Ffluidized − Flow St, inhom

Fhigh St, inhom − Flow St, inhom
. (3.1)

Since the high- and low-St limit cases provide the two limiting values for the drag,
0 6 α 6 1. For a fluidized bed exhibiting low-St limit behaviour, α = 0, and for a
fluidized bed exhibiting high-St limit behaviour, α = 1.

3.6. Using α to define a new drag model
Using the method shown in figure 9 and (3.1), α is computed over a range of φ, ρp/ρf ,
Re and St. A sample of these results is presented in table 1. From the first two rows
of data in table 1, it is clear that when two different systems have the same φ and Re,
but have a different ρp/ρf , the value of α is different. Furthermore, by comparing the
third and fourth rows of table 1, it is clear that when two different systems have the
same φ and ρp/ρf , but have different values of Re, the value of α is different. Finally,
by comparing the fourth and fifth rows of data in table 1, it appears that when two
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FIGURE 9. (Colour online) The drag values, F, as a function of φ are shown for three
different system types: (1) the St = 11.5 fluidized bed, (2) the high-St limit bed using
inhomogeneous particle configurations taken from snapshots of the St= 11.5 fluidized bed,
and (3) the low-St limit using inhomogeneous particle configurations taken from snapshots
of the St= 11.5 fluidized bed. There is a reduction in drag going from the high-St limit
case to the fluidized bed case to the low-St limit case due to the effects of particle
translation and rotation.

φ ρp/ρf Re St α

0.1 4 0.25 0.056 0.0034
0.1 1500 0.25 21 0.68
0.2 300 0.17 2.8 0.36
0.2 300 0.31 5.2 0.49
0.2 600 0.16 5.2 0.47

TABLE 1. The results for α for several different types of fluidized beds.

different systems have the same φ and St, but different values of ρp/ρf and Re, the
value α is nearly the same. Thus, α = α(φ, St).

In figure 10, α is plotted as a function of St for domain-averaged particle volume
fractions, φ, ranging from 0.1 to 0.4. For each curve of α versus St, three distinct
regimes are observed: (1) the low-St regime, where α → 0 as St → 0; (2) the
intermediate-St regime, where there is a gradual increase in α as St increases; and
(3) the high-St regime, where α→ 1 as St→∞. Thus, we see that α describes the
transition from the low-St regime to the high-St regime. As φ increases, the transition
from the low-St regime to the high-St regime occurs at lower values of St. The reason
for this is that at higher values of φ, the fluidized bed tends to behave more like a
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FIGURE 10. (Colour online) α is plotted as a function of St over a wide range of φ.
The simulation results are taken from a periodic domain size of nx = 6dp. For each value
of φ, three distinct regimes are observed: (1) the low-St regime (α → 0 as St → 0),
(2) intermediate-St regime (α gradually increases as St increases) and (3) high-St regime
(α→ 1 as St→∞). Furthermore, as φ increases, the fluidized bed tends to behave more
like a packed bed, and so the transition to a high-St limit type of behaviour occurs at
lower values of St.

packed bed, and so the transition to a high-St limit type of behaviour occurs at lower
values of St.

Analysing the results of figure 10, we see that we can collapse the curves of
α versus St onto a single curve by using a modified Stokes number, S̃t, which is
defined as

S̃t= St
(1− φ)2 , (3.2)

with St defined as in (1.7). The results of α as a function of S̃t for a wide range
of φ are shown in figure 11. The exponent of 2 in (3.2) provides the most complete
collapse of the α versus St data onto a single curve, and seems to capture the effect of
higher packing fractions hindering the free translation and rotation of particles, causing
the flow to transition to the high-St limit at lower values of St for more packed-bed-
like cases (higher values of φ). Thus, for a domain size of nx = 6dp, α is solely a
function of S̃t.

3.6.1. Effect of domain size on α
The effect of the domain size on α as a function of S̃t is shown in figure 12. In

figure 12, we see that even as the system size is changed from nx = 6dp to nx = 9dp

to nx = 12dp, the curve of α as a function of S̃t remains approximately unchanged.
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FIGURE 11. (Colour online) α is plotted as a function of S̃t over a wide range of φ values.
The choice of S̃t= St/(1− φ)2 allows all of the α curves to collapse onto a single curve.
For a domain size of nx = 6dp, α is solely a function of S̃t.

As the size of the system size increases, the extent to which the particles are able
to form structures increases, and so the extent of inhomogeneities increases. Despite
the fact that the domain size of our periodic system has an effect on the development
of flow structures and on the distribution of particles, we have developed a method
for characterizing the extent to which particles are able to translate and rotate that
is independent of the domain size. Thus, we have found that α(S̃t) is applicable to
nearly homogeneous systems. A simple curve that follows the shape of α(S̃t) is given
by

α(S̃t)= 1
2

(
1+ S̃t− 10

S̃t+ 10

)
. (3.3)

The form of (3.3) appears to suggest that S̃t = 10 is the centre point for the
intermediate-St regime. For S̃t < 1, the fluid–particle system is in the low-St regime,
while for S̃t> 100, the system is in the high-St regime.

