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Direct numerical simulations of the shear flow over assemblies of uniformly sized,
solid spheres attached to a flat wall have been performed using the lattice-Boltzmann
method. The random sphere assemblies comprised monolayers, double layers and
triple layers. The Reynolds number based on the sphere radius and the overall shear
rate was much smaller than 1. The results were interpreted in terms of the drag force
(the force in the streamwise direction) and lift force (the force in the wall-normal
direction) experienced by the spheres as a function of the denseness of the bed and the
depth of the spheres in the bed. The average drag and lift forces decay monotonically
as a function of the surface coverage of the spheres in the top layer of the bed. The
sphere-to-sphere variation of the drag and lift forces is significant due to interactions
between spheres via the interstitial fluid flow.
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1. Introduction
In many engineered and naturally occurring situations, liquids or solid–liquid

suspensions flow over beds of fine particles. The bed and the flow interact, and
the nature and extent of the interactions depend on the flow characteristics,
fluid properties and bed properties such as its density, topology, particle size
(distribution) and inter-particle forces. In loose beds research questions revolve around
(re)suspension of solids and sedimentation, the former due to erosion of the bed as a
result of the fluid flow. In systems such as river and sea beds, and applications such as
dredging, slurry pipelines and agitated slurry reactors, turbulence makes bed erosion
a complicated, multi-scale process. The turbulent flow over the bed has a spectrum
of length scales interacting with the bed. Once detached from the bed the suspended
particles feel this multitude of flow scales that eventually determine if the particles
get transported away from the bed or fall back into it again.

In this paper we zoom in on the hydrodynamic mechanisms responsible for
detachment (i.e. erosion) of particle beds with a focus on the processes occurring
at the small scale and consider fine particles. Fine being a relative qualification;
here it means that the size of the particles is comparable to or smaller than the
smallest flow length scales. As a result, the particles experience laminar flow. The
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beds considered are macroscopically flat which implies that the surface roughness of
the beds is comparable to the size of the particles.

In the computational research described in this paper we build beds of equally
sized spherical particles, supported by a flat wall; the particles in the bed are fixed,
i.e. non-moving and non-rotating. The sphere configurations are randomly generated;
inevitably, however, the denser beds show long-range order. Over the bed we generate
a simple shear flow of Newtonian fluid and measure the force due to the flow on each
individual sphere in the bed and decompose it into a drag force (in the streamwise
direction) and a lift force (in the wall-normal direction). Analysis of the behaviour
of drag and lift forces as a function of flow and bed conditions can be used in
assessing the erosion capabilities of the flow. The research method described here is
purely computational, i.e. we perform direct numerical simulations of the fluid flow
over and inside the bed. The statistical properties (averages, root-mean-square values,
probability distributions) of the forces as a function of the structure of the bed and
the depth of the spheres in the bed are the main outcomes of this research.

There have been extensive – mostly theoretical – research efforts related to forces
on single spheres in the proximity of walls, with an emphasis on the lift force.
After Saffman’s results (Saffman 1965, 1968) for lift on single spheres in free
shear flows, Cox and co-workers (Vasseur & Cox 1976; Cox & Hsu 1977), and
McLaughlin and co-workers (McLaughlin 1993; Cherakut & McLaughlin 1994;
Cherakut, McLaughlin & Dandy 1999) reported on the effect walls have on the
lift force. With the course of time these studies extended towards higher Reynolds
numbers and closer wall proximities. Single spheres in direct contact with a wall have
been studied by O’Neill (1968), Leighton & Acrivos (1985) and Krishnan & Leighton
(1995). Detailed experiments have been reported by Mollinger & Nieuwstadt (1996)
and King & Leighton (1997). Numerical work on lift on particles in the proximity
of walls is, e.g. due to Patankar et al. (2001a,b) in two dimensions and (in three
dimensions) due to Zeng, Balachandar & Fischer (2005) and Zeng et al. (2009).

In the context of hindered settling, fluidization and flow in porous media,
hydrodynamic forces on assemblies of spherical particles have been studied by many
researchers. The more recent works (Hill, Koch & Ladd 2001; Kandhai, Derksen &
Van den Akker 2003; Van der Hoef, Beetstra & Kuipers 2005) employ computational
experiments (direct numerical simulations) to probe the dependence of solids volume
fraction, Reynolds number (Beetstra, Van der Hoef & Kuipers 2007), liquid rheology
(Derksen 2009) and size or relative velocity distributions (Van der Hoef, Beetstra &
Kuipers 2005; Yin & Sundaresan 2009) on the average drag force experienced by
spherical particles in a dense suspension. The research presented in this paper is very
much inspired by such computational approaches, now applied to sphere assemblies
supported by walls.

The Reynolds number of the flow systems described here is defined as Re = γ̇0a
2/ν,

with γ̇0 being the overall shear rate over the bed (more precisely defined below), a the
radius of the uniformly sized spheres and ν the kinematic viscosity of the fluid. In
addition to the Reynolds number, the flow is defined by the spatial configuration of
spheres, including their volume and surface fractions. We first study monolayers of
spheres randomly placed on a flat wall. The independent variable of these simulations
is the surface occupancy (or surface fraction) σ of the wall, i.e. σ ≡ nπa2, with n being
the number of spheres per unit surface area. We then make double layers of spheres
by first making a dense bottom layer (typically having σ = 0.70) and then putting a
less dense layer on top. Subsequently, we study triple layers. We limit the parameter
space by only considering Re � 1, instigated by our interest in fine particles.
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Results of the simulations comprise information regarding the drag and lift forces
on the spheres in the fixed bed as a function of the bed configuration. We show
that these hydrodynamic forces are strong functions of the (relative) placement of the
spheres in the bed and that next to determining average force levels, the variability
of the force (from sphere to sphere) needs to be considered.

