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ABSTRACT

The behavior of a single liquid drop suspended in another liquid and subjected to simple shear flow is
studied numerically using a diffuse interface free energy lattice Boltzmann method. The system is fully
defined by three physical, and two numerical dimensionless numbers: a Reynolds number Re, a capillary
number Ca, the viscosity ratio 4, an interface-related Peclet number Pe, and the ratio of interface thickness
and drop size (the Cahn number Ch). The influence of Pe, Ch and mesh resolution on accuracy and stability
of the simulations is investigated. Drops of moderate resolution (radius less than 30 lattice units) require
smaller interface thickness, while a thicker interface should be used for highly resolved drops. The Peclet
number is controlled by the mobility coefficient I". Based on the results, the simulations are stable when
I' is in the range 1-15. In addition, the numerical tool is verified and validated in a wide range of physical
conditions: Re =0.0625 — 50,2 =1,2,3 and a capillary number range over which drops deform and
break. Good agreement with literature data is observed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

When drops of one liquid dispersed in another immiscible li-
quid are subjected to shear flow, they start to deform. If the local
shear rate is sufficiently large, the drops might break up into frag-
ments. The study of the dynamics and mechanisms of drop break-
up in shear flow is of fundamental importance in dispersion
science and mixing processes. Experimental and theoretical inves-
tigations in this area focus on analyzing how strong the flow
should be to break the drop, what the necessary energy input is
to create the required intensity of the flow, and what the resulting
drop size distribution (DSD) and rheology of the mixture are (Ral-
lison, 1984). The results obtained in such studies can be applied to
the formation of dispersions and emulsions and in particular the
design of efficient mixing devices (Rallison, 1984). The application
of shear to a premixed emulsion of various drop sizes is a tech-
nique for the production of monodisperse droplets (Cristini and
Renardy, 2006).

Stirred tank reactors are widely used to obtain liquid-liquid dis-
persions under turbulent flow conditions. Turbulent flows contain
a spectrum of eddies of different size, intensity, and lifetime (Pope,
2000). Drops continuously interact with these eddies. Large eddies
convect small droplets with little deformation. When the droplet
size is comparable to the eddy size, the drop can be significantly
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deformed and subsequently broken. Even though the randomness
of turbulent flow implies complex drop/eddy interactions, simpler
interactions can be identified. For example, a drop in a simple shear
flow represents drop interaction with two co-rotating eddies in
turbulent flow. The investigation of drop behavior in simple shear
flow is more reproducible both experimentally and numerically
than behavior in turbulent flow. The results obtained in such stud-
ies are helpful when it comes to engineering applications. To
demonstrate that, consider a water-based turbulently agitated
liquid-liquid system. Let the size of the drop be comparable to
the Kolmogorov length scale. The kinematic viscosity of the contin-
uous phase is of the order of v = 10® m?/s. The local energy dissi-
pation rate in the impeller region (Davies, 1987) may be up to
€ =100 W/kg. Based on these parameters the Kolmogorov time
scale is T = \/v/€ = 10*s. Suppose the resulting distribution of
drop radii is in the range a =(1-100) pm. Assume that turbulent
eddies interacting with the drop create a shear rate of the order
of 7 = 1/7«. Then the range of drop Reynolds number defined as
Re = pa?/v is from 0.01 to 100. This implies that even in fully-
developed turbulence, drops experience interactions with eddies
at low to moderate Reynolds numbers. Therefore, a study of binary
systems in simple shear flow has direct relevance to complex tur-
bulently flowing systems. One can, for example, check if the local
energy dissipation rate is high enough to break drops of certain
sizes and eventually obtain liquid-liquid dispersions with desired
characteristics.

Starting with experiments performed by Taylor (1932, 1934), a
wide range of studies has been carried out on drop deformation
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and breakup. These studies have been reviewed by Rallison (1984),
Stone (1994), and Cristini and Renardy (2006). The “retractive end
pinching” breakup mechanism was outlined by Bentley and Leal
(1986). Marks (1998) investigated “elongative end pinching” by
applying a strong shear to a single drop. Recent experiments have
been performed by Zhao (2007) where a dilute emulsion was sub-
jected to a simple shear flow. A map of drop breakup mechanisms
in simple shear flow as a function of viscosity ratio and capillary
number was presented.

Aviscous drop under shear flow has also been intensively inves-
tigated by means of numerical simulations. Most of the numerical
studies have been performed with the boundary integral method
(Kennedy et al., 1994; Kwak and Pozrikidis, 1998; Cristini et al.,
2003; Janssen and Anderson, 2007). The method has been success-
fully applied for drop deformation studies. However, the imple-
mentation of the boundary integral method for drop breakup and
coalescence poses a major obstacle because it is very difficult to
handle merging and folding interfaces: the interface points should
be reconstructed, which requires significant logical programming
and results in computational overhead (Li et al., 2000). The math-
ematical implication of the boundary integral method such as sin-
gularity of the free-space Green'’s kernels is discussed by Pozrikidis
(1992). A way to overcome this issue is suggested by Bazhlekov
et al. (2004): a higher accuracy in the vicinity of the singular point
is gained, however, the performance is about an order of magni-
tude slower compared to a standard surface integration. An alter-
native numerical technique widely used to investigate drop
breakup is the volume-of-fluid (VOF) method. Numerical simula-
tion of breakup of a viscous drop in simple shear flow was carried
out by Li et al. (2000). The same technique has been applied by
Renardy and Cristini (2001b), Renardy et al. (2002), Khismatullin
et al. (2003), and Cristini and Renardy (2006). The topological
changes of the interface are treated more naturally compared to
the boundary integral method. The VOF method has been general-
ized to three-dimensional cases. However, the reconstruction of
the interface requires significant computational effort that in-
creases with the number of drops involved.

A droplet in a quiescent fluid was investigated by Van der Sman
and van der Graaf (2008) using a free energy lattice Boltzmann
model (LBM). The authors further analyzed the numerical criteria
for a correct description of emulsions and applied the model to
study drop deformation and breakup. All simulated cases were
two-dimensional.

Three-dimensional numerical simulations of the classical Taylor
experiment on droplet deformation in a simple shear flow have
been performed by Xi and Duncan (1999). The authors applied
the lattice Boltzmann method in conjunction with the interface
force model of Shan and Chen (1993). Good agreement with theo-
retical predictions was demonstrated for small deformations. The
ability of the method to capture larger deformations and breakup
events was also shown.

In the present study, the free energy lattice Boltzmann method
originally proposed by Swift et al. (1996) is adopted to perform
three-dimensional simulations of a single liquid drop suspended
in another liquid under simple shear flow. The goal of the study
is to check the capability of the method to capture the physics of
drop deformation and breakup in a wide range of flow conditions:
starting from near Stokes flow up to drop Reynolds numbers of 50
where inertia plays a significant role. Also the ability of the method
to handle liquids with different viscosities is tested.