From figure 12, we see that with the use of this α analysis, we have successfully
formed conclusions about the fluid–particle interactions that are applicable to nearly
homogeneous systems. We have observed a dependence of S̃t on the fluid–particle
drag force, primarily using simulation systems with a domain size of nx = 6dp, that
remains valid even as the domain size changes. Such conclusions are particularly
powerful in that they allow us to study the dynamics of the fluid–particle interactions
with the use of a relatively small number of particles.

As discussed in § 3.4, the goal of this study is to obtain a constitutive relation
for the fluid–particle drag force that is applicable to larger-scale simulations of fluid–
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FIGURE 12. (Colour online) α is plotted as a function of S̃t for domain sizes of 6dp, 9dp

and 12dp. From this curve, we see that α(S̃t) does not vary significantly with the domain
size. A single fitted curve is then used to describe this α(S̃t) curve. The results shown in
this plot are taken from a large range of φ.

particle systems. In these larger-scale simulations, the particle configuration is typically
taken to be approximately homogeneous at the scale of the fluid grid size, and so we
seek a drag model that is applicable to homogeneous configurations, which we denote
as Ffluidized,hom. Because α(S̃t) does not vary with nx, we can extrapolate the results to
a system where the particle configuration is homogeneous:

α(S̃t)= Ffluidized − Flow St, inhom

Fhigh St, inhom − Flow St, inhom
= Ffluidized,hom − Flow St, hom

Fhigh St, hom − Flow St, hom
. (3.4)

Rearranging the terms in (3.4), we find that in the low-Re regime, the drag relation,
which is applicable to homogeneous particle distributions, is given by

F(φ, St)= Ffluidized,hom = α(S̃t)Fhigh St, hom(φ)+ (1− α(S̃t))Flow St, hom(φ). (3.5)

Since, in the low-Re regime, Fhigh St, hom = Fvan der Hoef and Flow St, hom = (1 − φ)−(n(φ)−2),
(3.5) can be re-expressed as

F(φ, St)= α(S̃t)Fvan der Hoef (φ)+ (1− α(S̃t))(1− φ)−(n(φ)−2), (3.6)

where α(S̃t) is given by (3.3), Fvan der Hoef (φ) is given by (1.5) and n(φ)=6.2−2.5φ, as
shown in figure 6. In (3.6), we have proposed a new drag model, which is dependent
on both φ and St.

As shown in figure 13, the new drag relation is able to bridge the gap between
the low-St type models, like that of Wen & Yu (1966), and the high-St type models,
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FIGURE 13. (Colour online) The proposed drag model (3.6) is shown with a plot of the
dimensionless drag force, F, as a function of φ, for both St= 1 and St= 10. These drag
curves are compared with the curve of van der Hoef et al. (2005) and with the drag curve
of Wen & Yu (1966) type, F= (1− φ)−(n(φ)−2), with n(φ)= 6.2− 2.5φ.

like that of van der Hoef et al. (2005), and is applicable over a full range of St in
the low-Re regime. This bridging property of the proposed drag model represents a
significant improvement on prior drag relations, because this new model is able to
more fully capture the effect of particle mobility on the fluid–particle interactions. In
figure 13, the proposed drag model is shown for both St = 1 and St = 10 with F as
a function of φ. As expected, the St= 10 drag is higher than the St= 1 drag. When
comparing these curves with the curve of van der Hoef et al. (2005) and a drag curve
of Wen & Yu (1966) type, F = (1 − φ)−(n−2) with n(φ) = 6.2 − 2.5φ, we see that
there is a significant difference between the predictions given by the new drag relation
and those given by traditional models (Wen & Yu 1966; van der Hoef et al. 2005)
and hybrid models (Gidaspow 1994) that are simply equal to the curve of Wen & Yu
(1966) type at low φ and equal to that of van der Hoef et al. (2005) type at high φ.
Thus, in the low-Re regime, unlike prior drag models, the proposed drag model (3.6)
is able to describe the fluid–particle drag force over a full range of St and φ.

4. Summary
Through this work, a new drag model (3.6) has been proposed that, unlike previous

drag models, is a function of both φ and St in the low-Re regime. Prior LBM drag
studies have developed models for the fluid–particle drag force that are valid over
the entire range of φ, but are only applicable to high-St systems. Furthermore, prior
hybrid drag models, like that of Gidaspow (1994), have blended fixed-bed (for high φ)
and sedimentation (for low φ) drag models, but have implicitly assumed that fluid–
particle systems exhibit high-St behaviour at high φ and low-St behaviour at low φ.
We have found that such a simplification is not accurate over a full range of St. In
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the current work, we have developed a drag model that provides a smooth blending
of the packed-bed and sedimentation drag models over both φ and St. This new drag
model bridges the transition from low φ to high φ, as well as from low St to high
St. By accounting for the effect of particle translation and rotation on the interactions
between the fluid and particles, this St-dependent drag relation is able to capture a
wider range of fluid and particle properties than was previously attainable through the
drag models available in the literature.