The simulations presented are based on the lattice-Boltzmann (LB) method for
simulating fluid flow (e.g. Succi 2001), with the spherical particle surfaces represented
by an immersed boundary method (e.g. Goldstein, Handler & Sirovich 1993). In order
to verify the computational approach we studied the effects of grid resolution and
system size, the latter in terms of the impact the flow domain boundaries have on
the hydrodynamic forces and also in terms of the number of spheres needed to reach
converged statistical moments. We also compared simulations involving single spheres
with the analytical, low-Reynolds-number solution for the force on a single sphere
attached to a planar surface due to O’Neill (1968) and Leighton & Acrivos (1985).
For Re � 1 the solution indicates that the lift force is much smaller (by a factor of
order Re) than the drag force.

This paper is organized in the following manner. We start with defining our
flow systems and the part of the parameter space we cover with our simulations. The
numerical approach is sketched in the subsequent section. We then discuss verification
tests – including the ones with a single sphere attached to a wall – that consider the
level of resolution and domain size (relative to sphere size) and relate to accuracy and
computational demand. Then we present our results for the drag and lift forces for a
large number of sphere configurations (comprising monolayers, and double and triple
layers). The paper, including its main conclusions, is summarized in the final section.

2. Flow systems
The basic flow configuration is sketched in figure 1: we have a flat wall of size

L × W with spherical particles, each with radius a, randomly placed on it. All flow
systems are periodic in the x (streamwise) and y (lateral) directions. We consider
monolayers, double layers and triple layers. The monolayers are defined by a surface
fraction σ1. They are created by giving the non-overlapping spheres random centre
locations (xc, yc) on the flat wall, i.e. they all have zc = a. In order to achieve
surface fractions σ1 > 0.35, random placement on a surface needs to be followed by a
compaction procedure, and then randomizing the system again by letting the spheres
move granularly for some time, keeping the sphere centres at zc = a. For typically
σ1 � 0.5, the monolayers show (long-range) order (see figure 2).

Double layers are built by first building a monolayer with σ1 = 0.70 and all spheres
at zc = a. We then generate a second layer by randomly placing spheres at zc = 4a.
This layer has a surface fraction σ2. We let fall this second layer (in the z-direction)
on the first layer. In this process collisions between spheres are inelastic (restitution
coefficient e = 0.8) and frictionless, and the spheres in the bottom layer are not allowed
to move. After some time a static, double-layer bed has been created. The density of
the bottom layer (σ1 = 0.70) has been chosen such that particles in the second layer
cannot fall through the bottom layer and thus do not touch the bottom wall; the
minimum z-location of spheres in the second layer typically is zc = 2.0a. Triple layers
are build in a similar fashion, i.e. we first build (according to the procedure described
above) a double-layer system with σ1 = σ2 = 0.70 and then drop the third layer with
the surface fraction σ3. A typical cross-section through a triple-layer bed is given in
figure 2(d). All double-layer simulations presented here have the same bottom layer;
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Figure 1. Flow geometry and coordinate system. Randomly placed spheres on the flat
bottom wall experience a shear flow due to the motion in the x-direction of an upper wall.
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Figure 2. Top view of monolayers: (a) σ1 = 0.4, (b) σ1 = 0.5, (c) σ1 = 0.7. (d) Cross-section
(xz-plane) through a triple-layer bed with σ1 = σ2 = 0.7 and σ3 = 0.4.

all triple-layer simulations have the same two lower layers. The lower layers are dense
so that each sphere in the bed can be associated with a specific layer.

Above the beds of spheres a shear flow is created by placing a wall parallel to
the bottom wall at a distance H and giving that wall a velocity u0 in the positive
x-direction (see figure 1). The overall shear rate γ̇0 as, e.g. used in Re = γ̇0a

2/ν for
monolayers is defined as γ̇0 ≡ u0/H , for double and triple layers it is γ̇0 = u0/(H − 2a)
and γ̇0 = u0/(H − 4a) respectively; the definition of γ̇0 depends on the number of
layers in order to account for the reduced open space above the bed as a result of
the presence of sphere layer(s). Later in this paper, we will see that the shear rates
actually experienced by the beds slightly differ from γ̇0. The placement of the moving
wall (in terms of the aspect ratio H/a) has an influence on the hydrodynamic forces
acting on the spheres. This sensitivity has been investigated and H/a has been chosen
such that its impact on the forces is small. If we compare cases with different numbers
of layers, H is increased by an amount 2a for each additional layer of spheres. During
the flow simulations the spheres are immobile.
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3. Modelling approach
As in many of the earlier works on the subject of drag on sphere assemblies, we