Diffuse interface numerical techniques require an explicit spec-
ification of the interface thickness which essentially is a numerical
artifact. It is necessary to examine how this impacts the simula-
tions, what parameters determine this additional degree of free-
dom, and what values of these parameters should be set for
physically realistic results. In addition, it is important to outline

the resolution that is sufficient to capture the physics of drop
breakup while keeping a reasonable simulation time. To validate
the numerical approach, its results are compared to existing exper-
imental results and findings of numerical simulations using other
methods. The present study can be considered as a development
towards a numerical tool to investigate the behavior of drops in
shear flow and as a verification and validation step for further
applications in more complex flows. For instance, the developed
code would be extended to perform Direct Numerical Simulations
(DNS) of turbulent dispersion formation with hundreds of breaking
and merging droplets.

The rest of the paper is organized as follows. The problem state-
ment is outlined in Section 2. Section 3 contains the details of the
numerical technique. The results of simulations are presented in
Section 4. First, the choice of the numerical parameters that deter-
mine drop behavior in shear flow is discussed in Section 4.1, with
additional details in Appendix A. Drop deformation and breakup in
Stokes flow is presented in Section 4.2, the influence of inertia on
drop deformation is shown in Section 4.3 and Section 4.4 presents
the joint influence of viscosity ratio and inertia on drop deforma-
tion and breakup scenarios. Finally, conclusions are drawn in
Section 5.

2. Problem statement

A liquid drop of dynamic viscosity f, is suspended in another
liquid of viscosity u.. The ratio of drop viscosity to surrounding li-
quid viscosity is denoted as 4 = 1,/ .. The interfacial tension be-
tween the liquids is o. The liquids are of equal density p. At time
t = 0, the drop is a sphere with radius a. The entire system under-
goes simple shear flow between two parallel plates located a dis-
tance H apart (Fig. 1). The two plates translate in opposite
directions with velocity u,, so that the shear rate is y = 2u,,/H.

Drop behavior in simple shear flow is determined by three
dimensionless numbers which are the Reynolds number Re, the
capillary number Ca, and the viscosity ratio /i:

N2 y
Re—'% oM ;_Ha 1)
o He

In the case of vanishingly small Re (Stokes flow) only viscous
and capillary forces determine the drop behavior. Being deformed
under shear flow, the drop inclines in the direction of the flow,
away from the axis of elongation which is at 45° to the flow direc-
tion (Khismatullin et al., 2003). It was shown by Khismatullin et al.
(2003) and is demonstrated later in this paper that the addition of
inertia changes the drop deformation and also the breakup process.
The range of Reynolds numbers considered here is from 0.0625 to
50.

Fig. 1. Single drop under simple shear flow.
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The ratio of viscous and capillary forces is determined by the
capillary number. For each viscosity ratio A there is a critical capil-
lary number, Ca., above which the drop eventually breaks. For cap-
illary numbers below the critical value, a steady drop shape exists.
When the drop is sheared in the Stokes flow regime at Ca ~ Ca, it
breaks up by the “end pinching” mechanism into daughter drops
separated by smaller satellite and subsatellite droplets (Marks,
1998; Zhao, 2007). In this study, simulations close to Stokes flow
conditions are performed for capillary numbers in the range of
0.1-0.42. This range of Ca includes drop deformation and breakup.

Finally, drop deformation and breakup depends on the viscosity
ratio. When the drop is very viscous (1 > 1), the rate of elongation
in the drop is small compared to the rate of circulation in the drop,
and the drop cannot break (Cristini and Renardy, 2006). The critical
viscosity ratio A beyond which the drop does not break is around
3.0 for Stokes flow (Khismatullin et al., 2003; Cristini and Renardy,
2006). The critical viscosity ratio increases with increasing Rey-
nolds number (Khismatullin et al., 2003). The viscosity ratios 4 con-
sidered in this paper are 1, 2, and 3.

3. Numerical method

In the present study, a diffuse interface method is used to sim-
ulate the behavior of a drop in shear flow. In diffuse interface (or
phase field) methods (Jacqmin, 1999; Yue et al., 2004; Ding et al.,
2007; Magaletti et al., 2013) the sharp interface between fluids is
represented by a thin transition region with finite thickness where
fluids may mix. At any given time, the state of the system is de-
scribed by the order parameter of the phase field ¢ which is the rel-
ative concentration of the two components (Cahn and Hilliard,
1958; Penrose and Fife, 1990; Badalassi et al., 2003). To simulate
the fluid dynamics of a binary mixture of fluids, the continuity
and momentum equations are used in conjunction with the con-
vection-diffusion equation for the order parameter proposed by
Cahn and Hilliard (1958, 1959). Thus, the evolution of density,
velocity and order parameter are governed by the continuity,
momentum, and convection-diffusion equations (De Groot et al.,
1984; Swift et al., 1996; Kendon et al., 2001), respectively:

AP + 94(pu) =0 (2a)
Du(pty) + Op(PUytty) = —OpPlsy + OV (POsUs + POy (2b)
Oc + 0x(PUly) = Ma?j/}.u 20)

where p and v are the density and the kinematic viscosity of the
mixture, respectively. Here PZ}f is the ‘thermodynamic’ pressure ten-
sor. It contains two parts (Kendon et al., 2001): an isotropic contri-
bution Pd,; that represents the ideal gas pressure and the ‘chemical’
pressure tensor P;’;f”’. The chemical potential in Eq. (2c) is:
W(p) = Ap — Ap*> — k32,4 Here, A < 0 is a parameter of the free en-
ergy model; k is a parameter related to the surface tension and
interface thickness.

Swift et al. (1996) developed a lattice Boltzmann approach,
known as the free energy model, to solve the system (2). Exactly
this method is adopted in the present study. Two particle distribu-
tion functions are utilized: one function f(r, t) is used to solve the
continuity (2a) and Navier-Stokes (2b) equations and the second
one g(r, t) is used for the convection-diffusion Eq. (2c). The distri-
bution functions evolve by a time step At. All simulations have
been performed using a single relaxation time collision operator
(Bhatnagar-Gross-Krook (BGK) model (Bhatnagar et al., 1954)).
The discrete lattice Boltzmann equations have the following form:

—

_ fed
fa(roy + CagAL, t + AL) — fo (1, t) = _fqr_q
f
g -8 ®)
8y(I + CogAL t + AL) — gy (1, t) = _qfiq
g

where the index g stands for the number of the discrete velocity
directions; the index o stands for the Cartesian directions x,y and
z;f¢%, 84" are discretized Maxwell-Boltzmann distributions (or equi-
librium distributions); ¢, denotes the discrete velocity set and
Tf, T are dimensionless relaxation parameters. The D3Q19 lattice
is adopted here where Q = 19 is the number of velocity directions.
In this lattice arrangement, each site communicates with its six
nearest and twelve diagonal neighbors. The lattice Boltzmann
method operates in dimensionless lattice units (lattice space, time
step, and lattice density for the length, time and density units,
respectively). For the method described here, only uniform cubic
lattices can be used; the mesh step Ax is taken as unity, as is the
time step At. The discrete velocity set is defined as follows:

Cx 0Oc-c0O0O0OCc-cc -c0OO0 0 Oc - c —c
¢ |=]1000c¢c-c0O0c¢cc —<c—-cc—-cc -c0O0 0O
(o8 0000O0C-0O0O0 O O¢cc —-c-cc c —-c-c

where ¢ = Ax/At is the lattice speed.

