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Fully resolved simulations of particles suspended in a sustained turbulent flow field
are presented. To solve the Navier—Stokes equations a lattice-Boltzmann scheme was
used. A spectral forcing scheme is applied to maintain turbulent conditions at a Taylor
microscale Reynolds number of 61. The simulations contained between 2 and 10 vol %
particles with a solid to fluid density ratio between 1.15 and 1.73. A lubrication force is
used to account for subgrid hydrodynamic interaction between approaching particles.
Results are presented on the influence of the particle phase on the turbulence spectrum
and on particle collisions. Energy spectra of the simulations show that the particles
generate fluid motion at length scales of the order of the particle size. This results in a
strong increase in the rate of energy dissipation at these length scales and a decrease
of kinetic energy at larger length scales.

Collisions due to uncorrelated particle motion are observed (primary collisions),
and collision frequencies are in agreement with theory on inertial particle collisions. In
addition to this, a large number of collisions at high frequencies is encountered. These
secondary collisions are due to the correlated motion of particles resulting from short-
range hydrodynamic interactions and spatial correlation of the turbulent velocity
field at short distances. This view is supported by the distribution of relative particle
velocities, the particle velocity correlation functions and the particle radial distribution
function.

1. Introduction

In industrial processes where solid materials are produced or handled, often dense
slurries are processed under highly turbulent conditions. Turbulence is required to
maintain the slurry suspended and well mixed. While operating under such conditions,
phenomena such as breakage, agglomeration and segregation of particles can occur;
these phenomena can be either desired or potential problems in the operation of these
processes (Zwietering 1958; Wibowo & Ng 2001).

One specific example is industrial crystallization, which deals with the production of
solid crystals from a supersaturated liquid. The crystal suspension typically contains
between 5 and 20 vol % solids with an average particle size in the range of 100
to 1000 um, and with a solid to liquid density ratio in the range of 1 to 2.5. The
Kolmogorov length scale typically is one order of magnitude smaller than the mean
crystal size (Ten Cate et al. 2001). Under the action of the turbulent flow field,
agglomeration (Hollander et al. 2001), abrasion, and fracture (Gahn & Mersmann
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1999) take place. These phenomena have a strong influence on the performance of
the crystallization process and hence on the resulting product, and make scale-up a
non-trivial exercise.

In this paper we study turbulent solid-liquid suspensions under conditions that are
comparable to those encountered in industrial crystallization processes (i.e. d, > 7,
where d), is the particle diameter and n the Kolmogorov length scale, and up to 10 vol
% solid phase). Strong hydrodynamic interactions between particles and fluid motion
and strong particle—particle interactions are anticipated. We performed numerical
simulations where the flow field around each particle is resolved and the motion of
the solid and the fluid phase are fully coupled.

Much effort is currently invested in the development of efficient numerical schemes
for the direct simulation of suspensions of solid spheres. A variety of different schemes
are being developed based on finite difference or finite volume solution methods for
the Navier—Stokes equations combined with efficient schemes for implementation of
the solid particle boundary conditions (see e.g. Hu 1996; Hu, Patankar & Zhu 2001;
Pan & Banerjee 1997; Patankar et al. 2000; Patankar 2001).

An alternative method for the direct simulation of suspensions is based on the
lattice-Boltzmann method (see e.g. the review by Koch & Hill 2001). The Iattice-
Boltzmann method presents an efficient numerical scheme for solution of the Navier—
Stokes equation on a regular cubic grid (Chen & Doolen 1998). The approach was
established and validated by Ladd (1994a,b). It has been used to study suspension
problems with particles moving in the Stokes regime or at low but non-zero Reynolds
numbers (e.g. sedimentation of large numbers of particles Ladd (1997, 2002), motion
of spherical and non-spherical particles (Qi 1999; Aidun, Lu & Ding 1998; Ding &
Aidun 2000). Both because of these promising results, and because we had previous
experience with this numerical method, it was decided to use the lattice-Boltzmann
method for our current study. However, the approach to simulate suspensions as
presented in this paper differs from the methods presented by these authors on a
number of points.

First, a major difference is that in the above simulations the flow field is
laminar, while in our case we are interested in simulating a turbulent flow. To
obtain meaningful statistical data, transient simulations are required with statistically
stationary conditions. For this purpose, a turbulence forcing scheme, developed by
Alvelius (1999), is applied to the lattice-Boltzmann scheme.

Secondly, both the type of lattice-Boltzmann scheme and the method to implement
the no-slip particle boundary condition are different. The lattice-Boltzmann scheme
used here is based on Eggels & Somers (1995). This scheme explicitly treats higher-
order terms of the lattice-Boltzmann equation, which improves the numerical stability
of the scheme, compared to the standard BGK scheme (Chen & Doolen 1998).
The regular no-slip boundary condition used in lattice-Boltzmann simulations is the
bounce-back method (Ladd 1994a). We do not use this method in our simulations,
but instead employ an adaptive force-field technique to impose the no-slip particle
boundary. This method is used by Derksen & Van den Akker (1999, 2000) in
large-eddy simulation (LES) studies of the turbulent flow in various applications and
resembles a forcing-type boundary condition of Goldstein, Handler & Sirovich (1993).
In a previous study we compared our simulations with particle image velocimetry
(PIV) experiments on a single sphere settling under gravity. That study demonstrated
that an accurate representation of the sphere’s motion and the associated flow field
could be obtained at a resolution of approximately 8 gridpoints per particle diameter
(Ten Cate et al. 2002).
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A vast body of literature exists that discusses the interactions between suspended
particles and a turbulent flow field. The main issues treated in these studies are the
motion and collisions of particles due to the turbulent flow field and the modification
of turbulence due to the presence of a second phase.

A theoretical basis for the collision rate of small particles (i.e. d, < 1) suspended in
a turbulent flow is provided by Saffman & Turner (1956), for the purpose of describing
agglomeration of droplets in atmospheric flows. Theoretical extensions of this work
were proposed by Yuu (1984) and Kruis & Kusters (1997) to improve the description
of the particle motion in turbulent flow fields. Abrahamson (1975) presented a model
to predict collision rates of particles with considerable inertia. These models have
been used to interpret simulation results in a wide range of numerical studies on
turbulent suspensions. In these studies the particles are typically much smaller than
the resolution of the computational grid while Stokes drag is assumed to dominate
the motion of the particles (Sundaram & Collins 1997; Reade & Collins 2000; Wang,
Wexler & Zhou 1998, 2000; Brunk, Koch & Lion 1998).

Theoretical models that describe the modification of the turbulent flow field due to
the presence of particles have been presented by e.g. Felderhof & Ooms (1989),
Ooms & Jansen (2000), Yuan & Michaelides (1992), Crowe (2000). Turbulence
modification has been studied numerically in two-way coupled simulations of isotropic
turbulence, e.g. Squires & Eaton (1990), Elghobashi & Truesdell (1993) and Boivin,
Simonin & Squires (1998).

In contrast with our approach (ie. d, > ), the above mentioned studies focus on
systems with small particles with a low volume fraction of the solid phase (O(10™*-
107%)). Although the regime in our simulation is much different from that in the
above studies, some of the concepts used in or obtained from these studies are used
in this paper for qualitative comparison and discussion of the trends in our results.

The objectives of this paper are:

(i) presentation of our method for simulation of fully resolved dense suspensions;

(i) demonstration of the use of a spectral forcing scheme in lattice-Boltzmann
simulations for generation of sustained turbulence with pre-defined conditions;

(iii) discussion of the modification of the turbulent energy spectrum under influence
of suspended particles;

(iv) interpretation of the collision behaviour and the relative particle motion

observed in dense turbulent solid—liquid suspensions.
These objectives are reflected in the organization of the paper; after the presentation
of our numerical approach (§2), the settings and results for a single-phase isotropic
turbulent simulation are presented in §3. In §4 the influence of the particle phase
on the turbulent fluid kinetic energy spectra is discussed. In § 5, the behaviour of the
particle phase is discussed in relation to the theoretical work of Wang et al. (2000) and
Reade & Collins (2000). This discussion focuses on the influence of the turbulent flow
field and the short-range hydrodynamic interactions, on the distribution of relative
velocities, particle accumulation effects and particle collision rates. The paper ends
with a summary and conclusions in § 6.

2. Set-up of the direct numerical simulation
2.1. The lattice-Boltzmann method

A lattice-Boltzmann scheme has been used for simulation of the fluid flow. This
scheme is based on a microscopic model for fluid behaviour. Our aim is to do high-
resolution simulations on large computational grids. The lattice-Boltzmann method
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is well suited to this goal, since it only involves local operations. As a result, parallel
implementation of the method is straightforward and the computational effort scales
practically linearly on parallel computer platforms.

The fluid is represented by mass that propagates at discrete time steps on an
equidistant grid (lattice). Collision rules that guarantee conservation of mass and
momentum are applied on the mass arriving at a grid node. The collision process is
represented by the lattice-Boltzmann equation (LBE)

ni(x + ¢;At, t + At) = n;(x,t) + [i(n). (2.1)

Due to collision an amount of mass n;, aligned in the direction ¢; (with i =1, M) at
position x and time ¢, is updated with I after which it propagates to the position
x + ¢; At at the next time step ¢+ Ar. Here, ¢; is the set of discrete velocities with
which mass moves on the grid, and I; is the collision operator that depends on all
masses, i.e. the vector n, involved in the collision step. It is common practice to define
the grid distance Ax in terms of lattice units and the time increment At in terms of
discrete time steps. The grid distance and time step are defined as Ax =1 [lu] and
At =1 [ts]. Throughout this paper the units are accordingly defined in lattice units
[lu] for length, time steps [zs] for time and arbitrary units of mass [m].

Different approaches have been employed to solve equation (2.1) (see e.g. Ladd
1994a ; Chen & Doolen 1998; Rothman & Zaleski 1997). In this work we use a scheme
developed by Eggels & Somers (1995). With this scheme the following continuity and
momentum equations for the fluid are recovered:

ap
PV pu=0, 22
8t+v ou (2.2)
3
% + V- pun=—Vp+V-pv[Vu+ (Va)'] — V(L pvV-u) + F, (2.3)

where p(x,t) is the pressure and v is the kinematic fluid viscosity. In the limit of
low Mach numbers (i.e. u < c,, the speed of sound of the lattice-Boltzmann scheme),
the divergence terms in equations (2.2) and (2.3) become negligibly small and the set
of equations becomes equivalent to the continuity and Navier—Stokes equations for
incompressible fluid flow. The body force F(x,t) in equation (2.3) imposes a local
force per unit volume. This force is used in our simulations for two goals: first for the
generation of sustained turbulent conditions and secondly for the implementation of
the particle boundary conditions.