used the LB method (Chen & Doolen 1998; Succi 2001) to solve for the flow of
interstitial liquid. The method has a uniform, cubic grid (grid spacing �) on which
fictitious fluid particles move in a specific set of directions and collide to mimic the
behaviour of an incompressible, viscous fluid. The specific LB scheme employed here
is due to Somers (1993); see also Eggels & Somers (1995). The no-slip condition
at the spheres’ surfaces was dealt with by means of an immersed boundary (or
forcing) method (Goldstein et al. 1993; Derksen & Van den Akker 1999). In this
method, the sphere surface is defined as a set of closely spaced points (the typical
spacing between points is 0.7�), not coinciding with grid points. At these points
the (interpolated) fluid is forced to zero-velocity according to a control algorithm.
Adding up (discrete integration) of the forces needed to maintain no-slip provides us
with the (opposite; action is minus reaction) force the fluid exerts on the spherical
particle. In this procedure we generally do not distinguish normal (pressure-related)
and shear forces. We have validated and subsequently used this method extensively
to study the interaction of (static as well as moving) solid particles and Newtonian
and non-Newtonian fluids (Ten Cate et al. 2004; Derksen & Sundaresan 2007;
Derksen 2008, 2009). For instance, simulation results of a single sphere sedimenting
in a closed container were compared with PIV experiments of the same system
and showed good agreement in terms of the sphere’s trajectory, as well as the
flow field induced by the motion of the falling sphere (Ten Cate et al. 2002). For
dense suspensions (with solids volume fractions up to 0.53) Derksen & Sundaresan
(2007) were able to quantitatively correctly represent the onset and propagation of
instabilities (planar waves and two-dimensional voids) of liquid–solid fluidization as
experimentally observed by Duru et al. (2002) and Duru & Guazelli (2002).

It should be noted that having a spherical particle on a cubic grid requires a
calibration step, as earlier realized by Ladd (1994). He introduced the concept of a
hydrodynamic radius. The calibration involves placing a sphere with a given radius
ag in a fully periodic cubic domain in creeping flow and (computationally) measuring
its drag force. The hydrodynamic radius a of that sphere is the radius for which the
measured drag force corresponds to the expression for the drag force on a simple
cubic array of spheres due to Sangani & Acrivos (1982) which is a modification of
the analytical expression due to Hasimoto (1959). Usually a is slightly bigger than
ag , with a − ag typically equal to half a lattice spacing or less. In the present work,
given radii ag are selected such that the resulting hydrodynamic radius gets a round
number: a =6.0, 8.0 or 12.0. The default radius is a =6.0. Simulations with the larger
radii were conducted to quantify grid effects.

The simulations were started by setting the upper wall in motion above a zero-
velocity liquid layer. It then approximately takes a time span t ∼ H 2/ν for the flow
system to reach the steady state. In a typical simulation this corresponds to 5 × 104

time steps. After the steady state has been reached, we analyse the results, mostly in
terms of drag and lift forces exerted by the flow on the spheres.

4. Results
4.1. Single-sphere validations

For validation of the numerical procedure, and for checking the effects of spatial
resolution and domain size (L × W × H , see figure 1) relative to sphere size, first a
single sphere was placed on the bottom wall in the flow domain. For the flow around
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a single solid, immobilized sphere attached to a flat wall in further unbounded simple
shear flow, an analytical solution in the Stokes flow limit – including an expression
for the drag force acting on the sphere – has been presented by O’Neill (1968).
Leighton & Acrivos (1985) extended the analysis to account for inertial effects so that
the lift force could be determined. For situations with Re = γ̇0a

2/ν � 1, the drag and
lift force expressions read FD = 32.1µγ̇0a

2 and FL = 9.22Reµγ̇0a
2 respectively (with

µ = νρ the dynamic viscosity). Inspired by these expressions, we define dimensionless
drag and lift forces as F ∗

D ≡ FD/µγ̇0a
2 and F ∗

L ≡ FL/Reµγ̇0a
2 respectively. The force

on the sphere in the x -direction is the drag force and the force in the z-direction
(in terms of the coordinate system as defined in figure 1) is the lift force. It should
be noted that if the sphere is allowed to move (e.g. rolling along the wall at some
very small finite separation distance), the lift force would be substantially reduced
(Krishnan & Leighton 1995).

In the base-case simulation the grid had a resolution such that a = 6.0, and
L = 36a, W = 24a, H =12a and Re = 0.05. For the base-case simulation we find
F ∗

D = 32.3 ± 0.05 and F ∗
L = 7.9 ± 0.6. The uncertainties (the number after ± indicates

two standard deviations) relate to the placement of the sphere relative to the grid.
Due to discretization (of the flow domain and of the surface of the sphere) the forces
slightly change if the sphere is displaced with respect to the grid. Given the periodic
conditions, displacing the sphere by an integer number of lattice spacings in the x-
or y-direction has no effect. Its large standard deviation indicates that the lift force is
relatively sensitive to this effect. It should be noted, however, that for the base-case
conditions the lift force is much weaker than the drag force: the ratio of the drag
force over the lift force is approximately FD/FL ≈ 80.

If we increase the flow domain in the x- and/or y-direction (i.e. increase L and/or
W), the drag and lift forces do not change much: for L =72a and the rest base-case
conditions the drag force increased by 0.4 % and lift increased by 0.7 %; for W = 36a

(and further base-case conditions) the lift force went up 0.1 % while the drag force
virtually stayed the same. It should be noted that the relative change in the drag
and lift forces due to changes in L and W has been studied for one specific sphere
placement (relative to the grid) only.