The particle distribution functions are defined such that the fol-
lowing summations over all directions q at each single lattice point
give the local density of the fluid, the local fluid momentum and
the local order parameter, respectively:

qu =p anqfq = Puy qu =¢ (4)
q q q

The equilibrium distributions (Kusumaatmaja, 2008) fg4, g¢? for
populations 1< q < (Q —1) are calculated using the following
relations:

W,
159 = 5 (Po = K (Th + b + 0h) + Cogpl
3 c
5z | Coara = 5 Oun | Pally
K w#
T (W;xax(bax(b + Wy Oy 0y + W 0:$0: + Wy Oxpdy

+ WDz + WDy $0:0 )

W 3 c?
g = 2 (F:“ + CogPUy +TCZ {Czqcﬂq - géali} qbuxu,,> (3)

while the distributions for g = 0 are given by:

Fig. 2. Simulation domain with boundary conditions: x = 0 and x = L are periodic
boundaries; y=0 and y =H are no-slip walls moving with constant velocity
uw;z=0 and z =W are the symmetry planes. At t = 0 the drop has a spherical
shape. Due to the symmetry of the problem only half of the drop has been
simulated.
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A0
B I

Fig. 3. Drop elongation L, deformation D = (L — B)/(L + B) and orientation angle 6
measurements.

Table 1

Wall proximity influence (H is a distance between the moving plates). Elongation L/a
and orientation angle 0 of a drop with undeformed radius a =20 [lu] at
Ca=0.27,Re=1,2=1,Pe =1 and Ch = 0.057.

H=4a H=8a H = 16a

L/a (LBM) 1.93 1.87 1.82

0 (LBM) 18.88 22.77 23.12

L/a (VOF) (Renardy and Cristini, 2001a) 1.8

0 (VOF) (Renardy and Cristini, 2001a) 25

Q-1 Q-1
o'=p =D St gt =) gy (6)
q=1 q=1

And the weights (Kusumaatmaja, 2008) are:
w *1 w = 1

16 =5 7-18 = 15

5 1
Wi, =wyl = wig 12 Wi =W 5 g =Wy = 3
1
Wi o = WS g = WY 1y = Wi 5 = — 5
. 24 (7)
Wi 1y = WiS g = W5 o = 12
1
‘/‘/1‘{6 = Wﬁe = Wixfa =0, VV;),’IO = W)l’zl,lél = W%ls = )
1

Wy g =Wip 43 = Wig 17 = v WP g =Wy =wi, =0

The bulk pressure in Eq. (5) is defined as p, = ¢2p +4¢> — 38",
Here c2 = 1/3 is the speed of sound in lattice units.

25
2 Pe=10
° Pe=5
Pe:m\'\.
15+t Pe=5
K Pe=1
-
l L
m Ch=0.1136
g Ch=0.2
05+t o VOF
0 L L L L L
5 10 15 20 25 30 35

a

)

The mobility M, the coefficient of mobility I" and the relaxation
parameter Tg are connected by the following relation:

M= AtF(‘Eg - %) (8)

i.e. the parameter I" determines the order parameter mobility M.

The liquids have different kinematic viscosity. To take this into
account, the kinematic viscosity of the mixture v is set to be a func-
tion of the order parameter ¢:

do— ¢ b+ ¢
25 24 ®)

where v, and v, are the kinematic viscosities of continuous and dis-

persed phases, respectively. The relaxation parameter for f; is de-
fined using the kinematic viscosity of the mixture:

1
) =Gt 3

V(d)) =Vc

+ Yy

(10)

For a planar interface, an analytical solution (Van der Sman and
van der Graaf, 2008) gives the ¢ profile ¢(x) = ¢, tanh(x/¢). Here,
¢ = +¢o = £1 is the value of order parameter in the bulk phase
at either side of the interface. The thickness of the diffuse interface
¢ is equal to

. 250\ 172
= (%) (an
The surface tension o follows from:
_4 ¢
g=3 K? (12)

To determine the equilibrium distributions (5), the spatial gra-
dients of ¢ have to be calculated. The stencils for gradients and
Laplacian calculations adopted in this study are (Kusumaatmaja,
2008):

1 0 0O -1 0 1 0
ax:m 0 1|,]-2 0 2|,[-1 0 1 (13)
-1 0 1 0 0
1 010 1 2 1 0 1 0\]
27— —
v A2 1 21 2 24 2 1 21 (14)
010 1 2 1 01 0/]
35
30
Pe=1
e=5
25 e Pe=10 i
@ 20t
m Ch=0.1136
15}
O Ch=02
o VOF
10
5 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30 35

(b)

Fig. 4. Drop deformation results at Re = 1,Ca = 0.27, 4 = 1 and different Pe and Ch numbers. The L/a ratio (a) and the orientation angle 0 (b) as a function of drop radius.
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Pe=1 Pe=2 Pe=3 Pe=4
Ch=0.0379
Ch=0.0568
Ch=0.0667 Unstable
Ch=0.1 Unstable

Fig. 5. Drop shape and streamlines at steady-state for drop with radius a = 30 [lu] at Re = 10,Ca = 0.15, 4 = 1 and different Pe and Ch numbers.

Fig. 6. Drop shape (¢ field) at steady state. The drop radius is a =30 [lu] and Pe =3.(a) ¢ =1.14 [lu], ' =4.3; (b) ¢ =2 [lu], ' = 13.3.

where the left, middle and right matrices show slices of the stencil Streaming step :  fy(ry + CoqAL, t + At) = fi(ry, 1)

when z = Ax,0 and —Ax, respectively. o (16)
The discretized Eqs. (3) are solved in two steps: 8y(Tx + CogAL L+ AL) = & (I, )

1 To complete the mathematical description, boundary condi-

Collision step :  fy(ry, t) = fy(ra, t) — = Ife =34 tions have to be specified. The simulation domain with boundary

fl (15) conditions is depicted in Fig. 2. The no-slip condition is imposed

g (ra,t) = 8o (1s,t) — T_[gq ~ g on the bottom y =0 and top y = H plates for the f; distribution

g and a Dirichlet condition of ¢ = —¢, for the g, distribution. The
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Fig. 7. Deformation (a) and orientation (b) of a drop in simple shear flow under near Stokes conditions. Present simulation results (at Re = 0.0625) with free energy LBM ;
Previous results: ¢ VOF computations of Li et al. (2000); OO boundary integral method of Rallison (1981); x boundary integral method of Kwak and Pozrikidis (1998); A
boundary integral method of Kennedy et al. (1994); o experimental results by Mason and Bibette (1997).