2.2. Turbulence forcing

In a typical turbulent flow, kinetic energy is produced at large scales, and dissipated at
the small scales. By forcing the fluid at small wavenumbers, the fluid is set in motion
at large length scales. At sufficiently large Reynolds numbers, i.e. at a sufficiently
large separation between production and dissipation scales, the small-scale structure
exhibits universal characteristics of turbulent fluid motion independently of the means
of power input. Schemes for forcing turbulent conditions have been developed by a
number of authors, e.g. Eswaran & Pope (1988), and more recently by Overholt &
Pope (1998) and Alvelius (1999).

For application of these schemes in numerical simulations, (pseudo) spectral
methods for the solution of the Navier—Stokes equations are the natural choice, since
such numerical schemes are defined in wavenumber space, as is the forcing scheme.
However, the forcing scheme is not necessarily associated with spectral simulation
methods. In our work we use the algorithm developed by Alvelius (1999) for forcing
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FIGURE 1. Two-dimensional representation of the forcing distribution in the Fourier domain.
Dotted curves indicate the Gaussian distribution along the x- and y-axes, the shading indicates
the Gaussian distribution in the two-dimensional plane.

the flow in the lattice-Boltzmann scheme. The turbulent forcing signal is generated in
Fourier space and, after computing the inverse Fourier transform, is applied in the
physical domain (i.e. in equation (2.3) via the body force F(x, t)). The force is defined
as a divergence-free white noise signal, fluctuating randomly in time and space. The
white noise character ensures that the forcing signal is uncorrelated with any time
scale of the turbulent flow field. Alvelius shows that during one discrete time step,
the volume-averaged power input P consists of the sum of two contributions,

P =P+ P =1Lfifi A+ fau, (2.4)

the force—force correlation and the velocity—force correlation, respectively (the body
force per unit volume, F, and acceleration per unit mass, f; are related by F, = pf;).
The overbar indicates volume-averaging. The force is placed in the discrete Fourier
space in a cubic cell with sides f,,. The forcing intensity is distributed over the
wavenumbers as a Gaussian distribution, active on the interval [k, k;], with the
maximum intensity at a desired wavenumber k (see figure 1).

The power input P; is fixed via the Gaussian distribution of the force in Fourier
space. P, introduces an uncontrolled power input that influences the turbulent kinetic
energy and can generate substantial fluctuations. The method of Alvelius (1999) allows
one to choose the force such that the contribution of P, is zero at each time step.
This results in a much smoother time development of the turbulent kinetic energy.
Using this option requires the Fourier transform of the velocity field every time step.
It was not used in the current study because of this additional computational cost.

Alvelius chose the distribution of the power input to be narrowly concentrated
around the forcing wavenumber k,, which can cause the total power input to rise
up to 1.5 times P;. In the simulations presented in this paper we chose to distribute
the power input more evenly over the wavenumbers in the forcing interval [k,, k,] by
increasing the width of the Gaussian distribution. This is controlled by a concentration
parameter ¢, which was set to 1.0 in our simulation, as opposed to the value of 0.01
that is used by Alvelius (1999). In this way we found that the large increase in power
input due to P, could be effectively suppressed.
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For a further enhancement of the computational efficiency, rather than generating a
new force field each time step, 120 force fields were generated prior to the simulations.
These were imposed on the fluid domain in random order during the simulations.
In this way, a forcing signal was generated that sufficiently resembled a white noise
signal.

2.3. Solid particle boundary conditions

Different simulation strategies are being developed for the direct simulation of freely
moving particles. The choice of the method for implementation of the solid particle
boundary condition is generally strongly related to the choice of discretization method
of the Navier—Stokes equations.

One approach is to solve the flow field on an unstructured computational grid,
the shape of which is determined by the geometry of the cluster of freely moving
particles. During the simulation the quality of the computational mesh is checked
and the mesh is frequently updated, based on the changing geometry of the cluster
of particles. With this method, Hu (1996) performed two-dimensional simulations of
sedimentation of a few hundred cylinders in a channel, while a more detailed analysis
and results on three-dimensional simulations of moving spheres are presented in Hu
et al. (2001).

An alternative method is to impose the boundary condition of freely moving
particles using a fixed structured grid. One advantage of this type of method is
that it does not require remeshing of the computational grid. A number of different
approaches are currently being applied.

One approach in this category is to use a local force on the computational grid to
obtain no-slip boundary conditions. The force ensures that the flow field is locally in
agreement with the particle boundary conditions. Examples of this method are given
by Goldstein et al. (1993) and by Pan & Banerjee (1997). The latter used this method
to simulate both steady and moving particles in DNS of a turbulent channel. They
chose to apply a force on each of the grid points that is covered by the simulated
spheres. In this way the fluid on the inside of the sphere is forced to behave as a solid
body.

Another approach in which the covered fluid nodes are treated as a solid body is
given by the Lagrange-multiplier/fictitious domain method. A recent example of this
method is given by Patankar et al. (2000) while ongoing developments are presented in
Patankar (2001). The recent developments mainly focus on obtaining a fundamental
understanding of the formulation of the forcing term and on increasing computational
efficiency.

A recent paper by Lai & Peskin (2000) presents a formal second-order-accurate
forcing scheme for the solid boundary condition, based on a finite difference dis-
cretization of the Navier—Stokes equations. Lai & Peskin (2000) define the surface of
a cylinder by a number of discrete points that are used to impose a force on the fluid
on the interior and exterior grid points adjacent to the surface. As a result, the fluid
on the inside of the cylinder develops an internal flow.

In lattice-Boltzmann applications, the natural choice for a no-slip boundary
condition is the bounce-back method. In this approach fluid mass that propagates
along a link that crosses the surface of the particle bounces back halfway between
the grid nodes and returns towards the bulk fluid domain. The momentum change
at bounce-back is associated with the force acting on the particle. With this method,
curved objects become staircase shaped due to the discrete cut of the links between
nodes on the cubic grid. A number of adaptations of the bounce-back technique
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FIGURE 2. Representation of a sphere on a cubic grid. The tick marks indicate control points
at the sphere surface. The left-hand circle indicates the division between interior and exterior
fluid nodes. The right-hand circle indicates the nodes from which the velocity is interpolated
and to which the forces that impose the boundary condition are applied.

have been suggested to improve the representation of curved boundaries (e.g. Chen,
Teixeira & Molvig 1998a; Rohde, Derksen & Van den Akker 2002; Mei, Luo &
Shyy 1999; Verberg & Ladd 2002; Bouzidi, Firdaouss & Lallemand 2001). In most
lattice-Boltzmann studies of suspended particles (e.g. Ladd 1994a,b; Behrend 1995;
Qi 1999; Aidun et al. 1998) bounce-back-type boundary conditions are applied.

We use an alternative approach to obtain a no-slip boundary at the surface of the
particle. In our current simulations we apply a forcing scheme to impose the boundary
conditions which is based on the method of Goldstein et al. (1993) and which has
been adapted for our lattice-Boltzmann scheme. By applying an appropriately chosen
force to the fluid domain via the body force term F (equation (2.3)), the fluid velocity
near the surface of the solid object is forced to the velocity of the solid surface, which
effectively fulfils the no-slip boundary condition.

In our simulations, the sphere surface is represented by a set of control points,
placed at the sphere’s surface, evenly spaced at a distance apart somewhat smaller
than the grid spacing (see figure 2). The surface velocity (u,) is given by the sum of
the translational and rotational velocity components

uy(t) = uy(t) + 2,(t) x r, (2.5)

where u, and £, are the translational and angular velocity of the particle and r, is
the position of the control point relative to the centre of the sphere (r, =x, —x.).
The fluid velocity at a control point is determined via interpolation of the velocity
from the surrounding grid nodes. The deviation between the desired velocity u; and
the interpolated fluid velocity u is used to compute the force that is applied to the
fluid. This deviation is calculated by

d(t) = u, (1) — > 1(r)u(1) (2.6)

where u; is the fluid velocity at grid node j and I(r;) is the set of interpolation
coeflicients, which is a function of the position r; of the control point with respect
to the surrounding grid nodes. The same interpolation coefficients are used for
projecting the force from the control point onto the surrounding grid nodes. As
indicated in figure 2, the grid nodes on the outside as well as on the inside of the
sphere are included in interpolation and projection. In previous applications, second-
order Lagrange interpolation was used (Derksen & Van den Akker 1999). In our
current simulations we use first-order or linear interpolation, to ensure that only
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the neighbouring grid nodes are affected, rather than neighbour and next-neighbour
nodes. The results obtained with first-order interpolation were comparable with the
second-order scheme.

The forces F; acting at grid node j are updated via

pd(t)

At
Equation (2.7) is a control scheme that is characterized by the parameters « and S.
At each time step the force F;(x, t — At) that is present on the grid from the previous
time step is updated proportionally to the deviation of the local velocity. When the
deviation is small, the change of the force imposed at the previous time step will also
be small and the force remains practically constant. The dynamic action, accuracy,
and stability of the control scheme are determined by the parameters o and 8 and
the topology of the set of control points. The parameters « and 8 were determined
empirically as 0.95 and 1.8 respectively. With this choice of parameters a small
deviation will always be present and the force will be updated each time step. It was
observed in simple test cases that the no-slip boundary condition obtained with this
scheme is of comparable quality to the boundary condition obtained with the bounce-
back rule for the lattice-Boltzmann scheme. The adaptive force field scheme was
preferred over the bounce-back scheme because of the ease of placing the boundary
conditions at arbitrary locations on the grid.

After updating the forces at the grid nodes, the hydrodynamic force and torque
on the sphere are calculated. The hydrodynamic force and torque on the particle are
determined from

Fi(x,t) =aF;(x,t — At)+ BI(r)) 2.7)

F,=AVY Fi(x.1). (2.8)
J
T,=AV> 1, x Fj(x.1), (2.9)
J

where AV = Ax?3, the volume of the grid cell. The hat symbol is used to indicate force
per particle. The summation is over all boundary nodes, both inside and outside the
sphere.

2.4. Internal fluid nodes

The equation of motion for translation and rotation of the particles is integrated based
on the hydrodynamic forces acting on the particles. The adaptive force-field scheme
requires fluid mass on the grid nodes occupied by the solid object (see figure 2). An
advantage is that a node that shifts from the inside of the object into the exterior
already contains fluid mass and the scheme will be inherently mass-conservative
(similar to Ladd 1994b). One drawback is that the internal fluid inertia influences the
motion of the sphere via a contribution to F, and T, (see equations (2.8) and (2.9)).