The sensitivity with respect to the domain height H is somewhat stronger as
we show in figure 3. The drag force decreases and the lift force increases if H
is made larger. For the drag force we reach good agreement with the O’Neill
(1968) result of F ∗

D = 32.1 (the value for F ∗
D at H/a = 24 is 32.1 ± 0.05). On the

one hand this is surprising given the modest spatial resolution of a =6.0; on the
other hand, it is not given the fact that we calibrated the hydrodynamic radius
based on the drag force (albeit under different geometrical and flow conditions).
The simulated lift force is lower (by some 8 % for H/a = 24) than the analytical
result of F ∗

L = 9.22. The influence of the Reynolds number was investigated for the
specific situation of the sphere centre having an x- and a y-location coinciding with
the x- and y-locations of lattice nodes, see the results in figure 4. For Re � 0.05,
the dimensionless drag force is practically Reynolds-independent. The dimensionless
lift converges in a somewhat erratic manner to a value of approximately 8.6 for
Re � 0.01. The convergence of F ∗

L to a constant value for low Re (Re � 0.01) agrees
with the analytical result of Leighton & Acrivos (1985). The decrease of F ∗

L with
increasing Reynolds number (figure 4) indicates that for a higher Reynolds number
(Re > 0.01) the dependence of the lift force on the sphere radius is weaker than a4,
in accordance with the observations (and the literature data cited) by Zeng et al.
(2009).
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Figure 3. Dimensionless drag F ∗
D and lift F ∗

L forces as a function of the system height H
with (except for H) base-case conditions (as defined in the text). The error bars have a total
length of two times the standard deviation (one on either side). Each data point represents the
average and standard deviation of six placements of the sphere centre relative to the grid.

The combined effect of Re and H/a on the drag and the lift force was investigated
by performing a set of six simulations (each with a different placement of the sphere
relative to the grid) at Re =0.01 (smaller than in the base case) and H/a = 24
(larger than in the base case) that resulted in F ∗

D = 32.1 ± 0.05 and F ∗
L =9.1 ± 0.6. The
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Figure 4. Dimensionless drag F ∗
D and lift F ∗

L forces as a function of the Reynolds number
with (except for Re) base-case conditions (as defined in the text). Results for a single-sphere
placement (relative to the grid).

analytical expressions (O’Neill 1968; Leighton & Acrivos 1985) are within the error
margin of these simulations.

A grid refinement study for a single-sphere placement (relative to the grid) under
base-case conditions (H/a = 12 and Re = 0.05, see figure 5) shows that refining the
grid has a less than 0.5 % effect on the drag force. The dimensionless lift force,
however, reduces by 3.5 % if the grid spacing is reduced from a/6 to a/12.
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Figure 5. Dimensionless drag F ∗
D and lift F ∗

L forces as a function of the spatial resolution as
expressed in the number of lattice spacings per sphere radius a. Base-case conditions. Results
for a single-sphere placement (relative to the grid).

The conclusion of this single-sphere study is that the drag of a wall-bounded sphere
in slow (low Re) shear flow can be well represented (within some 1 % of the analytical
result) by our numerical procedure that (it should be noted again) has been calibrated.
The lift force is predicted less accurately and is relatively sensitive to the placement of
the sphere in the grid. Compared to the drag force, the lift force depends stronger on
the wall-normal domain size, the Reynolds number and the spatial resolution of the
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simulations. For Re � 0.01, H/a � 24 and a =6, the uncertainty interval of simulated
lift forces covers the analytical result, the centre of the interval being 1.5 % off. The
grid refinement results (done for the base case, and for reasons of computational
affordability for only one placement of the sphere in the grid) indicate a somewhat
larger deviation. The error in the simulated average lift force is estimated to be 4 %
(still smaller than the uncertainty margins – two standard deviations – due to sphere
placement in the grid of 6 %). It should be noted, however, that the simulations tend
to underestimate lift.

For the practical purpose of studying erosion of fine particle beds, the lift force
being not as accurate as the drag force is not a critical issue. For low Reynolds
numbers, the drag force is much stronger than the lift force. The single-sphere results
also provided indications as to when the dimensionless drag force F ∗

D and lift force
F ∗

L tend to become independent of the flow domain size (relative to sphere size) and
Reynolds number, which is important information when setting up and interpreting
many-sphere simulations.

4.2. Monolayers of spheres

We now turn to situations where the bottom plate is partially covered with spheres
that all rest on the plate, i.e. their z-centre locations are zc = a. The specific physical
situation with the surface coverage fraction σ1 = 0.25 and Re =0.05 has been studied
with respect to its sensitivity to numerical (e.g. resolution) and semi-numerical (e.g.
domain size) settings. This situation and the verifications are discussed first.

Figure 6 gives an impression of the flow field in terms of the fluid velocity in
between and closely above the spheres (note that the computational domain extends
to z = 12a, i.e. much further than displayed in figure 6(b)). It can be seen that the
shear flow only partially penetrates the space between the spheres which obviously
has consequences for the hydrodynamic forces acting on the spheres. Compared to
the single-sphere values of F ∗

D ≈ 30 and F ∗
L ≈ 9, the average drag and lift forces per

sphere for the monolayer with σ1 = 0.25 reduce drastically; see the results in figure 7
that indicate the values of the order of 10 and 1 for dimensionless drag and lift forces
respectively. In figure 7 the effect of the horizontal system size has been investigated.
The three data points per panel relate to L × W equal to 24a × 16a, 36a × 24a and
48a × 32a. The standard deviations as indicated in the figure are the result of different
(random) sphere configurations; they get smaller when the flow systems get larger.
Most of the subsequent simulations were done for systems with L × W = 36a × 24a

as a compromise between small standard deviation and computational effort.
As for the single-sphere simulations, the effect of the spatial resolution on

hydrodynamic forces was tested by comparing simulations with a = 6.0, 8.0 and 12.0.
This was done for one random sphere configuration and flow conditions as defined in
table 1. The results for the average drag and lift forces show good agreement between
the grids; the drag force is virtually grid-independent, and the lift forces are within a
3 % margin.