(c) Ca=0.3

(b) Ca=0.2

(d) Ca=04

Fig. 8. Steady state drop shape (black curve stands for the interface), streamlines and velocity fields (x—y plane at z = 0). Stokes flow (Re = 0.0625), 2 = 1.

constant velocities of the walls are applied on those planes using
the procedure proposed by Mussa et al. (2009). The rest of the
boundary conditions apply to both f; and g,. Periodic conditions
are imposed on the x = 0 and x = L planes. Because of the symme-
try of the problem, only half of the drop has been considered. Such
consideration requires symmetry conditions (Ahmed and Hecht,
2009) of the side planes z = 0 and z = W. The initial condition at
time t = 0 is that the drop has a spherical shape and the velocity
field is zero throughout the domain.

4. Simulations of a single drop under simple shear flow

A computer code for three-dimensional simulations is devel-
oped using Fortran 90 in both serial and parallel versions. The par-
allel code uses domain decomposition and MPI (Message Passing
Interface). The simulation domain is decomposed into slabs in
the x direction, one for each CPU. The number of CPUs used de-
pends on the domain size, starting from one for low resolution
drops and up to eight CPUs for the highest resolution drops.
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T=0.2
T=51
T=10.0
T=120.1
T=1234

F=29.2
F=20.4
f=30.1
T=2306
T=315

Fig. 9. Evolution of the drop shape at Re = 0.0625,Ca = 0.42, /. = 1.0 and initial drop radius a = 30 [lu] (f = t}). The images only show a portion of the full domain.

Depending on the drop size, the duration of the simulations ranges
from several minutes for the drops with lower resolution to 2-
3 weeks for the drops with the highest resolution.

A simulation code for graphics processing units (GPUs) is used
to facilitate convergence studies with large droplet radii (32-64
lattice units). The high memory bandwidth and parallel processing
capabilities of GPUs allow fast LBM simulations due to the highly-
local nature of free energy LBM calculations: only data from adja-
cent nodes is required to update each node in the domain. The sim-
ulations are performed on nine NVIDIA Tesla M2070 GPUs, with
three GPUs installed on each of three computational nodes. Com-
munication between the three GPUs on one computational node
occurs over system buses, while communication between compu-
tational nodes occurs over an InfiniBand interconnect and was
implemented with an MPI library. The domain is split evenly
among the nine GPUs along planes parallel to the sheared wall. A
rotational symmetry boundary condition through the middle of
the domain (y = H/2 in Fig. 2) is used to further reduce the compu-
tational expense. With this boundary condition, the domain below
y =H/2 is not simulated. Since the GPU code was initially devel-
oped to study a different problem, binary droplet collisions and
coalescence (Shardt et al., 2013), the boundary conditions in the
GPU code differ subtly from those in the CPU code. The shear veloc-
ity at y=H is imposed using the method of Ladd (1994). A

symmetry condition is used for the phase field ¢ at y = H. The
other symmetry and periodic boundary conditions are the same
as in the code for CPUs. Two simulations at the same conditions,
with one running on GPUs and the other on CPUs, were compared.
As described in Appendix B, the difference in the drop elongation
L/a (see definition below) is 0.15%. The difference in boundary con-
ditions is therefore small, and the GPU and CPU simulations may be
used to study the same problem. Processing speeds for the simula-
tions with droplet radii between 32 and 64 lattice units are 136-
235 million lattice node updates per second (Mlups), compared
to 2 Mlups on 8 CPU cores in the CPU-based simulation. The perfor-
mance of both GPU- and CPU-based simulations is affected by
other jobs running on the clusters, causing fluctuations in the pro-
cessing speeds.

4.1. Choice of numerical parameters

A set of three physical dimensionless numbers (the Reynolds
number Re, the capillary number Ca and the fluids’ viscosity ratio
J, see definitions (1)) fully determines drop behavior under simple
shear flow. The lattice Boltzmann free energy method refers to the
class of diffuse interface methods that requires an explicit specifi-
cation of the interface thickness ¢ and related numerical parame-
ters (k,A,M,I'). Two additional dimensionless numbers need to
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be introduced to characterize these degrees of freedom (Van der
Sman and van der Graaf, 2008): the interface Peclet number that
relates the convection time scale to the interface diffusion time
scale

_jas
T MA
and the Cahn number which is the ratio between interface thickness
and drop radius

Pe (17)

Ch= (18)

Qv

Thus, the behavior of the same drop in simple shear flow in
numerical space is determined by five dimensionless numbers,
three of which are physical (Re,Ca,.) and two are numerical
(Pe, Ch). It is necessary to investigate the choice of these numerical
numbers to capture the drop behavior at given physical dimen-
sionless numbers. The verification of the numerical technique in-
volves an investigation of the influence of the Peclet and Cahn
numbers on accuracy and stability. Subsequently the technique is
validated by comparison with available literature data.

When the sheared drop evolves to a steady shape under Stokes
flow conditions, two parameters are used to measure the deforma-
tion attained by the drop. The first parameter is the Taylor defor-
mation parameter (Taylor, 1932, 1934) D = (L — B)/(L + B), where
L and B are the half-length and half-breadth of the drop (see
Fig. 3), respectively. When the steady shape of the drop is not ellip-
soidal any more (which is the case for shear with higher Re) then
the ratio of maximum elongation to initial undeformed drop radius
L/a is used to characterize the deformation. The second parameter
is the orientation angle 0 of the drop as defined in Fig. 3.

The influence of the proximity of walls was examined first.
Three simulations of a drop with initial radius of a = 20 [lu] at
Re=1,Ca=0.27,A=1,Pe=1 and Ch =0.057 were carried out
in domains of 8a x4ax2a,8ax8ax2a and 8ax 12a x 2a.
According to the VOF results presented by Renardy and Cristini
(2001a) this capillary number (for given Re and ) is right below
the Ca, which means that a steady shape of the drop is attained.
The results of the present simulations together with the reference
VOF results are presented in Table 1. The smallest distance be-
tween the plates H = 4a results in higher deformation of the drop
and significantly smaller inclination angle. The effect of H reduces
when H is increased. The deviation between results obtained in the
cases when H = 8a and 16a is less than 3%. Simulation time in-
creases with domain size. Further benchmark cases used domains
of 8a x 8a x 2a.