This problem has been recognized by a number of authors who have suggested
different solutions. Ladd (1994b) suggests integrating the equation of motion with an
effective particle mass. This is a fair approximation for systems with large solid/fluid
density ratios but for solid particles in liquid with a density ratio typically between
1 and 2, numerical instabilities may occur when integrating the equation of motion
this way. Other authors have proposed methods to remove the internal mass, e.g.
Aidun & Lu (1995), Aidun et al. (1998) and Heemels (1999), but these methods
cannot be applied in combination with the adaptive force-field technique. Qi (1999)
allows particles to have internal mass but adds a force term (similar to Aidun et al.
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1998) when computing the hydrodynamic force on the particle, to compensate for
non-physical fluctuations in the hydrodynamic force F, that arise from nodes entering
or leaving the interior of a particle.

We propose the following straightforward correction procedure. The force for the
boundary condition is placed on the grid nodes both on the inside and the outside
of the sphere. Hence, the total force that acts on the sphere, as calculated with
equation (2.8), is a sum of the internal and external contribution to the force:

Fp,mt = Fp,inz + Fp,ext- (210)
When integrating the equation of motion, the only physical contribution to the
sphere’s motion is due to the external flow field, F pext-

The fluid motion inside the particles is developing freely throughout a simulation
in response to the forces F; and generally follows the motion of the particle closely.
To calculate the contribution of F ».int» We calculate the change in momentum of the
internal fluid between successive time steps with

///V pu(x,t)dv_///v pu(x,t — Ar)dV

nt int

- 1
F(t)pim = " (2.11)

where the volume integral is taken over V,,, the volume occupied by the nodes in
the interior of the particle (see figure 2). The external force is then determined by
subtracting F(t), i, from F(t), . A similar correction procedure is applied for the
torque.

2.5. Hydrodynamic radius

The next issue that needs to be addressed is the effective radius at which a particle
is implemented. By placing a sphere on a cubic grid, the shape is approximated by
imposing the boundary condition on a cubic grid. The interpolation—extrapolation
procedure extends outside the exact location of the sphere surface and hence the
measured drag force will differ from the force on an ideal sphere of the same size.

Ladd (1994b) compared simulations of the low Reynolds number flow through a
fully periodic array of spheres with the analytical solution to this problem (Hasimoto
1959). Via the analytic solution the effective radius of the sphere could be calculated. It
was found that the effective or hydrodynamic radius differed from the input radius by
on the order of 0.5 to 1 lattice spacing. This approach further demonstrated that the
hydrodynamic radius varies with viscosity in a non-physical manner. To overcome this
effect, Ladd (1994b) suggested using the analytical solution as a calibration method,
by calculating the sphere’s hydrodynamic radius prior to a suspension simulation.

This non-physical dependence of the drag force is also reported by Rohde et al.
(2002), who performed simulations with an improved bounce-back boundary scheme.
A possible reason for this dependence is given by He et al. (1997), who demonstrated
analytically that in bounce-back methods for lattice-Boltzmann schemes, the exact
location of the no-slip condition is a function of viscosity. However, it is not only an
artifact of bounce-back-type boundary conditions, since a similar dependence is also
observed with our adaptive force-field approach.

For particles with large input radii, a variation in the effective radius of the
order of 0.5 to 1.0 grid spacing is not of great importance. However, for reasons
of computational efficiency, if one seeks to perform simulations at a relatively low
resolution, a calibration of the hydrodynamic radius is required. We found in a
previous study (Ten Cate et al. 2002) that by calibrating the particle radius via the
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analytical expression of Hasimoto (1959), the transient motion of a single sphere
settling in a closed tank could be predicted at an accuracy of approximately 1% to
5% with respect to the maximum sedimentation velocity. Although the calibration was
performed in the creeping flow regime, the sedimentation experiment was mimicked
accurately at Reynolds numbers in the range between 1.5 and 32. The calibration
procedure thus offers a reasonable method to estimate and account for the inaccuracy
of the boundary condition, even when the particles in the actual case are moving at
non-zero Reynolds numbers.

2.6. Short-range interactions

The flow field that surrounds the particles is simulated explicitly and hydrodynamic
interactions between particles are inherently present. However, as two particles
approach, one should guarantee that hydrodynamic effects at short distances are
present, and one should allow particles to collide. For treatment of these short-range
interactions between particles several procedures are available in the literature. An
overview can be found in Hu et al. (2001). A procedure applied in unstructured mesh
simulations of moving particles is to remesh the grid inbetween two approaching
particles up to a minimal resolution. In such simulations a minimal separation
between the particles is set at which collisions occur. A drawback of such a procedure
is that it is difficult to control the computational effort. In simulations of suspensions
using structured grids, remeshing of the flow field in between two particles is not
possible. A number of different procedures are used in these types of simulations.
Generally, to keep the particles separated either hard-sphere collision detection or
a strong short-range repulsive force is applied. To estimate the short-range viscous
forces exerted on the particles due to the squeezing motion of the fluid in the gap
between the particles, a formulation of the lubrication force can be applied. Maury
(1997) presents a formal mathematical formulation to apply a lubrication force model
to compute the motion of large numbers of arbitrarily shaped particles whose motion
is dominated by lubrication forces.

In our current simulations we use a collision detection algorithm according to
Chen, Kontomaris & McLaughlin (1998b) to prevent particles overlapping and to
detect and record particle—particle collisions. When two particles are separated by a
distance smaller than the grid spacing, the motion of the interstitial fluid will not be
captured due to lack of spatial resolution.

When two particles are close to each other, the grid nodes in between the two
particles will contain force contributions from the boundary conditions of both
particles. In such a case, overlap of forcing on a grid node occurs. The force applied
to the grid node where overlap occurs cannot be identified with any of the two
particles in particular and this force is set to zero. The fluid motion in the proximity
of this grid node is dominated by the motion of the particles and the velocity on the
released node will adopt a value that corresponds to the motion of its surrounding
flow field.

At the same time, the force that is exerted on the particles due to the interstial
fluid will be under-predicted. To ensure that the hydrodynamic forces between two
approaching particles are present when two particles are separated by less then one
grid spacing, a lubrication force is applied in a manner similar to Ladd (1997), who
proposed calculating the missing part of the hydrodynamic forces explicitly, using the
leading-order term of the analytic expression for the lubrication force (e.g. Kim &
Karrila 1991; Crowe, Sommerfeld & Tsuji 1997). This force is calculated for pairs of
particles that are closer than a threshold separation A, by taking the difference of
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the force at distance s and A (set to two lattice spacings in our simulations),

~lub —37'[[)\)7'2 1 1 o~ o~
Fij = 72 P <; — A_0> XijXij °(ul~ — uj) (212)

where s is the width of the gap between particles i and j, u; and u; are the particle
velocities and X;; =(x; — x;)/|x; —x;| is the vector with unit length connecting the
centres of the two particles.

This force is complementary to the forces that act on the particles due to the
external flow field and is therefore added to the force calculated by imposing the
boundary condition. Ladd & Verberg (2001) chose to implement the lubrication force
according to equation (2.12) on a particle pairwise basis. In suspensions at high
volume concentrations or when accumulation of particles occurs, a particle may have
multiple interactions with a number of surrounding particles. In our simulations, the
lubrication forces are calculated for the interaction between each particle and all of
its neighbouring particles at each time step.

If the lubrication force (2.12) is the only force that dictates the motion of two
approaching particles, then the relative velocity will be fully dissipated and particles
will always come to a halt at a finite separation. Brunk et al. (1998) present a
theoretical study on the coagulation of colloidal particles in a turbulent flow field,
where the role of Van der Waals forces and lubrication forces is evaluated. The
authors state that colloidal particles can only collide under the action of a lubrication
force when some attractive force such as the Van der Waals force is present.

However, for two approaching particles with sufficient inertia (as opposed to
colloidal particles), the final separation can become so small that the continuum
description of the lubrication model breaks down (i.e. when the gap becomes of
the order of the particle surface roughness (Joseph et al. 2001) or of the order of
the molecular mean free path (Sundararajakumar & Koch 1996) and particles have
practically established contact. In the presence of turbulent shear forces, the approach
of particles can be further enhanced by the shear flow field and particle collisions are
likely to occur.

Experiments also demonstrate that particles that move in a liquid and have sufficient
inertia will rebound when colliding with a bottom (Gondret et al. 1999; Gondret,
Lance & Petit 2002) or vertical wall (Joseph et al. 2001) and a moment of contact has
occurred. In our previous work on the simulation of a single settling sphere (Ten Cate
et al. 2002) a comparison between simulation results and experimental data showed
that application of a lubrication force adds a repulsive force that improves the
description of the wall approach. However, it was also observed that without the use
of a threshold value, the application of a lubrication force tends to postpone the
moment of contact between the particle and the bottom wall for an unrealistically
long time.

This behaviour is caused by the singularity in the lubrication model at zero
separation. Different authors have used a threshold separation up to which the
lubrication force is applied to overcome this singularity. In the analysis of their
experimental results, Joseph et al. (2001) show that trends in their experimental data
are captured when the lubrication force is calculated up to a threshold value that
corresponds to the surface roughness of the particles (typically of the order of 1073
times the particle diameter). Brunk et al. (1998) used a threshold separation of the
order of 10~ times the particle diameter, at which the attractive Van der Waals forces
have become the dominating force and collisions have become inevitable.
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When performing turbulent suspension simulations with a lubrication force model
without a threshold, we found that the singularity of the lubrication model caused
particle pairs to become trapped in an unphysical pairwise oscillating motion. In our
simulations we therefore used a dynamic threshold up to which the lubrication force
is active. The gap between two approaching particles can be travelled in one time
step when the relative velocity is equal or larger than the separation s/At¢. Therefore,
when s/At becomes of the order of the pair relative velocity, the contribution due to
the lubrication force is set to zero:

-~ ~lub
Fij:Fij , s>At|(u,-—uj)|,}

= (2.13)
Fij=0, SSAt\(ui—uj)\.

Conversely, as two particles separate, the lubrication force remains zero until the
post-collision separation of the particles has become larger than their relative velocity.
Since the particle relative velocity is small, the accuracy of this rule is expected to be
comparable to the threshold rules described above. The threshold can be evaluated
from the relative velocity distributions obtained from the simulations. Based on the
r.m.s. relative velocity from these distributions we find that the threshold becomes
approximately 0.01 [[u], which is roughly 10~ times the particle diameter.

2.7. Simulation procedure

During the simulations the above steps are carried out sequentially at each time step.
The beginning of a sequence consists of integration of the fluid and particle fields.
The first step is integration of the fluid velocity field from the previous time step
t — At to t based on a lattice-Boltzmann step. After this update, flow field properties
such as u(z) are available. After updating the fluid velocity field, the particle position
and velocity are updated. The positions and translational and angular velocities are
integrated using an explicit forward Euler integration scheme,

X = XI7M 4 VITA A, (2.14)
1 ~t—At ~t—2At
Vi=yia F, F, At, 2.15
=Vt M,,( i tF ) (2.15)
1  ~t—At  ~t=2At
R =4+ _—_ (T, : At 2.16
1 1 + 21 ( 1 1 ) ’ ( )

p

where F; and T; are the sum of forces and torques acting on particle i with mass M,
and moment of inertia /,. The particle mass and moment of inertia in this scheme are
determined based on the particle density and the particle radius that was obtained
from the hydrodynamic radius calibration procedure. Both the forces and torques are
time-averaged over the previous two time steps to reduce fluctuations (see also e.g.
Aidun et al. 1998).