The current drag model is constructed using LBM simulations with a cubic periodic
domain. For larger-scale simulations of fluid–particle systems, the fluid grid size is
larger than the particle diameter, and so the fluid–particle drag force cannot simply
be computed by summing the forces over the surface of the particle, as is done
in the case of LBM. Instead, the fluid–particle drag force is determined from an
input constitutive relation. Since the distribution of particles is typically taken to be
approximately homogeneous at the fluid grid scale, the drag model derived in the
current work must be applicable to the homogeneous configuration in order for it to
be used as a constitutive relation in the larger-scale simulations. Using a combination
of fluidized, fixed and low-St limit bed simulations, the methodology for obtaining
the drag relation is successfully extrapolated to a homogeneous system. Thus, a drag
model that is applicable to homogeneous particle distributions is obtained.

In summary, we have presented a framework for developing drag laws based on
φ and St. While the current analysis is for low-Re systems, this methodology can
be extended to higher values of Re. Through its application to larger-scale numerical
models of fluidized beds, this new drag relation has the potential to increase the
quantitative precision of these models, and thus widen our understanding of a range
of industrial processes.
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Appendix. Effect of velocity fluctuations in the low-Re regime
The validity of the low-Re fixed-bed simulations is further probed by analysing the

effect of fluctuations in the angular and linear particle velocities on the drag force. The
strength of the fluctuations in vp is characterized by ReT (2.17), while the strength of
the fluctuations in Ωp is characterized by ReΩ (2.18). In the homogeneous low-St limit
simulations, particles attain non-zero values of vp and Ωp, such that the net force and
torque on each particle are 0. In this low-St limit case, ReT ≈ 0.05 and ReΩ ≈ 0.06.
Although Re, ReT, ReΩ � 1 in the low-St limit case, there is a significant reduction
(between 10 % and 20 %) in drag when compared with the case of a fixed bed (high-St
limit), as discussed in § 3.3.2. The reason for this drag reduction is that while the
fluctuations in vp and Ωp are small, they are not random. There is a clear correlation
in the particle velocity fluctuations based on their locations within the flow, as shown
in figure 14(a,b). These correlated velocity fluctuations in the low-St limit case act to
reduce the drag of the fluid flow past the homogeneous array of particles.

Since Re, ReT, ReΩ � 1, the low-St limit case with fext and non-zero values of
vp = vp, low St and Ωp = Ωp, low St can be broken into a superposition of the following
three systems: (1) a fixed bed with fext, and zero vp and Ωp; (2) a system with zero
fext and Ωp, and vp= vp, low St; and (3) a system with zero fext and vp, and Ωp=Ωp, low St.
By simulating each of these subsystems, we found that such a superposition is valid
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FIGURE 14. (Colour online) The correlations of fluctuations in (a) vp and (b) Ωp in the
low-St limit case with particle separation distance are shown. In these plots, the subscripts
i and j designate two different particles in the system, while vt is the terminal particle
velocity and r i is the position of particle i. There is a clear positive correlation in both
vp and Ωp at small particle distances, which signifies that the velocity fluctuations in the
low-St limit case are not random.

by confirming that us, low St = us, case 1 + us, case 2 + us, case 3. This result demonstrates that
the fluctuations in vp and Ωp in the low-St limit case are indeed small. Furthermore,
we observe that the small, correlated values of vp and Ωp in cases (2) and (3),
respectively, produce a mean flow (non-zero value of us) even in the absence of an
external force, fext.

Next, we look to investigate the effect of small, random fluctuations in vp and Ωp,
with intensities equivalent to that of the correlated fluctuations in the low-St case:
ReT ≈ 0.05 and ReΩ ≈ 0.06, respectively. We study these random fluctuations via the
following four systems: (1) a system with fext and random fluctuations in vp; (2) a
system with fext and random fluctuations in Ωp; (3) a system with zero fext and random
fluctuations in vp; and (4) a system with zero fext and random fluctuations in Ωp. In
each case, the velocity value imposed on each particle is chosen at random from a
Gaussian distribution. We find that the dimensionless drag force, F, for case (1) is
nearly equivalent to that of the fixed bed. In fact, these drag values differ by just
0.02 % at φ = 0.3 and by 0.67 % at φ = 0.25. Similarly, we find that the values
of F for case (2) are equivalent to within 0.1 % to that of the fixed bed. Since Re,
ReT,ReΩ� 1 in both of these cases, the contribution of the random fluctuations to the
overall fluid–particle drag force is, as expected, negligible. Additionally, in simulating
cases (3) and (4), we find that the small, random (uncorrelated) values of vp and Ωp
are unable to produce a mean flow in the absence of fext. These sets of simulations
further confirm the validity of the LBM scheme in the low-Re regime.
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