Three benchmark cases have been performed characterized by
the following dimensionless numbers, respectively: Re =1 and
Ca=0.27,Re =0.0625 and Ca=0.1,Re =10 and Ca = 0.15. The
viscosity ratio for all cases was /1 = 1.

Consider the first case: Ca = 0.27,Re = 1,/ = 1. The relaxation
times for both distribution functions are set to 7y = 7, = 1. The ref-
erence VOF results are presented in Table 1.

Mesh refinement was performed at different Peclet and Cahn
numbers. The full set of dimensionless parameters (Re,Ca, 1, Pe
and Ch) remained constant when the resolution was increased.
The simulated Cahn numbers are Ch = 0.1136 and 0.2, the base-
line drop radius is a = 10 [lu]. The mesh is refined by factors of
p=1.5, 2.0, 2.5 and 3.0 times. The resulting drop radii are 15, 20,
25, and 30 [lu]. Peclet numbers of 1, 5 and 10 are simulated.

The drop elongation and orientation angle for Ch = 0.1136,0.2
and several Pe are presented in Fig. 4(a) and (b), respectively. For
the reference points obtained by Renardy and Cristini (2001a),
the initial drop radius spanned eight dimensionless units (grid
spacing). When the grid is refined, the L/a tends to reach asymp-
totic values. At Ch = 0.1136 and Pe = 10 the deviation of the elon-

gation from the reference data is 2% when a =30 [lu]. The
orientation angle is more sensitive and grid convergence is not
clear. The 0 values scatter within 20% from the reference data.
The minimum deviation is 0.4% at Ch =0.2,Pe =10 and a =30
[lu]. A smaller Peclet number results in smaller deformation and
larger inclination angle of the drop. At Pe = 1 and Ch = 0.2 the sim-
ulations of drops with radius in the range 10-30 [lu] are unstable.
When the drop radius exceeds 20 [lu] the simulations are unstable
at Pe = 1 and 5. The reason for this instability is the high mobility
value M. Mobility enters the governing system of equations via the
mobility coefficient I' (see Eq. (2¢)) and has an impact on stability
of the simulations. For the unstable cases I' is larger than 15. On
the other hand, drops with a < 15 [lu] break up at Pe =5 and 10.
High Pe means a low mobility M. In order to maintain local equilib-
rium, the mobility coefficient I (and thus mobility M) should be
large enough to allow diffusion across the interface on a time scale
faster than fluid motion (Kendon et al., 2001). Thus, when I is low
then the convection dominates over diffusion (which tends to
equilibrate the interface) and the droplets break. If a too large
mobility value is set (see above), the simulations may become
unstable.

To check if the influence of Pe and Ch is not a result of relatively
low resolution (a < 30 [lu]), an additional study with highly re-
solved drops was carried out using the GPU code. A base-line drop
radius of a =32 [lu] is specified. The results are presented in

t=135.6
=376
T =389

Fig. 10. Evolution of the drop shape at Re = 0.0625,Ca = 0.42,/ = 1.0 and initial
drop radius a = 64 [lu] (f = t7).
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(a) Re = 0.0625

(c) Re=10.5

(b) Re=10.1

(d) Re=10.6

Fig. 11. Steady-state velocity field and drop shape for Ca = 0.3,/ = 1 and different Re numbers.

Appendix A (Benchmark case 1). The same trends in the effects of Pe
and Ch on the results as with lower resolution are observed. Even
with higher mesh resolution Pe and Ch should be chosen with care
for every simulation. For instance, the case with Pe = 1,a = 64 [lu]
(the Cahn number Ch = 0.0625) is unstable. While the case with
Pe =1 and higher drop resolution a = 75 [lu] (the Cahn number
Ch =0.0267) results in L/a=1.79 and 0 = 24.92° that matches
the reference data.

For flows with Re = 1, the shear rate is high enough to avoid
long computations and a wide range of capillary numbers can be
investigated due to x,A and I' values that allow stable computa-
tions. The Stokes flow regime needs to have very low shear (which
implies small time steps and, thus, lengthy computations). It is also
more challenging because of the narrow parameters ranges for sta-
ble simulations. To obtain capillary numbers in the range of 0.1-
0.45, surface tension values in the range ¢ =10"*—107% [lu] are
necessary. To fulfill this requirement, k¥ should also be small
(10°* = 1073 [lu]). To get stable simulations, special care should
be taken for the choice of I" and, consequently, the Peclet number.
Simulations of drops in shear flow at near Stokes flow at Ca = 0.1
and .2 =1 were performed as the second benchmark case. The
specified Reynolds number of Re = 0.0625 is the same as was ta-
ken by Li et al. (2000) in their simulations by the VOF method.
The latter are used as reference data.

The results of the second benchmark case at
Re =0.0625,Ca=0.1 and A=1 are presented in Appendix A
(Benchmark case 2). The order of magnitude of the Peclet number
for the Stokes flow simulations has changed compared to the one
at Re = 1 considered before. Pe is less than unity now. The reason
is a decrease of shear rates while the rest of the parameters have
the same order of magnitude as before. The same influence of Pe
on drop deformation is observed. The higher the Peclet number
the higher the deformation and the smaller the inclination angle
of the drop.

To check the ability of the method to handle higher Reynolds
numbers, a third benchmark case was performed. The following
physical parameters are specified: Re = 10,Ca=0.15 and /4 =1.

Table 2
Deformation parameter for different Re numbers, Ca = 0.3,41=1.0
Re 0.0625 0.1 0.5 0.6
D (LBM) 0.396 0.399 0.454 0.469
D (VOF) (Li et al., 2000) 0372 03968 045 0.4768
A
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Fig. 12. Capillary number Ca as a function of viscosity ratio /. Present simulations
with free energy LBM: % Ca for which drop attains steady shape; A Ca for which
drop breaks up; o critical capillary numbers Ca. obtained by VOF method
(Khismatullin et al., 2003).

The results and analysis are presented in Appendix A (Benchmark
case 3). To sum up the most important findings, the influence of
Pe and Ch on the result for a fixed drop radius of a = 30 lattice units
is shown in Fig. 5. The data are organized in the following way: the
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(a) Re=0.0625, Ca=0.4

(c) Re=10, Ca=0.164

(b) Re=1, Ca=0.28

Mid-plane

(d) Re=50, Ca=0.095

Fig. 13. Drop shape and velocity field inside the drop for different Reynolds numbers Re and near critical capillary number Ca for each Re (1 = 1); Ch = 0.0568; (a) Pe = 0.41;

(b) Pe = 1.45; (c) Pe = 1; and (d) Pe = 4.15.