After updating the particle positions and velocities, the force field of the particle
boundary condition is updated to time ¢ and the force fr; and torque f; of each
particle are calculated. At the new positions the change of the internal momentum

of the particles is calculated and forces and torques are updated to IA?;_M and f;,m.
After calulation of the lubrication forces, the total sum of forces acting on each
particle is again computed.

After executing these steps the force field for forcing the turbulence is computed or
retrieved from file. At this stage a complete time sequence has been executed, the time
step is updated to the next time step and a new lattice-Boltzmann flow field update

is carried out.
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Input parameters Value
v, 0.02
Pinpur X 10° 6.25
P, x 108 7.19
n 1.2
v x 103 5.06

TaBLE 1. Parameter settings for the single-phase turbulent simulations.

3. Single-phase isotropic forced turbulence
3.1. Definition of turbulent conditions

Homogeneous isotropic turbulent simulations were carried out on a 2563
computational grid with periodic boundary conditions. Simulations were performed
from a developed flow field and were continued for 40000 time steps. The turbulent
simulation is characterized by a number of a priori defined parameters given in table 1.
The forcing is defined by setting a characteristic root mean square velocity (v,) and a
characteristic forcing length scale I.. The value of v, was chosen such that velocities
in the simulation will remain well below the speed of sound of the lattice-Boltzmann
scheme (¢; = %\/5) The central forcing wavenumber determines the forcing length
scale: k; =2m/l., which was set to l. =n,/2. The power input is determined by the
equilibrium between production and dissipation, resulting in P, = v.*/1.. In table 1
both P, and the effective power input P; (from equation (2.4)) are given. The
deviation results from the error made by discretizing the power on a cube in the
Fourier domain with sides of three points. The final parameter that is defined is
the kinematic viscosity, which is set by choosing a Kolmogorov length scale. In a
statistical equilibrium, the rate of energy dissipation balances the power input, i.e.
P =¢, and the Kolmogorov length and time scales are set a priori via n=(v?/e)!/*
and 1, = (v/€)'/?. The Kolmogorov length scale was chosen as 1.2 [[u] after a number
of considerations: (i) the Kolmogorov length scale is chosen small enough to obtain
a separation of length scales between the microscopic length scale n, the particle
size d, and the integral scale of the turbulence A, (ii) in direct simulations of
forced isotropic turbulence, a rule of thumb for adequate resolution of the flow field
1S knax) > 1 (see e.g. Sundaram & Collins 1997), where k,,,, =7/Ax is the largest
resolved wavenumber. With n = 1.2 being roughly four times the minimum value of
the rule of thumb we chose to stay on the safe side of this requirement. The large
solid particles are expected to induce velocity gradients at their surface. With the
choice of a relatively large Kolmogorov length, the occurrence of prohibitively strong
local velocity fluctuations or velocity gradients can be prevented. This will help to
ensure that the gradients in the flow field induced by the particles are resolved instead
of overwhelmed by the action of the turbulent flow field.

The turbulent Reynolds number that characterizes the simulations will follow these
settings. By choosing a rather large value for the Kolmogorov length scale compared
to typical simulations of isotropic turbulence reported in the literature (Moin &
Mahesh 1998), the turbulent flow field will attain a moderate Reynolds number.

3.2. Results of single-phase turbulence

In table 2, a number of properties are presented that characterize the simulation. Flow
field data were stored every 4000 time steps (approximately 2 integral time scales)
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Property Value Scale A; T;
K x 10* 4.28 Ak, Tk 7428 6598
l/t, 0.017 AE, TE 37.71 2245
€p X 108 6.48 Af, Tf 42.47 2515
e x 108 6.42 A, Ty 22.17 1313
n 1.19

Nmin 045

T 279

y) 18.27

Re; 60.98

TaBLE 2. Turbulence properties from the single-phase simulation.

while the values in the table were determined by averaging over 10 independent
realizations.

The volume- and time-averaged turbulent kinetic energy K and turbulence intensity
u’ can be calculated either from the flow field or the energy spectrum E(k) with

Kimax
K="= uu= / E(k)dk. (3.1)
0

Values, obtained from either the velocity field or the energy spectrum, are equal by
definition.

The rate of energy dissipation can be determined directly using the rate of
deformation tensor or, alternatively, can be calculated from the dissipation spectrum:

du;  du;\ du Fomax
651)( iy ”f> Y E2v/ KE(k) dk. (3.2)
0

8)(7}' 8)(,' Bxi

The gradients of the deformation rate tensor are inherently contained in the lattice-
Boltzmann scheme (Eggels & Somers 1995). Using these gradients, no spatial
differentiation of the velocity field is required to compute the rate of energy dissipation.
The rate of energy dissipation computed this way is indicated in the table as €3, while
the rate of energy dissipation calculated through the energy spectrum is indicated as
€g. The two values only differ by 1%, indicating that the deformation rate contained
in the lattice-Boltzmann scheme is consistent with the velocity field. The Kolmogorov
length and time scales are computed using €;3. The value of n indicates that the
input Kolmogorov length scale is recovered well. The minimum Kolmogorov length
in the table is the smallest value encountered locally in instantaneous realizations of
the flow field. This value can be regarded as a measure for the strongest gradients
in the simulations. Since this value still satisfies the k,,,,n > 1 constraint, good quality
of the DNS is ensured.

In isotropic turbulence simulations, the flow is often characterized using the Taylor
microscale and the corresponding Reynolds number,

2N\ 172
2= <152“ ) , (3.3)
Re; = % (3.4)

Re; ~ 61, as found in our simulation, has been simulated by various authors on
grids of the order of 64° to 96° points (e.g. Eswaran & Pope 1988; Overholt &
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FIGURE 3. Scaled turbulent kinetic energy (E = E(k)/(¢*n*3)) and dissipation (D=
2vk?E(k)/(en)) spectra. ‘Forcing’ indicates the position of the forcing spectrum and is not
to scale. —5/3 law indicates the spectral decay associated with the inertial subrange.

Pope 1998; Boivin et al. 1998; Reade & Collins 2000) while Reynolds numbers of
approximately 200 have been obtained on grids of 2563 points (Yeung & Zhou 1997).
The Taylor Reynolds number in our simulations remains relatively low with respect
to the grid size. This is the direct consequence of our conservative choice of the
Kolmogorov length of 1.2 grid units.

In figure 3 the normalized energy spectrum and the dissipation spectrum of the
single-phase simulation are given. The figure contains the forcing spectrum to indicate
its position in wavenumber space. The forcing dominates the turbulent motion at
the largest scales, which is visible in the shape of the energy spectrum at the low
wavenumbers. As a reference a —5/3 line is plotted in the figure. The —5/3 slope in
the simulations is mainly found in the region where the forcing spectrum is present
and due to the low Reynolds number of the simulation cannot be associated with
the existence of a true inertial subrange. This is further demonstrated by the shape
of the normalized dissipation spectrum, which indicates that dissipation takes place
throughout the whole spectrum, but extends further into larger wavenumbers than
the energy spectrum. The spectra are comparable to those presented by e.g. Eswaran
& Pope (1988), Sundaram & Collins (1997) or Alvelius (1999).

Four different integral length scales of the turbulence are presented in table 2. The
integral length scale Ak is calculated from the turbulence intensity and the rate of
energy dissipation with the scaling law,

Ag =2 (3.5)
€
A second integral length scale is computed from the energy spectrum:
k
T ‘max E(k)
Ag = ——dk 3.6
BT /0 k (3.6)

which is the length scale derived from the integration of the velocity correlation
function. For reference, the longitudinal and transverse integral length scales A
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FIGURE 4. Longitudinal f(r) and lateral g(r) correlation functions of the turbulent
simulation. g’(r) is the value of g(r) as computed from f(r) with relation (3.7).

and A,, obtained from integration of the longitudinal and transverse velocity
correlation functions f(r) and g(r) are also given. In isotropic turbulence their
ratio is approximately 2, which is the case here (Hinze 1975). Based on these length
scales, integral time scales can be calculated, using 7; = A; /u’. The integral time scale
Tk, calculated from the kinetic energy, is the eddy turnover time or eddy lifetime and
is identical to K /e.

The transverse and lateral correlation functions f(r) and g(r), given in figure 4,
show the typical behaviour for turbulent flow. They were found to be comparable
to correlation functions obtained by Eswaran & Pope (1988) and Overholt & Pope
(1998), who used both a different numerical method for solving the Navier—Stokes
equations and a different forcing algorithm. A deviation from natural turbulent flows
is that at larger separations the correlation functions do not reduce to zero. This is a
result of the forcing scheme that is imposed on a periodic domain.

A relation between the longitudinal and lateral correlation functions f(r) and g(r)
is given by (Hinze 1975, pp. 185),

sr) = 1)+ 5 10,

In figure 4, g'(r) denotes g(r) based on f(r) and equation (3.7) and shows excellent
agreement with g(r) at shorter separations. The deviation at larger separations may
differ because the correlation functions do not drop to zero.

(3.7)

4. Two-phase direct numerical simulations
4.1. Particle-phase definition

Five simulations were performed (see table 3) where the volume fraction (@, =V, / Vi)
was varied at a constant density ratio (simulations S; to S3), and the particle density
was varied at a constant volume fraction (simulations S;, S, and S5 in increasing
order). In simulations S4, S, and Ss, the particle densities were chosen such that the
total mass of the system (m;, = m, +my, while ®,, =m,/my) of S4 corresponds to that
of S; and Ss to that of Ss.
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Parameter Constant density ratio Constant volume fraction
Si S» Ss S4 Ss
N, 773 2200 3868 2200 2200
®, 0.020 0.057 0.100 0.057 0.057
Ppl0y 1.414 1.414 1.414 1.146 1.728
®,, 0.029 0.085 0.157 0.069 0.104
Mo X 10° 16.92 17.17 17.47 16.92 17.47
T, 1369 1369 1369 1109 1673
Stk 0.207 0.207 0.207 0.168 0.254
Stg 0.610 0.610 0.610 0.494 0.745
St 4.845 4.845 4.845 3.926 5.921

TaBLE 3. Definition and properties of the particle phase for suspension simulations Sy to Ss.
The particle input radius was set to 4 [lu] for all simulations, the corresponding hydrodynamic
radius was 4.696 [[u].