A subtle issue comes up when comparing different vertical domain sizes. Again
one sphere configuration was considered, and H was increased from 12a (the default
size) to 18a, 24a and 36a while keeping the Reynolds number constant. Dimensionless
drag and lift forces then show a systematic decline, see figure 8. Closer inspection
demonstrates that this decline can be almost fully attributed to the way the drag
and lift forces have been scaled (F ∗

D ≡ FD/µγ̇0a
2 and F ∗

L ≡ FL/Reµγ̇0a
2 = FL/ργ̇ 2

0 a4

with γ̇0 ≡ u0/H ). As is clear from figure 6, however, the shear flow does not fully
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Resolution of a (lattice spacings) F ∗
D F ∗

L

6 13.30 1.539
8 13.30 1.497

12 13.29 1.511

Table 1. Simulations with different spatial resolution and σ1 = 0.25, L =36a, W = 24a,
H =12a, Re = 0.05.
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Figure 6. Absolute velocity in (a) horizontal (xy) plane at z = a and (b) in a vertical streamwise
(xz) plane. The top colour scale relates to (a) and the bottom scale to (b). σ1 = 0.25 and
Re = 0.05.

penetrate the particle layer so that u0/H may not be a good measure for the shear
rate experienced by the spheres in the monolayer. Also, the extent to which the
shear rate experienced by the bed deviates from u0/H depends on H (relative to a).
This is illustrated in figure 9 where we show profiles of the streamwise superficial
fluid velocity as a function of z for different vertical system sizes. These profiles are
similar to the ones measured by Mouilleron, Charru & Eiff (2009) inside granular
beds moved by a shear flow at Shields numbers not much above the critical value at
which the onset of particle motion occurs and particle-based Reynolds numbers are
smaller than 1.

The observations in figure 9 allow us to define a more representative measure for
the shear rate (symbol γ̇b) felt by the spheres as the slope of the straight portion
of the velocity profile. If we use this shear rate for normalization, i.e. change the
definitions to F ∗

D =FD/µγ̇ba
2 and F ∗

L = FL/ργ̇ 2
b a4, the dependences with respect to

H/a virtually disappear (see the closed symbols in figure 8). From this moment on,
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Figure 7. Average drag (a) and lift (b) forces in a monolayer as a function of the horizontal
system size (expressed as the number of spheres in the monolayer). The total length of each
error bar is two times the standard deviation of the average force based on five monolayer
realizations. H =12a, σ1 = 0.25 and Re = 0.05.

the dimensionless drag and lift force results will be based on normalizations using γ̇b.
Note that we do not change the Reynolds number definition. It is still based on γ̇0

(i.e. Re is fully determined by the input parameters). The rationale for this is that we
wish Re to be fully determined by input parameters (γ̇0, a and ν). For the simulations
reported in this paper, Re would at most increase by 8 % (0.054 instead of 0.05 under
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Figure 8. Average drag (a) and lift (b) forces in a monolayer as a function of the vertical
system size H. Results for a single monolayer configuration. The open symbols relate to force
normalization based on γ̇0 = u0/H and the closed symbols to a normalization based on γ̇b (see
the text and figure 9). L = 48a, W = 32a, σ1 = 0.25 and Re = 0.05.

the base-case condition) if we base it on γ̇b and the precise value of Re is not that
critical (as long as Re � 1).

Given the above assessments and insights we now use an L × W ×
H = 36a × 24a × 12a domain with spheres of radius a = 6.0 lying on the bottom
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Figure 9. Average superficial x-velocity profile over and in a monolayer. Comparison between
different vertical system sizes: H = 12a (long dash), H = 18a (short dash), H = 24a (dotted)
and H = 36a (solid). The slope of the straight portion of each curve is recognized as γ̇b .
L = 48a, W =32a, σ1 = 0.25 and Re = 0.05.

wall and a shear flow with Re =0.05 to study the dependence of the average drag
and lift forces experienced by the spheres on the surface occupancy σ1. Figure 10
summarizes the main results. Each data point in figure 10 represents at least five
simulations, i.e. five different random sphere configurations experiencing the same
overall shear flow. The error bars indicate the standard deviation of the average lift
and drag forces. Both the average drag force and the average lift force decrease
strongly with increasing sphere density on the bottom plate. This is the result of the
shear flow penetrating less deep in the monolayer as it gets denser. This effect is
quantified in figure 11. There we show how the intercept of the extrapolated linear
shear field above the bed with the z-axis (symbol p, see the inset of figure 11) depends
on σ1. The denser the monolayer, the more the flow skims over the monolayer, thereby
reducing the average drag and lift forces.

To see how much the forces experienced by the individual spheres deviate from
the average force, the variability of the forces is displayed in figure 12 in terms
of the root-mean-square (r.m.s.) values of the deviation of the drag and lift forces
from their average values (r.m.s.(F ∗

D) and r.m.s.(F ∗
L) respectively). Especially for the

lift force these results are intriguing. In the first place r.m.s.(F ∗
L) is larger than the

average dimensionless lift force over the entire σ1 range considered, in the second
place r.m.s.(F ∗

L) can get significantly larger than the single-sphere value of 9.22 and in
the third place r.m.s.(F ∗

L) goes through a maximum at around σ1 = 0.06. At σ1 = 0.06
the average centre-to-centre spacing of the spheres is approximately 3.6 times the
sphere diameter.