Peclet number increases from left to right, while the Cahn number
increases from top to bottom. An increase in Pe results in increased
drop deformation for every case: the drop becomes more elon-
gated. The angle of inclination towards the flow direction de-
creases with the increase in Pe. The increase of interface
thickness apparently limits drop deformation and the development
of internal circulations; the drop shortens and aligns in a vertical
direction. Re = 10 is not high enough to clearly see the loss of sym-
metry over the mid-plane of the drop. Nevertheless, it can be no-
ticed for the case with Pe =4 and Ch = 0.0379. The tips of the
drop are slightly tilted in the vertical direction. If this deformation
is accurately resolved then the maximum elongation of the drop
refers to the line that connects these two point. The angle of incli-
nation will be accordingly measured between this line and the hor-
izontal axis. On the other hand, the elongation can be measured
based on the mid-plane line. That will give a smaller value of elon-
gation and a smaller angle of inclination. In the present simula-
tions, maximum elongation was measured based on the tips of
the drop. This contributes to the deviations from the reference
data.

The aim of the benchmark studies is to establish guidelines on
how to specify the numerical parameters related to the interface
thickness (Pe and Ch) for a given set of physical dimensionless
numbers (Re,Ca and 1). The following conclusions are drawn. For
every simulation one has to make a choice for drop resolution
(fix the drop radius a in lattice units). With a set, the interface
thickness ¢ has to be specified. In other words, the Cahn number
should be chosen. For the present simulations, the drop resolution
can be divided into two regions based on the drop radius: moder-
ately resolved drops with a < 30 lattice units and highly resolved
drops with radius a > 30 [lu]. The drop radius of 30 lattice units
was chosen because starting from this radius the results are in
the mesh independent region (see Figs. 4 and A.19). For the drops
of moderate resolution a thinner interface is preferable. In the
present study ¢ = 1.14 [lu] (see Kendon et al. (2001)) was adopted.
For the highly resolved drops a thicker interface of two lattice units
needs to be used.

Thus, the choice of Ch is related to the resolution. Now the Pec-
let number should be chosen. This number contains the following

parameters: a, ¢, p, M and A. The first two (a and ¢) are already set.

(a) A=1, Ca=0.28

(b) A =2, Ca = 0.29

(¢c) A=3, Ca=0.32

Fig. 14. Drop shape and internal circulations at Re = 1 and near critical capillary
number for each /; Ch = 0.0568; (a) Pe = 1.45; (b) Pe = 1.5; and (c) Pe = 1.65.
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The shear rate 7 is fixed by the Reynolds number. The parameter A
is related to ¢ and x by Eq. (11). The interface thickness ¢ is spec-
ified, while x is fixed by the capillary number, which means A has
been set as well. The only tunable parameter left is the mobility M
that enters the governing equations as the mobility coefficient I
(Eq. (8)). The diffusion over the interface should be faster than
the fluid motion. According to Kendon et al. (2001) the mobility
coefficient must be high to allow this. When a thicker interface is
used, the residual diffusion contaminates more of the area around
the drop. The effect of contamination is shown in Fig. 6. The areas
inside and outside of the drop near the tips are more contaminated
when higher I' with thicker interface is used (Fig. 6(b)): one can
see the lighter gray area. To clearly show the difference between
these two cases the ¢ distribution along the horizontal lines is
plotted on the graph in Fig. 6. The drop edges are sharper in case
(a) compared to case (b). This effect decreases when a higher drop
resolution is used (because the ratio of the interface thickness and
the drop size is now smaller). For this reason the smaller interface
thickness is utilized for the lower resolved drops, and a thicker
interface for the higher resolution simulations.

Furthermore, the choice of the mobility coefficient (and conse-
quently Pe) has influence on stability. In most of the cases the sim-
ulations are stable for I' in the range 1-15. Smaller I results in
more deformation of the drop which can lead to breakup when a
steady shape is expected. On the other hand, too high mobility
can cause instability. Based on the simulation results obtained

T=0.1

t=25

T=16.5
T=335

here, the smaller the surface tension value (small k) the higher I
is needed.

Thus, the results of the benchmark cases show that the simula-
tions are seemingly unpredictable and dependent on Peclet and
Cahn numbers. Does it mean that to obtain a trustworthy physical
result one has to perform several verification simulations and fig-
ure out Pe and Ch? To answer this question, different physical sys-
tems are further considered. In most of the simulations the Cahn
number is fixed to Ch = 0.0567. The Peclet number varies from
case to case while the mobility coefficient I' is set equal to 8 or
10. A wide range of Reynolds and capillary numbers and viscosity
ratios is examined to cover different physical phenomena. First,
drop deformation and breakup in near-Stokes flow are considered
at different capillary numbers. Then inertial effects are investi-
gated at higher Reynolds numbers. Finally, the combined influence
of inertia and viscosity ratio is investigated. Most of the results are
compared to available literature data. Using these simulations, it is
shown that even simulations at moderate resolution can be used to
study drop deformation in shear.

4.2. Stokes flow simulations

To validate the numerical code with existing literature data,
near-Stokes flow (Re = 0.0625) simulations of a single drop were
performed for capillary numbers of Ca = 0.2, 0.3 and 0.4. The initial
drop radius is 20 [lu] in a simulation domain of 8a x 8a x 2a. The

=420
t=49.1
T=149.4
T=150.0

Fig. 15. Drop shape and velocity field change in time for Re = 1,Ca = 0.3, 1 = 2 (f = t}). Initial drop radius a = 20 [lu]; the Cahn number Ch = 0.0568, the Peclet number

Pe =1.55.
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Cahn number is fixed to Ch = 0.0567 and the Peclet numbers are
Pe=0.2, 0.3 and 0.41 for each case, respectively.

The drop deformation D and orientation angle 6 in steady state
as a function of the capillary number Ca along with experimental
and numerical results from the literature are depicted in Fig. 7(a)
and (b), respectively. Our results agree well with the reference
data. However, as discussed in the previous section, the results
can be adjusted by variation of the Peclet number (or the diffusion
coefficient I'). Since the reference values of deformation and orien-
tation angles are scattered, it is demonstrated that choosing I" from
the stable interval (1-15) gives the results that match reference
data. Fig. 8 shows cross sections of the drop steady shapes and
velocity fields in the z = 0 plane (see Fig. 2) for Ca=0.1, 0.2, 0.3
and 0.4. The larger the capillary number, the stronger the drop
deformation and the smaller the inclination angle.