Particle inertia is characterized by the particle Stokes number, which for particles
suspended in a turbulent flow field can be defined as the ratio of particle relaxation
time (7,) and a relevant turbulent time scale,

Iy
St; = T (4.1)

As particle relaxation time scale the Stokes relaxation time (r, = p,,dg /18u) is used.
This time scale is obtained from the equation of motion of a particle in the Stokes
regime, ie. where Re, < 1. Although it is anticipated that the particle Reynolds
number in our simulations will be O(10) and nonlinear drag effects will be present,
this particle relaxation time is used since it is a readily available time scale that is
used in a large number of studies on turbulent particle-laden flows and therefore
provides a basis for comparison (e.g. Sundaram & Collins 1997; Boivin et al. 1998).
For the turbulent time scale often the Kolmogorov time scale is chosen (see e.g.
Sundaram & Collins 1997; Sommerfeld 2001). This, however, is typically done for
simulations where the particle size is much smaller than the Kolmogorov length scale.
As table 2 already indicates, at least five different time scales can be determined
for our simulations. With both a particle size that is in between Kolmogorov and
macroscopic length scales and a relaxation time that is in between the Kolmogorov
and integral time scales, it is not straightforward which time scale will dominate the
particle motion and therefore is the most appropriate to insert in the expression for
the Stokes number (4.1). Therefore, three different Stokes numbers are given in table 3.
Stx and Stg are based on the corresponding integral time scales while Sz, is based
on the Kolmogorov time scale. The Stokes numbers indicate that the time scale of
particle inertia is approximately 5 times larger than the Kolmogorov time scale and
about half the integral time scale.

At the start of a simulation, the particles were placed randomly and without
contact in a fully developed single-phase turbulent flow field. The initial flow field
was identical for each simulation and the particles initially had zero velocity. As
a result, the fluid flow field at the initial time step was clearly not consistent with
the particle field. The particle velocity field had to adjust to the flow field and the
flow field locally had to adjust to the presence of the particles before they were in
agreement. This initial stage of development of the suspension flow field required a
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k< kpiv k> kpiv

K /Kot €/€tot K/KFr €/€r1 K/Kp, €/€rp
Fluid 0.996 0.885 1.000 1.000 1.000 1.000
Si 0.994 0.823 0.974 0.946 1.237 1.560
S, 0.992 0.712 0.927 0.816 1.570 2.535
S3 0.992 0.646 0.884 0.705 1.683 2973
S4 0.993 0.721 0.967 0.838 1.574 2.488
S5 0.993 0.717 0.948 0.817 1.581 2477

TaBLE 4. Relative distribution of kinetic energy and rate of energy dissipation over
wavenumbers smaller or larger than k. K/K;; and €/e,; indicate the kinetic energy and
energy dissipation in the spectrum at wavenumbers larger than k;,, relative to the total kinetic
energy in that simulation. K /Ky ; and €/ep; present the change in kinetic energy and rate of
energy dissipation, relative to kinetic energy or energy dissipation contained in the single-phase
simulation at the interval smaller or larger than k.

few hundred time steps (typically faster than the integral time of the turbulent flow
field or the relaxation time scale of the particles). After the initial few hunderd time
steps, the particle kinetic energy had developed to a statistically steady state. This
initial stage was not considered in further analysis of the suspension data.

The order in which the precalculated force fields were imposed was identical for
all simulations, in order to have identical time series of the forcing signal. Obviously,
the evolution of the flow fields differed per case due to changes in the flow field that
originate from the presence of the particle phase. The motion of the particles modifies
the flow field directly, which furthermore results in a change of the uncontrolled
contribution P, (see also §2.2).

4.2. Kinetic energy distribution in the turbulent suspension simulations

In figure 5(a—d), cross-sections of the flow field are given at increasing particle
concentration. In the single-phase simulation of figure 5(a), a number of vortical
structures can be seen, typical of a turbulent flow field. At increasing particle
concentration, the pattern of the rate of energy dissipation is altered. An increase of
the rate of energy dissipation close to the particle surfaces can be observed in these
figures as well as in the close-up image of figure 5(e).

The presence of particles changes the distribution of kinetic energy and rate of
energy dissipation over the different length scales, as can be seen in the spectra of
figure 6. This change in the energy spectrum is quantified in table 4. The spectra
were determined by averaging 10 realizations of the full fluid domain and contain the
contribution of all grid nodes, both from the bulk fluid domain as well as from the
inside of the particles.

At the largest scales, the fluid motion is dominated by the turbulent forcing.
As a result, little difference exists between the spectra of the various simulations for
k/k; < 0.1. At larger wavenumbers, the fluid spectrum is influenced less by the forcing
and the impact of the particles on the kinetic energy can be clearly distinguished.
Figure 6(a) shows that an increase in particle concentration reduces the fluid kinetic
energy at intermediate wavenumbers (0.15 < k/k; <0.7). At larger wavenumbers the
spectra cross at a clear pivot point at wavenumber kp;, (kpiw/kq =~ 0.72). It is striking
that this pivot point is found at the same wavenumber for all simulations. This is
probably due to the fact that the length scales in the simulations remained practically
constant. The turbulent Reynolds number was the same throughout the simulations,
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FIGURE 5. Cross-sections of single realizations of the flow field of the single-phase simulation,
(b) S1, (c) S» and (d) S; and (e) a close-up of the centre of the flow field of S,. The particles are
plotted at their position, intersected by the plane of view. In (e), circles are plotted at the
cross-section of the particles with the flow field to show the flow field on the inside of
the particles. The shading indicates the logarithmic value of the rate of energy dissipation.
The vectors represent the velocity in the fluid and have been plotted at a linear interval of 1
out of 4 for (a—d) and 1 out of 2 for (e).

which indicates that the ratio of the macroscopic to microscopic turbulent length
scales in the simulation remained the same, while the particle size was also constant
throughout the simulations.

The kinetic energy spectrum in figure 6 exhibits a smooth behaviour up to
wavenumbers around k/k;=1.5. At larger wavenumbers (k/k, > 1.5) the energy
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FIGURE 6. (a) Scaled energy spectra (E = E(k)/(¢*3n>3)) of the single-phase simulations
(‘Fluid’) and simulations S; to S3 and (b) energy and dissipation spectra (D =2vk*E(k)/(en))
of single-phase simulation and suspension simulation S,. The forcing spectrum and —5/3
slope are included (see also figure 3). The wavenumber axis is scaled with the particle diameter
wavenumber k; =2n/d,,.

spectrum shows a fluctuating behaviour due to the presence of the solid surface of
the particles. The column of table 4 that presents K /K, shows that these fluctuations
only make a small contribution to the total kinetic energy of the system, since more
than 99% of the kinetic energy is contained at wavenumbers larger than the pivot
wavenumber.

At the same time, the dissipation spectrum as well as €/¢,,, show that this fluctuating
behaviour of the energy spectrum increases energy dissipation at the smallest scales
significantly. The rate of energy dissipation is strongly redistributed by the action
of the particles. A decrease from 89% for single phase to 65% for S; is observed.
This increase in dissipation is a result of the discrete particle surfaces that generate
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velocity gradients in the fluid close to the particle surface exterior as well as interior.
The contour plot of figure 5(e) indeed shows an increase in energy dissipation at
the surface of the particles while in the interior of the particles the rate of energy
dissipation is decreased.

From the flow field the ratio of energy dissipation on the inside of the particles
to dissipation in the overall domain was computed. It was found that on average
the rate of energy dissipation inside the particles was approximately 0.7 times the
energy dissipation as averaged over the whole domain. This confirms that the flow
field inside the particles generally is more quiescent. As a result, the fluid inside of
the particles makes a contribution to the energy dissipation spectrum that is much
smaller than the change of the dissipation spectrum indicated by €/¢,, in table 4.

From the flow field the rate of energy dissipation in a layer of cells of two lattice
units around the surface of the spheres was also computed. In this layer the rate
of energy dissipation was found to be approximately 1.5 times the mean dissipation,
which clearly confirms the image that the dissipation is strongly increased near
the particle surfaces. Furthermore, from this increased rate of energy dissipation a
Kolmogorov length near the surface of the particles was estimated to be approximately
1.1 [{u]. This indicates a proper resolution for the flow field near the particles.

Table 4 demonstrates that changing the particle volume fraction reduces the kinetic
energy of the flow field much more than changing the particle inertia. By increasing
the number of particles, the total amount of particle surface is increased, which
results in an increase of the rate of energy dissipation. Increasing the particle inertia
will reduce the response of particles to the turbulent flow field (see e.g. Abrahamson
1975; Kruis & Kusters 1997). This will increase the slip velocity of the particles, thus
also enhancing the velocity gradients near the surface of the particles, but this effect
is apparently less strong. K/Kr; in table 4 demonstrates that the kinetic energy in
simulation Ss is reduced by approximately 5% while for case S; this is roughly 22%.

Modulation of the kinetic energy spectrum by the presence of particles has been
studied via direct numerical simulations by a number of authors (e.g. particles in
forced isotropic turbulence by Squires & Eaton (1990) and Boivin et al. (1998) and in
decaying isotropic turbulence by Elghobashi & Truesdell (1993)). In the work of these
authors, the particles were very much smaller than the numerical grid, the volume
fraction was on the order of 10~*, while the mass loading was considerable (®,, up
to 1.0). The particle inertia was characterized by the particle relaxation time while
Stokes drag was assumed to dominate the particle motion. In these two-way coupled
simulations the interaction between the particles and the fluid phase was imposed by
projecting the force that acts on the particles back to the fluid grid.

Clearly, large differences exist between this approach and our simulations. In our
simulations all scales of the fluid motion are resolved, whereas details of the flow field
near the particle are not captured in the work presented by the authors mentioned
above. Still, for a mass loading of approximately 10%, the work of these authors
indicates a decrease in turbulent kinetic energy of approximately 10%, which is
comparable to the decrease observed in simulations S, and S; in table 4.

In the work of Boivin et al. (1998), simulations are presented where both the
particle mass loading and the particle Stokes numbers are in the same range as in our
simulations. In that work, a decrease of the rate of energy dissipation in the fluid phase
of approximately 20% was observed. This decrease of energy dissipation is caused
by the particle drag, given by the Stokes drag relation, which works as an energy
sink for the unresolved part of the flow field at the particle scale. In our simulations
a practically constant power input is warranted and because all details of the flow
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field are captured an equilibrium between power input and dissipation will exist. The
total energy dissipation in the fluid phase is therefore practically constant. On the
other hand, our simulations indicate a decrease of the rate of energy dissipation at
large scales (table 4, k <k,;,) by 5% to 30%, which is of a comparable order to
that found by the above authors. This demonstrates that, although the simulation
approach of the above-mentioned authors lacks the detail of the small-scale fluid
motion as present in our simulations, the large-scale phenomena of both simulation
approaches are consistent.