For very low values of σ1 the spheres do not interact hydrodynamically and all
spheres would feel the same single-sphere lift force and there would be no sphere-
to-sphere variability; thus, r.m.s.(F ∗

L) would approach zero. For denser systems the
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Figure 10. Dimensionless drag (a) and lift (b) forces as a function of the surface occupancy
σ1 in a monolayer. The total length of the error bars is two times the standard deviation of
the average forces. If the bars are smaller than the symbol, then they would not be displayed.
H =12a, L = 48a, W = 32a and Re = 0.05.

spheres start feeling one another, i.e. the flow field around one sphere impacts the
surrounding spheres and vice versa. The three-dimensional flow experienced by
each sphere as a result of the surrounding spheres strongly and erratically induces
forces in the vertical (negative and positive) direction. These vertical forces are not
necessarily inertial lift forces (in the Saffman sense); they contain contributions of
viscous drag as a result of vertical components of the flow about the sphere induced
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Figure 11. Intercept of the linear part of the velocity profile with the ordinate (symbol p
as defined in the inset) as a function of σ1 for monolayers. H = 12a, L = 48a, W = 32a and
Re = 0.05.

by other spheres surrounding it. Since at low Reynolds numbers the drag force is
much stronger than the lift force (Leighton & Acrivos 1985), the vertical viscous drag
forces can easily exceed the single-sphere inertial lift force. For still denser systems
(beyond σ1 = 0.06 according to figure 12) r.m.s.(F ∗

L) gets smaller for the same reason
the average lift force gets smaller, i.e. because the shear flow is less able to penetrate
the monolayer, thus weakening the forces on the spheres. The inset in figure 12 shows
the probability density functions (p.d.fs) of the lift force when its variability goes
through its maximum (at σ1 = 0.06) and (for comparison) at σ1 = 0.25. At σ1 = 0.06
some individual spheres feel vertical forces as large as 50ργ̇ 2

b a4, i.e. more than five
times the single-sphere inertial lift force.

The variability of the drag force (in terms of r.m.s.(F ∗
D)) goes through a similar

dependence on σ1 as r.m.s.(F ∗
L), but in a dimensionless sense is approximately a

factor of 6 weaker. Given Re = 0.05 in the simulations considered here, the ratio
r.m.s.(FD)/r.m.s.(FL) (i.e. the ratio of dimensional drag and lift forces variability)
therefore is 1/6Re ≈ 3.

To further investigate the lift force variability and its interpretation as a viscous
drag force due to a vertical fluid flow, the behaviour of the vertical (z) fluid velocity
component in the monolayer was studied in more detail. In figure 13 u∗

z ≡ uz/γ̇0a

is shown at the z = a level in terms of contour plots. The presence of spheres on
the surface clearly induces vertical velocities; the structure and amplitude of the
vertical velocity field depend on the surface occupancy. This is further detailed in
figure 14 (a), which shows the r.m.s. levels r.m.s.(u∗

z) of the vertical velocity (with
average u∗

z being zero) of the fluid at z = a in a monolayer as a function of σ1.
The form of this dependence shows similarity with the way r.m.s.(F ∗

L) depends on
σ1 (figure 12), although the similarity is not perfect (the maximum for r.m.s.(F ∗

L)
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Figure 12. Root-mean-square values of drag (a) and lift (b) forces as a function of σ1 for
monolayers. The inset in (b) shows the p.d.f. of the lift force for σ1 = 0.06 (solid curve) and
0.25 (dashed curve). For all data points: H = 12a and Re = 0.05.

is reached at/near σ1 = 0.06, and that for r.m.s.(u∗
z) at/near σ1 = 0.1). If we plot

r.m.s.(F ∗
L) against r.m.s.(u∗

z), as is done in figure 14(b), an approximately linear
relationship can be identified with an estimated proportionality constant β ≈ 550
(defined by r.m.s.(F ∗

L) = β · r.m.s.(u∗
z)). In a (overly) simple conjecture, we make

the vertical force variability proportional to the vertical velocity variability with
proportionality constant 6πaµ (as in Stokes drag). In a dimensionless form this
would imply r.m.s.(F ∗

L) = 6π/Re ·r.m.s.(u∗
z). With Re = 0.05 (as in the simulations that
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Figure 13. Vertical (z) velocity in a monolayer at z = a with (a) σ1 = 0.06 and (b) σ1 = 0.25
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Figure 14. (a) Root-mean-square values of the vertical velocity component uz at z = a as a
function of σ1 for monolayers. (b) r.m.s.(F ∗

L) (data from figure 12) versus r.m.s.(u∗
z); dashed

line: linear fit discarding the filled-square data point which corresponds to the filled square in
(a). The inverse slope of the straight line amounts to β = 550. For all data points: H = 12a
and Re = 0.05.

generated figures 12 and 14), 6π/Re ≈ 380, which is of the same order of magnitude
as the fitted value of β . This strengthens the case for the lift force variability being
the result of the viscous drag force, i.e. the result of a reversible Stokes flow, not an
inertial effect.

To further strengthen this case, the drag and lift forces in monolayers with σ1 = 0.06
have also been studied as a function of the Reynolds number. Results in terms
of force variability are shown in figure 15. The results clearly show that viscous
scaling is appropriate for the drag as well as the lift force: r.m.s.(FL)/µγ̇ba

2 becomes
independent of Re for low values (Re < 0.1).
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Figure 16. Dimensionless drag (a,b) and lift (c,d) forces as a function of the top-layer surface
occupancy σ2 for double layers (a,c) and σ3 for triple layers (b,d). Open squares: top layer;
triangles: second layer from the top; filled squares: third layer from the top. The total length
of the error bars is two times the standard deviation. If the bars are smaller than the symbol,
then they would not be displayed. For the sake of visibility of the error bars, some data
points have been slightly shifted horizontally (|�σ | � 0.002). L = 48a, W = 32a and Re = 0.05.
H = 14a for double layers and H =16a for triple layers.