To check the ability of the method to capture the breakup event,
the following situation was simulated: Re = 0.0625,Ca = 0.42 and
J.=1. Based on experiments and available numerical results the
critical capillary number for liquids with equal viscosities in the
Stokes regime (Li et al., 2000) is Ca. = 0.41. Thus, for Ca = 0.42
breakup is expected. According to a reference VOF result (Li
et al., 2000) (see their Fig. 11) five fragments are formed: two
daughter drops, one satellite droplet and two sub-satellites. To re-
solve these fragments a resolution higher than a = 20 [lu] is re-
quired. The initial drop radius is set to 30 [lu] in a simulation
domain of size 12a x 8a x 2a (the same size as in VOF reference
data). The Cahn number of Ch = 0.0379 and the Peclet number of
Pe = 0.43 are specified. The results are presented in Fig. 9 where

t=0.5

t=15.3
t=25.1
t=150.2

the drop shape evolution in time is depicted. The simulated drop
breaks up forming two daughter drops and one satellite droplet be-
tween them. The mesh in this simulation is not sufficiently fine to
resolve sub-satellite drops. Further refinement (to a = 64 [lu] with
Pe = 0.43 and Ch = 0.0177) shows the formation of sub-satellites
after breakup as also reported by Li et al. (2000). The final stages
of the drop shape evolution over time are presented in Fig. 10.
The drop deforms sufficiently to reach and wrap around the ends
of the periodic domain, whose size was chosen to be the same as
in (Li et al., 2000). Though the domain is too small to represent
the behavior of a single drop in an unbounded domain, the simula-
tion demonstrates the ability of the method to resolve sub-satellite
drops during the breakup of the thread.

4.3. Influence of inertia

In order to capture drop deformation and breakup at higher
Reynolds numbers, three simulations were performed at a capillary
number of Ca = 0.3 and Reynolds numbers Re = 0.1,0.5 and 0.6
(the Reynolds numbers are taken the same as in the reference data
by Li et al. (2000)). The initial drop radius is a = 20 [lu] in a simu-
lation domain of 8a x 8a x 2a. The Cahn number is Ch = 0.0568
and the Peclet numbers are Pe = 0.31,0.39 and 0.39 for each Re,
respectively. The Reynolds number is increased by increasing the
velocity of the wall while keeping the viscosity of both liquids
equal to v4 = v = 1/6 (relaxation time 7y = 1.0).

For a fixed capillary number, an increase in the Reynolds num-
ber leads to higher drop deformation, the drop changes its shape

t=064.0
t="1778
t =183
t =832

Fig. 16. Drop shape and velocity field change in time for Re = 50,Ca = 0.09, 1 = 2 (f = t7). Initial drop radius a = 20 [lu]; the Cahn number Ch = 0.0568, the Peclet number

Pe =3.93.
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from ellipsoidal to elongated. The drop shape at steady state to-
gether with velocity fields is illustrated in Fig. 11 for
Re = 0.0625,0.1,0.5 and 0.6. The results are in qualitative agree-
ment with those presented by Li et al. (2000) (see their
Fig. A.18). The deformation parameter D, simulated using LBM, is
listed in Table 2 for different Re together with the results obtained
using the VOF method (Li et al., 2000). The deviation between the D
values is less than 1%.

4.4. Joint influence of viscosity ratio and inertia

To demonstrate that different liquid viscosities can be handled,
a set of simulations has been performed and the results have been
compared to the VOF results reported by Khismatullin et al. (2003).

The initial drop radius of a =20 [lu] (at the Cahn number
Ch =0.0567) in a simulation domain of 12a x 4a x 2a is consid-
ered. The Peclet number varies in the range from 1 to 5. The relax-
ation time of the continuous phase is 7; = 0.6, and the relaxation
time for the liquid in the droplet is adjusted based on the viscosity
ratio A.

The Reynolds numbers were Re = 1, 10 and 50. These are much
higher Reynolds numbers than discussed so far. Khismatullin et al.
(2003) reported critical capillary numbers as a function of viscosity
ratio for these Re values. Since the critical capillary number was
not known a priori, two capillary values were searched for every
Re number: one for which the droplet attains steady state and
the second one for which the drop breaks up and forms daughter
droplets. In Fig. 12, Ca is plotted as a function of A for the three
Re numbers. The trends in Ca, as a function of 1 and Re found in
the present study mimic the ones obtained using the VOF method
(Khismatullin et al., 2003). However, with the increase of Re, the
deviation in Ca, values increases compared to the reference results.
This can be attributed to the limited drop resolution. Grid

F=0.2
f=20.0
f=50.1
f=65.0

refinement improves the results. For instance, when
Re=50,2=1 the drop with initial radius a=64 [lu]
(Ch = 0.03125) attains a steady shape at Ca = 0.07 and breaks at
Ca = 0.08. This result is in a better agreement with reference data.

To highlight the influence of inertia, the shapes of the drops for
different Re together with internal circulations are shown in
Fig. 13. Only the results for 2 = 1 are presented here, but the con-
clusions are similar for 2 = 2 and 2 = 3. As one can see, with the in-
crease of Re the steady shape of the drop is more towards the
vertical direction. In Stokes flow, the drop is more symmetrical
over the mid-plane with one vortex inside the drop. Inertia makes
significant changes to the drop shape and velocity field: with the
increase of Re the symmetry across the mid-plane vanishes and
two vortices appear inside the drop (Fig. 13(d)). All these observa-
tions are in qualitative agreement with those reported by Renardy
and Cristini (2001a).

The influence of the viscosity ratio can be analyzed using Fig. 14
where the shapes of the drop for Re=1 and 4=1, 2 and 3 with
internal circulations at the near critical capillary number are de-
picted. The increase of the viscosity ratio means the drop becomes
more viscous compared to the matrix liquid. Higher viscosity of the
drop weakens circulation inside the drop: the vortex inside the
drop in Fig. 14(a) is more developed compared to that shown in
Fig. 14(c). The less viscous drop is more deformable: the symmetry
over the mid-plane is lost for the drop with A = 1 while the drop
with 1 = 3 is almost symmetric.

An increase of inertia also changes the breakup mechanism. To
study the influence of the Reynolds number on breakup, simula-
tions were performed for a system with viscosity ratio 41 = 2, initial
drop radius a = 20 [lu] for Re =1 and 50 and above the critical
capillary numbers for each Re. The evolution of drop shape and
velocity field when Re = 1 is shown in Fig. 15. The drop stretches
in the flow direction. Only one vortex is formed inside the drop

=825
=827
=829
T=284.7

Fig. 17. Drop shape and velocity field change in time for Re = 50,Ca = 0.085, 2 = 2 (f = t}). Initial drop radius a = 30 [lu]; the Cahn number Ch = 0.0379, the Peclet number

Pe =3.71.
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up to t = 2.5. When the neck in the middle of the drops begins to
form, two symmetric vortices appear. The neck gradually thins and
the drop breaks up forming two daughter droplets.

If inertia is increased up to Re = 50, significant changes in drop
breakup take place (see Fig. 16). The tips of the drop are caught by
streamlines with higher velocity that elongate the drop in the ver-
tical direction. Two vortices are formed in the drop immediately
after the start of the shear.