5. Analysis of particle-phase behaviour

In this section, the motion of the particle phase in our simulations is studied in
detail to characterize the particle collision behaviour observed in the simulations
and to characterize the relation between the particle motion and the turbulent flow
field. As stated in the introduction, particle collisions in turbulent suspensions have
been studied by a large number of authors and a considerable theoretical framework
exists to describe and model particle motion in turbulent flow fields. In the following
paragraphs we will first give a short review of the collision theory as presented
by Wang et al. (2000). This theoretical basis will subsequently be used to discuss
characteristic features of our suspension simulations such as the distribution of
relative particle velocities, local particle accumulation and particle collisions.

5.1. A short review on the formulation of the collision kernel

Two limiting cases of turbulent suspension flows are dilute flows, where the particle
motion is dominated by hydrodynamic transport effects, and dense flows, where the
motion of the particles is dominated by inter-particle collisions (Sommerfeld 2001).
Based on their high volume fraction one would expect that the suspensions studied
here are well in the dense regime. However, the two regimes are not only characterized
by the volume fraction. The ratio of the particle relaxation time and the average
time between two collisions (t.) gives a more precise indication of the regime of
the suspension. In the dilute flow limit 7, < 7.; in the dense flow limit 7,>> 7.. In
dense two-phase flows, particles are not able to respond to the fluid flow between
successive collisions. This applies to heavy particles in low volume concentrations or
to light particles at higher volume concentrations.

We are interested in the behaviour of turbulent slurries at moderate to high volume
fractions, that consist of large particles (d, > n). The average time between particle
collisions is 7. =1/f., the inverse of the collision frequency f.. For a monodisperse
system of N, particles in a volume £2, the collision frequency is given by

fom Lo _top (51)
T no 2

where ./, is the rate of collisions per unit volume, no = N,/$2 is the particle number
concentration. In equation (5.1) the average collision kernel I is defined. In order to
estimate the regime we are in, an upper bound estimate for I" is (Abrahamson 1975)

/1
I = %R% (5.2)

where u/, is the particle r.m.s. velocity and R=d,,. Based on this approximation the
ratio 7,/7. ranges from 0.2 to 0.8 in our simulations. As a result, collisions as well as
hydrodynamic forces will contribute to the overall motion of the particles.
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An expression for the collision kernel I can be derived based on two different
approaches, known as the cylindrical and the spherical approaches. Wang et al. (1998)
give an analysis of both formulations and demonstrate that the spherical formulation
is the more appropriate way to describe the collision process. We will restrict ourselves
to the spherical formulation. According to the original concept of Saffman & Turner
(1956), a collision sphere is defined as a central sphere with a radius R =r; +r; which
for monodisperse systems is R = 2r,. In the centre of this collision sphere, a particle is
placed. The collision kernel is given by the radial flux of particles through the surface
of the collision sphere, given by the mean inward velocity w, times the probability
P of observing this velocity,

I =4nR*Pw_ (5.3)
where w, is the radial component of the relative velocity w;; =u,; —u,; and P is
the probability of observing w, < 0. If radial influx and outflux are in equilibrium, the
collision kernel can be rewritten in terms of the absolute mean radial velocity (Jw,|),
which is given by

0 o0
(Jw,|) = / —wP(w)dw +/ wP(w)dw = Pw, + (1 — P)w, (5.4)
—o0 0
where the angle brackets denote ensemble averaging over all directions in space and
time averaging. The ratio of net inward to net outward flux is given by
Pw-
C —_— 5.5

P71 = Pyw (3:3)
which should be equal to 1 for a system in equilibrium. Wang et al. (2000) indicate
that the ratio w, /w can be viewed as a rough measure for the compressibility of
the particle velocity field. Both C, and w;, /w;" will be discussed for our simulations
in a later section. When substituting equations (5.4) and (5.5) into (5.3), assuming
equilibrium between in- and outflux, the spherical formulation is obtained:

" = 2nR*(|w,|). (5.6)

If one assumes the particle velocity to be Gaussian distributed, then the relative
velocity magnitude (|w,|) can be related to the variance of the distribution as
(lw,|) = \/2/m0o,, with o, given by

o = Vw? = 2}, — 2u11,2)]" (5.7)

and u,; the radial velocity component of particle i. The relative velocity magnitude
of the particles therefore is a function of the velocity correlation of the particles at
contact. For isotropic turbulence, the correlation (u,u,,) of the radial velocity of
the fluid is given by the longitudinal velocity correlation function f(r). An equivalent
expression for the particle transverse relative velocity is given by

0w = Vw? = 2, — 2{uq 1, 2)]"° (5.8)

where (u, ju,,) can be compared with the fluid lateral correlation function g(r).

The particle properties and particle-turbulence interaction simultaneously deter-
mine the particle correlation function which in general deviates from the fluid cor-
relation functions. The effect of the particle size on the collision rate is demonstrated
by evaluating the longitudinal correlation function f(r) at contact. In our simulations,
the separation R of the centres of mass of two particles at contact is about 8 times
the Kolmogorov length. At this separation, the fluid correlation functions f(r) and



256 A. Ten Cate, J. J. Derksen, L. M. Portela and H. E. A. Van den Akker

g(r) have already dropped considerably. If one assumes that the particle velocity
correlation is equal to f(r), then y/w? is given by

Vw? = [2u,)X (1 — f(R)). (5.9)

Since f(R) <1, the relative velocity is larger at contact as R becomes larger and,
as a result, an increase in particle size increases the collision rate. In the following
section, we will discuss the lateral and transverse relative velocities of the particles as
a function of their separation.

The formulation of equation (5.6) holds for particles that exhibit a homogeneous,
random spatial distribution. Finite-inertia particles in turbulent flows, however, have a
tendency to collect in regions with low vorticity and high strain rate. As demonstrated
by Sundaram & Collins (1997), the impact of this ‘preferential concentration’ effect
can be separated from the turbulent transport effect via the radial distribution function
at contact, g.(R). By including this term, the spherical formulation of the collision
kernel becomes

" =2nR*(|w,|)g (R). (5.10)

The radial distribution function g, (r) will be discussed to demonstrate the presence of
particle accumulation and preferential concentration in our suspension simulations.

5.2. Fluid and particle relative velocities

Radial and transverse relative velocity components of the fluid single-phase simulation
have been plotted in figure 7. The relative velocities in these plots are determined
from w; =u;(x +r)—u;(x), where the separation distance r had values of 1, 8 and 32
lattice units. At r =1, the radial relative velocity reduces to the velocity gradient du/dx
while the transverse relative velocity reduces to du/dy. The figure demonstrates clearly
how the distribution of the relative velocity changes with distance. As a reference, a
normalized exponential and Gaussian distribution are given.

At a separation of 1, we see that the radial relative velocity distribution is negatively
skewed with a skewness value of —0.5. This skewness is a typical characteristic of
isotropic turbulence, also reported by e.g. Alvelius (1999) and Wang et al. (2000). It
is further noted that, for a separation of » =1, the tail of the distribution follows
the exponential curve at negative relative velocities, while at positive values the
distribution has a Gaussian shape.

As the separation increases to 8 [[u], the skewness decreases and the shape of
the distribution tends to the Gaussian curve. When the separation further increases
to 32 [lu], the correlation decreases (see figure 4) and the distribution of the radial
relative velocity becomes Gaussian. The relative velocity magnitude and the velocity
correlation values corresponding to the data in figure 7 are given in table 5. The
tendency of the relative velocities towards a Gaussian distribution is expected since
the relative velocity of two uncorrelated Gaussian-distributed velocity components is
again Gaussian distributed (see equations (5.7) and (5.8)).

The transverse relative velocity is also given in figure 7. In an isotropic flow
field no directional distinction can be made regarding the velocities in the plane
perpendicular to the radial direction. The sign of the transverse relative velocity
indicates velocities relative to an arbitrarily chosen coordinate system, which in
this case corresponds to the coordinate system of the computational grid. The
distribution must be symmetric by definition. The distribution of the transverse
relative velocities exhibits an exponential shape at short separation distances and
changes into a Gaussian distribution at larger separations. The Gaussian distribution
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FIGUrRe 7. Distributions of the radial and transverse relative velocity components of the
single-phase simulation. The relative velocities were determined at separation distances r =1,
r=8 and r =32 [lu].

can be anticipated based on the same argument as given for the radial relative
velocities (see equation (5.8)).

In table 5, the standard deviation or r.m.s. value of the radial and transverse relative
velocity at the three separation distances is presented. Transverse r.m.s. velocities are
larger than the radial components because g(r) has a stronger decay with r than f(r).

For the computation of the radial and transverse velocity distributions of the
particle phase, the radial and transverse velocity component need to be defined.
The radial velocity is defined by w, =w-R/R, where R is the vector with length
R, connecting the centres of any two particles. A definition for the transverse



258 A. Ten Cate, J. J. Derksen, L. M. Portela and H. E. A. Van den Akker

Fluid S,
r (w?)'? x 10° (i uia)/u s (w?)'? x 10° (u,-p,lu,-,,,z)/u”?
Radial 1 0.91 0.998 0.5 3.12 0.979
8 6.63 0.918 2.5 6.90 0.895
32 16.49 0.494 31.5 16.20 0.423
Transverse 1 1.28 0.997 0.5 7.20 0.886
8 8.98 0.850 2.5 9.17 0.815
32 19.91 0.262 31.5 19.26 0.184

TaBLE 5. Standard deviation of the relative velocities of the fluid for the single-phase simulation
and for the particle phase in simulation S,, both determined at three different separation
distances r or s.

»
>
X

FiGURE 8. Two-dimensional representation of the axial and transverse vector decomposition
for a particle pair.

component is given by w, =|w x R|/|R| (Wang et al. 2000). The transverse velocity
vectors, projected in the plane perpendicular to R, are not necessarily aligned. In our
simulations we therefore chose to decompose the two vectors into two orthogonal
components in the plane perpendicular to the connecting axis using the coordinate
system defined by Alvelius (1999). The principal axis (see figure 8) is given by
eo= R/|R|, while two axes orthogonal to e, and to each other are given by the unit
vectors e; and e,,

eO,v eO,x
€l x = - 1/2° €y = — s €1,; = 07 (511)
2 2 \1/2 2 2 \1/2
(eOA,x + eO,y) (eO,x + eO,y)
) 2 172
. €0,x€0,; . €0,y€0,; . <60,x + e(),y) v
eZ,x — ) 5 172> eZ,y — 5 ) 172> 62,2 - . (5 )
€ (eo,x + ¢, y) € (eOJ + eo’y) €0

By using this coordinate system, the particle velocities can be decomposed in a
longitudinal and two parallel velocities from which one radial and two transverse
relative velocity components can be determined. The relative velocity distributions
are now evaluated based on a coordinate system that changes direction depending on
the particle pair that is evaluated. As a result of the isotropic flow field, characteristic
statistical quantities such as the relative velocity distribution only depend on the
separation r and not on the direction of this separation.
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FiGURre 9. Distribution of the radial and transverse relative velocity components of simulation
S>. The relative velocities were determined from particles that were separated by s =0.5+0.5,
s=2.540.5 and s =31.540.5 [lu], where s indicates the separation gap between two spheres.