4.3. Multiple layers

We now briefly turn to double and triple layers of spheres, where we focus on how
deep in the bed the shear flow is being felt and to what extent the average forces on
spheres in the top layer depend on the underlying bed.

As was the case with monolayers, the average drag force on spheres in the top
layer of double- and triple-layer beds decreases when the occupancy of the top layer
increases (see figure 16a,b). The decay is less drastic than those for monolayers though.
In beds made of double and triple layers the drag force on the spheres in the top
layer at low σ is smaller than in monolayers at the same σ , and the drag force at
high σ is larger than its monolayer counterpart.
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Figure 17. Intercept of the linear part of the velocity profile with the ordinate (symbol p)
as a function of σ2 for double layers (a) and σ3 for triple layers (b). L =48a, W = 32a and
Re = 0.05. H = 14a for double layers and H = 16a for triple layers. The dotted lines indicate
the top of the layer underneath the highest layer.

These differences can be explained as follows. If we have multiple layers, the top
spheres sink a little in the underlying bed which reduces the average drag force on
the top-layer spheres. At the same time – due to the more open structure of the
underlying bed – the shear flow is able to penetrate deeper into the top layer (see
figure 17 and compare this with figure 11) which is an effect that enhances the drag
force. The net effect is a weaker dependence of the average drag force on σ of the
top layer. Average drag force on spheres in the second layer from the top is only
appreciable for top-layer occupancies σ2,3 < 0.2; in the triple-layer bed the bottom
layer hardly experiences an average drag force.

The results for the average lift force generally have large standard deviations of the
averages (see figure 16c,d ); the top layer of the multiple-layer beds is more random
than that of the monolayer beds (adding more layers increases the randomness).
Compared to the drag force, the average lift force apparently is more sensitive to the
specific placements of the spheres in the bed. It should be noted that the data points
in figure 16 represent the averages of 5–7 (the latter for σ2,3 � 0.06) simulations with
different (random) sphere configurations. The trends in the lift force, however, are
the same as those for the drag force: reduced average forces at increasing top-layer
surface occupancy, and low to negligible lift force levels in the lower sphere layers.

The increased randomness of the top layer in double- and triple-layer beds (also
the z-centre location of the spheres now is a stochastic variable) compared to the
monolayers makes the r.m.s. data somewhat less coherent, see figure 18. A few general
observations can be made though. The deeper penetration of the shear flow along
with the increased randomness of the top layer leads to (generally) larger r.m.s. values
of the drag force and also to r.m.s.(F ∗

D) being a less pronounced function of the
top-layer occupancy, see figure 18(a,b). In monolayers, r.m.s.(F ∗

D) quickly decreases
with increasing σ1 (beyond the maximum r.m.s.(F ∗

D) that is reached at σ1 = 0.06).
This decrease is much less in double and triple layers. If we compare the drag r.m.s.
data in relatively dense monolayers at σ1 = 0.5 with the data for relatively dense top
layers of double- and triple-layer beds (σ2 = 0.5 and σ3 = 0.5 respectively), we see
two times and more than three times high r.m.s. levels of the drag force in the top
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Figure 18. Root-mean-square values of the drag (a,b) and lift forces as a function of σ2 for
double layers (a,c) and σ3 for triple layers (b,d). Open squares: top layer; triangles: second
layer from the top; filled squares: third layer from the top. L = 48a, W =32a and Re = 0.05.
H = 14a for double layers and H =16a for triple layers.

layer of double- and triple-layer beds respectively compared to those of monolayer
beds. Also, r.m.s.(F ∗

D) takes on appreciable values for the second layer from the top,
in double-layer as well as in triple-layer beds. This is because the subsequent layers
in the bed communicate with one another via the interstitial fluid. At the low end
of σ2, the double-layer bed has a maximum r.m.s.(F ∗

D) at σ2 = 0.15. The triple layer
r.m.s.(F ∗

D) does not go through a maximum within the σ3 range considered.
As in monolayers, r.m.s.(F ∗

L) gets larger in double- and triple-layer beds than the
single-sphere, dimensionless lift force of 9.22, see figure 18(c,d). The global trends
in r.m.s.(F ∗

L) in double- and triple-layer beds are similar to those in r.m.s.(F ∗
D). The

second layer from the top shows high r.m.s. lift force levels. They are comparable in
size to the r.m.s. of the lift force in the top layer. This can be explained by considering
the pressure distribution above and in the bed, as we do in figure 19. Spatial pressure
fluctuations are largely due to the top-layer spheres. They are also very much felt by
the spheres in the second (counted from the top) layer inducing net (mostly vertical)
forces on these spheres, sometimes positive, sometimes negative, dependent on the
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Figure 19. Relative pressure contours in a vertical (xz) cross-section through (a) double-layer
bed with σ2 = 0.25, and (b) triple-layer bed with σ3 = 0.25. L = 48a, W = 32a and Re = 0.05.
H =14a for double layer and H =16a for triple layer.

precise placement of the spheres above in the top layer. In the triple-layer system,
the pressure fluctuations do hardly penetrate deeper than the middle layer of spheres
so that the r.m.s. force levels (lift as well as drag) in the bottom layer are low (see
figure 19b and 19d ). Similar to the Stokes drag force on a single sphere, we have
observed that the contributions due to normal stress and shear stress on the total
force on individual spheres are (on average) roughly the same.