In figure 9 the relative velocity distributions of the particle phase of simulation S,
are given at three different separations. The separation s refers to the gap between the
two sphere surfaces, i.e. s =r — |R|. For each realization statistical data were obtained
from all (1/2)N,(N,—1) particle pairs. The velocity distribution at a given separation
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s was determined from all particles in the flow field that were separated by s 0.5 [lu],
and data were obtained over 75 realizations of the particle field at a time spacing of
470 time steps.

The distribution of the radial relative velocity component at s =0.5 [[u] is strongly
asymmetric and is much more negatively skewed (—2.43) than the distribution of
the fluid velocity at a separation of 1 [lu] (see figure 7). The negative relative velocity
(i.e. approach velocity) contains a strongly stretched tail, while the positive relative
velocity (separation) is found to lie practically inside the Gaussian distribution. As the
separation increases, the skewness reduces and the tail in the distribution disappears.
At s =2.5, the skewness has become —0.94.

Strong negative skewness and stretched tails in the distribution are also observed
in the results of Wang et al. (2000), who studied collision characteristics of small
particles (d, <n) in one-way coupled simulations carried out in frozen flow fields.
As the particle relaxation time in their simulations was increased from 7,/7, =0 to
7,/7 = 1, the skewness in the distribution decreased to a minimum of —2.03. In their
results tails were observed in both the positive and the negative directions of the
radial relative velocity distributions.

In our simulations, the distribution of the radial relative velocity reflects the
behaviour of particles near contact, whose motion is strongly influenced by short-
range hydrodynamic particle—particle interactions. As two particles approach, the
relative velocity of the particles decreases due to the dissipative action of the
lubrication force and due to correlation of the velocity in the turbulent flow field.

The shape of the distribution at negative values is caused by two separate effects:
(i) the tail in the distribution is a result of the velocities of particles that were initially
separated by larger distances and had uncorrelated and hence larger relative velocities;
(i) the distribution contains contributions of particle pairs that were already in each
other’s vicinity and remain there, increasing the presence of low relative velocities in
the p.d.f.

For two separating particles in close proximity (i.e. for positive radial velocities),
the lubrication force becomes attractive, which suppresses the separating velocities
and tends to keep particle pairs together. As a result, either sufficient inertia or the
action of the turbulent flow field is required to separate particle pairs.

At higher values of s, the shape of the distribution changes rapidly. When s
increases from 0.5 to 2.5, the short-range hydrodynamic interactions decay strongly,
which results in a change of the p.d.f. towards a Gaussian distribution. At further
separation, the distribution becomes practically Gaussian in a similar way to the
distribution of the radial fluid velocity.

The transverse relative velocity distribution at closest separation shows a practically
Gaussian distribution. This shape may be caused by both the particle inertia and the
particle size. Due to their inertia, the motion of two particles near contact will be
partially decorrelated. Further, since two particles near contact span approximately
20 lattice units, the transverse velocity correlation of the fluid that influences the
particle motion has significantly reduced to approximately 0.6 over this distance. The
fluid transverse relative velocity at this separation has become Gaussian distributed,
leading to a Gaussian shape of the distribution of the transverse part of the particle
relative velocity.

Table 5 shows that a large difference exists between the radial and the transverse
relative velocity magnitude in the particle phase. The transverse velocity reduces by
20% as the separation reduces from 2.5 to 0.5 [[u], while the radial velocity decreases
by 55%. This difference arises because in the radial direction the particle motion is
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FIGURE 10. Normalized variance of radial and transverse relative velocity (w?/(2u/?)) of the
fluid and particle phase of simulation S, as a function of separation r. The vertical line
indicates the separation R at which there is contact between two particles.

strongly influenced by lubrication force while in the transverse direction only shear
forces are active that are orders of magnitude smaller and consequently have a much
smaller effect.

The normalized velocity variance of the radial and the transverse velocity
components for the fluid and the particle phase are given in figure 10. For the fluid
phase one can recognize the shape of the curves as 1 — f(r) and 1 — g(r), the long-
itudinal and transverse correlation functions (see also figure 4 and equations (5.7)
and (5.8)). The particle relative velocity variance at larger separations follows but
remains below that of the fluid phase, while towards small separations the values
decay faster. The strong decay for particles close to contact is probably a result
of the strong hydrodynamic interactions between particle pairs near contact due to
lubrication forces. At close separations the particles interact with either repulsive or
attractive forces, depending on whether particles approach or separate. As a result,
the particle motion becomes more correlated, affecting both the radial and transverse
velocity variance of the particles.

The flux-balance coefficient C, of equation (5.5) is given in figure 11(a) as a function
of the separation r. It demonstrates that throughout the domain, the flux balance
assumption is valid for both the fluid phase and the particle phase and the particle
flux in the simulations has reached steady state.

The ratio w; /w;" of figure 11(b) exhibits a monotonic increase at decreasing sepa-
ration. According to Wang et al. (2000) this ratio is a measure of the compressibility
of the (particle) velocity field. However, when C, equals 1, as in our simulations,
w; /w; equals (1 — P)/P. Therefore, the latter is mainly a measure for the asymmetry
of the relative velocity distributions. One can relate the curves of figure 11() to the
distributions of figures 7 and 9. The ratio (1 — P)/P merely represents the ratio of the
probability of having negative and positive relative velocities. Therefore, the shape of
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FIGURE 11. (a) The flux-balance coefficient C, and (b) the ratio of w; /w;" as a function of
distance r. ‘Fluid’ indicates the single-phase simulation.

the curves in figure 11(b) can be considered as a characteristic feature of the turbulent
(particle) velocity field. The strong increase of the ratio for the particle phase at close
approach is then caused by the increased asymmetry of the particle-phase relative
velocity p.d.f.

5.3. Accumulation and preferential concentration of particles

In direct numerical simulations of turbulent suspensions with the point-particle
approach, the accumulation of inertial particles in regions of low vorticity and
high strain rate has been observed by a number of authors (Squires & Eaton 1990;
Sundaram & Collins 1997) and was studied in more detail by e.g. Reade & Collins
(2000) and Wang et al. (2000). This accumulation effect can have a large impact
on the rate of collisions of particles. The above authors used the radial distribution
function at contact, g.(R) (see also equation (5.10)), to quantify the accumulation
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& (R+4/2) <Npairs>
S1 2.70 + 0.36 59
S 2.80 + 0.14 497
S3 298 + 0.10 1634
M 2.69 + 0.13 477
Ss 2.88 +0.16 511

TABLE 6. g,(R) at r = R+ 0.5 and shell width § = 1. The data were obtained from 75 particle
field realizations. (N,) indicates the average number of pairs per realization.

effect as a function of physical properties such as the Reynolds number and the
particle relaxation time.

The radial distribution function g,(r) indicates the probability of observing a
particle pair separated by a distance r, with respect to the probability of observing a
particle pair in a uniformly distributed field. A residual radial distribution function
is defined as h,(r)=g,(r) — 1. In figure 5, this accumulation effect can be observed
most clearly in plots (¢) and (d), i.e. at 5 and 10 vol% particles respectively.

In table 6, values of the radial distribution function near contact are given,
determined at a bin width § similar to the interval at which the relative velocity
distributions in figure 9 were determined. The last column contains the average
number of pairs counted in a single realization of the particle field and indicates the
relatively low number of pairs at this bin width.

The usual explanation for the increase of g,(R) is that vortical structures in the
flow field collect particles at their edge. It is likely that this mechanism is also present
in our simulations, but since the separation of scales between the particle size and the
integral length scale of the turbulence is only a factor 4, this effect probably plays a
weak role in our simulations.

A second mechanism for the increase in particle concentrations at short separations
can be attributed to the influence of the short-range hydrodynamic interactions. In
a study by Ladd (1997) on fully resolved settling spheres, a strong increase in the
radial distribution function at short separations is also observed. In that study a
similar approach for taking into account the lubrication force was used. As observed
in the previous section, the relative radial velocity is reduced upon approach and a
capturing mechanism occurs for particles with low relative velocities.

In table 6, trends in the dependence of g, on the simulation parameters can also
be observed. Both an increase in particle concentration and an increase in particle
inertia appear to enhance the accumulation effect, although these effects are smaller
than the statistical accuracy. In previous studies by Sundaram & Collins (1997) it was
found that in the limit of low particle concentrations, the radial distribution function
was practically independent of the volume fraction.

5.4. Collision frequencies

The simulations offer two different routes to determine the collision frequency and
collision kernel. First, by recording the discrete collision events during the simulations,
one can obtain a value for the collision kernel directly. Secondly, using the radial
relative velocity distributions and the radial distribution function obtained from our
preceding analysis, one can compute the collision kernel using equation (5.10). In this
section the first approach will be discussed and then compared to the latter one.
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All collision events are recorded throughout the duration of the simulation. In the
previous analysis it was observed that near contact, particle accumulation occurs and
that the relative velocity distribution near contact had a strong increase towards low
relative velocities. These effects are caused by the velocity correlation in the turbulent
flow field at short separations and the short-range hydrodynamic forces acting in
the gap between the particles. The latter may cause the particle pair to capture each
other and stay in each others vicinity for some time, until the particles are separated
again by the external flow field. As a result, the probability that a second collision
between two particles occurs increases strongly. A particle pair may exhibit a number
of collisions closely spaced in time until the particle pair is separated. If more than
two particles form a cluster, three or more neighbouring particles can collide with
each other collectively, which enhances the high-frequency collision rates. This image
is supported by the collision events recorded during the simulations.

Sundaram & Collins (1996) demonstrate that similar behaviour can occur for
particles in a simple shear flow, even when lubrication forces are not present, because
the post-collision trajectories of the particles coincide. In their analysis, the number
of collisions that two particles have before they separate is determined by the particle
inertia.

In our simulations we distinguish two types of collisions, designated primary and
secondary collisions. The first type of collision takes place between two particles that
approach each other from a relatively large separation, whose motion is dominated
by the random large-scale structures in the flow field and therefore is practically
uncorrelated. The resulting collision event can be considered a random process.

Once a first contact has been established, two particles may stay closely together
for some time. In a physical system, the collective motion of the particle pair may
be such that the two particles smoothly slide over each other, mediated by the action
of the interstitial fluid between the particles, until again separated by the turbulent
flow field. In our simulations, this close contact process can only be mimicked at
discrete time steps. Consequently, collisions between two particles at high frequency
are recorded during the simulations, which reflect this sliding contact process. These
secondary collisions are therefore at least partially a reflection of the discretization
of the particle motion and may be sensitive to the choices made in our numerical
approach. For this reason we will primarily focus our discussion on the primary
collisions.