5. Summary and conclusions
Motivated by erosion of beds of fine particles as a result of fluid flow we studied

the drag and lift forces on fixed, random assemblies of monosized spheres supported
by a flat wall. The flow over the wall was a simple shear flow (driven by moving an
opposing flat wall) with the Reynolds number based on the particle radius and the
shear rate much smaller than 1 (in most simulations Re = 0.05). The research was
based on directly solving the Navier–Stokes equations fully representing the geometry
of the sphere assemblies. As a flow solver the LB method was used, and the spherical
surfaces were represented with an immersed boundary method.

In order to assess the level of accuracy of the computational approach, numerical
results were compared with the analytical solution for the drag and lift forces due to
a shear flow on a sphere in contact with a flat wall (O’Neill 1968; Leighton & Acrivos
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1985). This exercise showed that the drag force can be accurately represented by our
numerical method (within 1 %). The lift force deviates by some 4 % and is mostly
underestimated. The lift force shows the same dependence as the analytical solution
(Leighton & Acrivos 1985) with respect to the Reynolds number if Re � 0.01. Under
the flow conditions considered (Reynolds numbers much smaller than 1), the absolute
value of the lift force is much smaller than the absolute value of the drag force.

The numerical procedure was also evaluated for flow systems involving multiple
spheres. For one monolayer case (with surface occupancy of 0.25), it was shown
that the drag and lift force results were within a few per cent independent of the
computational grid. When studying the dependence of the drag and lift forces with
respect to the wall-normal domain size, it was realized that the representative shear
rate is the velocity gradient above the bed, not the apparent shear rate that follows
from dividing the opposing wall velocity by the distance between the walls. The
hydrodynamic forces for multiple sphere beds were all scaled using this representative
shear rate.

The average drag and lift forces on spheres in a monolayer are pronounced
monotonically decaying functions of the surface occupancy. The main effect
responsible for this is the reduction of the penetration depth of the shear flow
in the layer if its density increases. At the larger occupancies, the flow largely skims
over the layer, which reduces drag to skin friction drag and which deteriorates the
lift force. The sphere-to-sphere variability of the drag and the lift forces (as measured
in terms of their r.m.s. levels) is significant. Both drag and lift r.m.s. levels have a
maximum at surface occupancy 0.06. At σ1 = 0.06 the r.m.s. of the drag force can get
as high as 0.1 times the single-sphere drag force, whereas the r.m.s. of the lift force
two times its single-sphere equivalent.

Point of discussion is whether this large force variability should be termed lift. The
wall-normal forces on spheres in a monolayer are largely due to the hydrodynamic
interactions of the spheres, inducing a hydrodynamic environment around spheres
with significant wall-normal velocity components. The wall-normal flow is responsible
for wall-normal hydrodynamic forces on the spheres that we term lift forces. These
are reversible viscous forces (as opposed to inertial forces such as Saffman lift) as was
confirmed by the viscous scaling of the wall-normal force variability as a function of
the Reynolds number.

Next to monolayers of spheres, double and triple layers have been studied. All
the double-layer simulations have the same (dense) ground layer on which randomly
generated top layers are dropped. In the same manner all triple layers have the same
two bottom layers and again randomly generated top layers. Given their topology,
double- and triple-layer beds show more variability (in addition to the random
wall-parallel sphere-centre positions, the wall-normal centre position of the upper
layer(s) also varies to some extent). This makes it harder to generate statistically well-
established average force data. A few trends can be discerned though. As compared to
monolayers, the decay of the drag and lift forces with increasing surface coverage of
the top layer – though still present – gets weaker. The drag and lift forces on top-layer
spheres reduce as they prefer to sit in the lower places in between lower layer spheres
and thus are less exposed to the shear flow. This effect is mostly felt in dilute top
layers. The relative openness of multi-layer beds makes it easier for the shear flow to
penetrate the top layer which (again in comparison to monolayers) enhances the drag
and lift forces in beds with denser top layers. The combination of these two effects
causes a levelling of the drag and lift forces in top layers of multiple-layer beds.

Average hydrodynamic forces quickly decay when going deeper in the bed. If the
top layer has coverage greater than 0.2, the average drag and lift forces deeper in the
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bed get insignificant. This is not the case for the r.m.s. force levels deeper in the bed.
They are appreciable, at least in the second layer counted from the top.

Well-defined experiments on erosion of beds of spherical particles with narrow
size distributions by laminar flow and the role of the Shields number have been
reported by Charru, Mouilleron & Eiff (2004), Ouriemi et al. (2007) and Lobkovsky
et al. (2008). The results of the simulations reported in this paper could be helpful
in analysing the experimental results. In addition to the hydrodynamic forces acting
on the spherical particles, such analysis would also require information regarding the
topology of the bed, friction and restitution coefficients related to particle–particle
collisions, and inter-particle forces in static beds and in beds in which particles
move relative to one another (e.g. lubrication forces). With this in mind, we consider
dynamic bed simulations. In principle, such simulations should reveal to what extent
critical Shields numbers depend on bed and flow parameters, and how the topology
of the bed and specifically its upper layers interact with the flow. It may be that
spheres in upper layers align with the flow direction which would have impact on the
drag and lift forces they experience.

A very interesting experimental study due to Charru et al. (2007) could serve as
guidance and validation material on the route towards dynamic bed simulations. The
study considers the motion of a single spherical particle over a bed of fixed particles
as a result of a shear flow over the bed and highlights the role of the randomness of
the underlying bed on the motion of the sphere.
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