One way to study the collision behaviour of the particles in the turbulent flow field
is by observing the time between two collisions. To this end we study the probability
density function (p.d.f.) of the time between two collisions. Uncorrelated particles
move randomly and behave as a kinetic gas. The distribution of collision times for
such a random process is described by an exponential distribution,

P() = L exp(—t—c> (5.13)
Tc Tc
where 7. is the average time between two collisions (see also equation (5.1)). The
distribution of the collision times offers a statistical method to distinguish between
the two types of collisions in our simulations.

In figure 12, the distribution of the time interval between two collisions of a particle
with any other particle is given, as obtained from all particles during the run of a
simulation. This distribution shows an exponential decay at long collision times and
a sharp increase at short collision times. The exponential tail corresponds to primary
collisions, where the time interval between two random collisions is exponentially
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FIGURE 12. Probability density function of collision times. (¢) Simulations S; to S; indicate
the influence of volume concentration and (b) simulations S;, S and S5 demonstrate the
influence of particle to fluid density ratio on the collision time p.d.f. The lines of P, ;(z.) relate
to equations (5.13) and (5.14).

distributed. The large increase at short time intervals corresponds to secondary
collisions.

To quantify the two different collision mechanisms, we propose the following form
for the probability density function:

Pc(tc) = acPc,l(tc) + (1 - ac)Pc,2(tc) (514)

where P.; is the probability of observing primary collisions, and P., the probability
of secondary collisions. P.; may be described by equation (5.13). In this formulation,
the collision process is characterized by three parameters: «. is the fraction of primary
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ac(%) 7.1/ Tk Tean/ Tk T2/ Tk I I ap I sph
M 8.80 + 0.54 1.08 + 0.07 1.15 0.028 6.11 5.71 2.73
S 8.79 + 0.44 0.56 + 0.01 0.41 0.025 4.12 5.58 2.72
S3 9.21 + 0.60 0.34 + 0.01 0.25 0.026 3.90 5.36 3.10
S 6.95 + 0.30 0.60 + 0.01 0.40 0.025 3.85 5.73 2.58
S5 11.71 + 0.44 0.57 + 0.01 0.41 0.026 4.04 5.64 2.94

TaBLE 7. Characteristic collision time scales t. and collision kernels I" of suspension simulations
S to Ss. I';,; was calculated from the primary collision times, I 4, Was calculated based on
the model of Abrahamson (1975) and I ;,» was based on the spherical formulation of the
collision kernel.

collisions, 7. is the average collision time for primary collisions and t. ; is the average
time for secondary collisions. The parameters o, and t.; can be determined by fitting
the long-time tail of the distributions. After determination of these two parameters,
7., can be determined from P., via

T = /0% o Pyote) di, = /OOC f <P“““zl__“$*l““)) dt,. (5.15)

The curve fits representing P.; are presented in figure 12 while the parameter values
are given in table 7.

The results indicate that by describing the collision process according to equation
(5.14), the influence of particle volume concentration can be separated from that of
particle inertia. At increasing particle concentration, the collision time t.; decreases,
which corresponds to a decrease in mean free path of the particles. This is clearly
demonstrated in figure 12(a), where the slope of the tail is a function of the particle
volume concentration. Table 7 indicates that «. remains practically constant with
varying volume fraction. When the particle inertia is varied at constant volume
concentration (see figure 12b), the particle collision time is practically constant while o,
increases with increasing inertia. As particle inertia increases, the particles become less
sensitive to the details of the collision process (lubrication force, velocity correlation or
the numerical collision procedure), which favours the occurrence of primary collisions.

In table 7, the time between primary collisions is compared with the theoretical
model of Abrahamson (1975) that predicts the collision frequency of uncorrelated
particles. The collision rate is calculated via equations (5.1) and (5.2), with u),
determined from the particle kinetic energy. For low volume concentrations t.;
corresponds well with Abrahamson’s result, but as the volume concentration increases,
the simulations show a systematically larger collision time. According to Abrahamson
(1975) (equation (5.2)), the collision kernel is a function of the particle r.m.s. velocity,
and not of volume concentration. Table 7 however suggests that this is not the com-
plete picture and a correction on the collision kernel for primary collisions is required.

The collision kernel for primary collisions can also be compared to the collision
kernel as computed via the spherical formulation of equation (5.10). This collision
kernel, given in the last column of table 7, is computed based on the values for the
radial distribution function in table 6 and the radial relative velocity distributions
discussed in §5.2. The values of I, ;,, obtained via this route are of the same order of
magnitude, but approximately half that of the values of I, ;. This difference may arise
for a number of reasons. First, the chosen bin width §, set to 1 [[u], smears out the
effect of the increasing radial distribution function towards contact. Thus, the estimate
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of g,(R+0.58) will be smaller than the actual value of g,(R), which can easily differ
by a factor 2. Secondly, in determination of the radial velocity distribution, the action
of the short-range hydrodynamic forces gives a large contribution of low values in
the absolute mean relative velocity. As a result, computing I, ;,, based on (Jw,|) will
result in a lower value for the collision kernel compared to I, since the latter only
describes the collision rate of particles that have uncorrelated motion, and therefore
have a larger relative velocity. Thus the trends observed in the primary collision kernel
are not present in I, since the two collision kernels describe different aspects of
the particle collisions.

6. Summary and conclusions

A simulation approach has been developed for the study of dense turbulent solid—
liquid suspensions. Simulations have been performed of a sustained isotropic turbulent
flow, using a lattice-Boltzmann scheme for the fluid flow simulation with a spectral
forcing scheme for the generation of turbulent conditions. The suspension contained
up to 3900 freely moving particles. The particle diameter spanned approximately
8 grid points, ensuring that the flow field around the particles was fully resolved.
For particles approaching contact, a collision detection algorithm was used. This was
combined with a subgrid model based on lubrication theory to compensate for the
lack of resolution to compute the flow in the gap between two particles separated by
less than the grid spacing. Five turbulent suspension simulations have been carried
out at a Taylor Reynolds number of 61, where the volume fraction of particles was
chosen between 2% and 10% and where the particle to fluid density ratio was varied
between 1.15 and 1.73. The results of these simulations have been characterized in
two ways. First, the interaction between the particle phase and the turbulent flow
field has been studied. Second, the behaviour of the particle phase was characterized
by studying particle collisions and particle relative velocity distributions.

An increase of the kinetic energy at wavenumbers around the particle wavenumber
indicated that particles generate fluid motion at scales of the order of the particle
size. Due to the relative motion between the particles and the fluid, velocity gradients
are generated near the particle surface that enhance the rate of energy dissipation
at large wavenumbers and consequently suppress the kinetic energy in the spectrum
at smaller wavenumbers. The decrease of kinetic energy and energy dissipation at
small wavenumbers is in quantitative agreement with results obtained from numerical
studies on two-way coupled suspensions where the solid phase was treated as point
particles. It has been demonstrated that at a constant mass loading, the changes in
the spectrum are much more sensitive to an increase in volume fraction of particles
than to an increase in particle inertia.

The radial relative velocity distribution of the particles near contact showed a
large tail for negative velocities and a strong increase at small velocities, while
the distribution was strongly reduced at larger positive velocities. This distribution
suggests the following image: Particles may approach at large velocities, but at close
range there is a reduction in relative velocities due to the action of lubrication forces
and velocity correlation in the turbulent flow field. Under action of the turbulent
flow field or due to the particle inertia, collisions occur. As particles separate, the
lubrication force becomes attractive. This explains the strong decay of the radial
velocity distribution at positive values. As separation increases, the distribution of the
radial relative velocity becomes Gaussian. The transverse relative velocity distribution
remained practically Gaussian even at close separations.
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The magnitudes of the radial and transverse relative velocities of the particles show
a 1— f(r) and 1—g(r) dependence on the separation r, where f(r) and g(r) are
the longitudinal and transverse fluid velocity correlation functions. This demonstrates
that the particle motion is strongly linked to the structure of the turbulent flow
field. The particle relative velocity shows a stronger decay than that of the fluid phase
as the separation reduces to zero. A check of the flux-balance assumption demonstrates
that the particle field reaches a dynamic steady state since the ratio of inward to
outward particle flux practically equals 1.

The spatial distribution of the particles was further characterized by the radial
distribution function, which indicated that an increase in particle concentration
at short separations occurred. This increase in concentration is caused by both
the familiar ‘preferential concentration’ effect and the short-range hydrodynamic
interactions.

The collision time distribution rises steeply for short collision times and decays
exponentially for longer times, indicating the presence of two separate collision
mechanisms. An exponential decay corresponds to an uncorrelated random colli-
sion process, comparable to the behaviour of a kinetic gas. The peak for short
collision times corresponds to repetitive contacts between particles in correlated
motion. Collisions due to uncorrelated particle motion were designated primary
collisions; collisions due to correlated motion were designated secondary collisions.
The latter originate from a number of aspects such as short-range hydrodynamic
interactions, spatial correlation in the turbulent flow field at short separations, and the
numerical treatment of the lubrication forces and particle collisions in the simulations.
In this respect there is room for improvement and a need for further evaluations,
since the choices made in the subgrid forces and collision modelling may influence
the short-range behaviour of the suspension simulations.

From a decomposition of the collision time distributions, two parameters were
obtained to characterize primary collisions: the average collision time (z. ), and the
fraction of primary collisions to the total number of collisions (). An increase of
the particle volume fraction decreased the average time between primary collisions.
At low volume concentration the mean time corresponded well with kinetic theory
for inertial particles at low volume concentrations (Abrahamson 1975) whereas at
higher volume fraction, the average collision time appeared larger than predicted by
kinetic theory. By increasing the particle inertia, the fraction of primary collisions «,
was found to increase, leaving t. practically unaffected. The value of the collision
kernel for primary collisions was of the same order of magnitude but roughly twice as
large as the collision kernel predicted using the spherical formulation. This difference
is probably a result of both the rather low statistical accuracy at which the radial
distribution function at contact could be calculated and the fact that the two collision
kernels describe different aspects of the collision process.

Our method proves to be an efficient tool to obtain detailed insight into the
behaviour of turbulent suspensions with a full recovery of the two-way interactions
between the particle and the fluid phase. This simulation approach can be used to
gain insight into for instance the collision behaviour of crystals in dense turbulent
suspensions, such as encountered in industrial crysallization processes. In these
processes, crystal collisions occurring at sufficiently high impact velocity can lead to
fragmentation. Our simulations offer possibilities of studying the rate of fragmentation
of crystals in dense turbulent suspensions, based on e.g. the radial velocity distribution
near impact.
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