In addition, the influence of resolution was checked for Re = 50.
The resolution is increased such that a = 30 [lu]. The results are
presented in Fig. 17. This time a satellite drop forms after breakup.
Moreover, the critical capillary number decreased with the in-
crease of resolution which means the results are in better agree-
ment with reference data if simulated with higher resolution (see
Fig. 12).

As one can see in Fig. 12, with the increase of inertia in the sys-
tem even viscous drops are broken. For Stokes flow conditions, the
critical capillary number significantly increases when 2 approaches
the value of 3. High Re numbers decrease the absolute value of crit-
ical capillary numbers and allow viscous drops to break.

5. Conclusions

Numerical simulations of a single liquid drops suspended in an-
other liquid and subjected to simple shear flow have been pre-
sented. The free energy lattice Boltzmann method was used to
perform three-dimensional simulations of the binary systems in
order to determine the drop deformation and breakup conditions.
During this study the numerical tool has been implemented, veri-
fied and validated with available reference data.

The full physical description of the problem requires three
physical dimensionless numbers (the Reynolds number, the capil-
lary number and the viscosity ratio). However, the description of
the same problem in numerical space requires two additional
dimensionless numbers. The adopted diffuse interface method in-
volves the finite thickness of the interface between the two liquids
and related free energy model parameters. These numerical de-
grees of freedom are characterized by two dimensionless numbers:
the Peclet and Cahn numbers. The influence of these two numbers
on accuracy and stability was investigated. A guideline on how to
choose Pe and Ch in order to reveal physically realistic behavior
of the drop at given Re,Ca and 4 is presented below.

Three benchmark cases were performed to analyze the impact
of Pe and Ch. A range of physical conditions was considered: start-
ing from near Stokes flow and up to Reynolds of 10. The accuracy
and stability are affected by the choice of Pe and Ch. A smaller Pec-
let number for a given Cahn number results in less deformation
and smaller inclination angle of the drop. These effects hold for
moderately and highly resolved drops. Correct physical behavior
is captured in most of the cases.

For each benchmark case, mesh refinement studies were carried
out for different sets of Pe and Ch. Two mesh refinement principles
were considered. The first principle assumes keeping all five
dimensionless numbers constant when the mesh is refined, while
in the second mesh refinement principle four dimensionless num-
bers (Re,Ca, 4, Pe) and the interface thickness remain the same.
This principle follows the sharp-interface limit of Yue et al.
(2010) where it is suggested to maintain the mobility value M
while decreasing the Cahn number Ch. Different choices of the rela-
tionship between M and Ch might be optimal (see (Jacqmin, 2000;
Magaletti et al., 2013)).

Both mesh refinement principles work: the key parameters
(drop deformation and orientation angle) tend to reach asymptotic
values. The results tend to mesh independency when the initial
drop radius a > 30 lattice units. This drop size separates two

regions of resolution: a region of moderate resolution when
a < 30 [lu] and high resolution with a > 30 [lu]. However, for a gi-
ven set of physical parameters (Re,Ca, 1) and different numerical
parameters (Pe,Ch), the asymptotic values may differ from each
other: at one Peclet number the drop may attain a steady shape,
while at another Peclet number the drop may eventually break at
high resolution, or the simulation might be unstable at low
resolution.

The accuracy of the results is mostly determined by the mesh
resolution and can only be adjusted by varying Ch and Pe. Drops
of moderate resolution require a thinner interface. The suggested
value is 1.14 [lu] (in line with the results of Kendon et al.
(2001)). For highly resolved drops a thicker interface is preferable
(at least two lattice units). Thus, the interface thickness is set based
on the researcher’s preferences on mesh resolution. Now the Cahn
number is known, the Peclet number needs to be set. It was shown
that a Pe specification actually is the specification of the mobility M
because the rest of the parameters involved in Pe are already deter-
mined by the physical dimensionless numbers and by Ch. The
mobility value is determined by the mobility coefficient I'. The
present simulations and the observations of Kendon et al. (2001)
have shown that to allow diffusion over the interface to occur fas-
ter than fluid motion, the mobility coefficient should be high en-
ough. Based on the present results, the simulations are stable
when the mobility coefficient is in the range 1-15. The thicker
the interface the higher I' values (i.e. smaller Pe) are required. If
Pe is high then convection over the interface dominates diffusion
and the interface breaks in cases where a steady state with one
drop should be attained. On the other hand, too high I' (usually
> 20) might cause instability. If there is reference data then these
can be used to find Pe. And then this Pe value can be used in further
simulations. If the reference data is not available, it is suggested to
select the mobility coefficient value from the stability range 1-15,
then the deviation of numerical results will be within 20% for near-
Stokes flow and less for Reynolds numbers of the order of one.

To demonstrate that even moderately resolved drops can be
used to investigate the physics of drop deformation and breakup,
further simulations were carried out. The drops of a =20 and
a = 30 [lu] were chosen with an interface thickness of 1.14 [lu].
These drops were exposed to a wide range of physical conditions
(Re = 0.0625 — 50). The mobility coefficient was equal to 10 in
most of the cases.

The results of Stokes flow simulations for deformation and
breakup agree well with the results of other numerical techniques
such as VOF, boundary integral method and experiments. The devi-
ation of deformation and orientation angle is within 20% for the
capillary number range 0.1-0.4. Moderate drop resolution is not
enough to capture sub-satellite drops after breakup at Ca = 0.42.
Highly resolved drops should be used. For relatively low Reynolds
numbers (Re = 0.1,0.5,0.6) and capillary numbers less than criti-
cal, the obtained drop deformation is in excellent agreement with
VOF results presented by Li et al. (2000): the deviation of the drop
deformation value is less than 1%. The ability of the code to handle
different liquid viscosities at higher Re numbers was also tested.
Even though the trend of the curves of capillary number as a func-
tion of viscosity ratio for different Reynolds numbers was captured,
the deviation from VOF results (Khismatullin et al., 2003) increased
for higher Re. It was demonstrated that a way to improve agree-
ment is to increase the resolution of the LBM simulations.

The impact of the Peclet and Cahn numbers does not outweigh
the valuable advantage of the utilized diffuse interface method
over the interface tracking techniques: the feasibility to perform
simulations of a system involving a high fraction of dispersed
phase, i.e. large numbers of drops. The verified and validated
numerical tool will be used for industrial applications. For exam-
ple, for a given binary system of two liquids under applied shear
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it is possible to determine the resulting drop size distribution
(DSD). Or if the final product should have a certain DSD then the
proper shearing conditions can be found. The advantage of numer-
ical experiments is the possibility to visualize the entire flow.
Moreover, one can modify and apply the operating conditions that
are challenging to implement in a real experimental set-up. As for
further steps, the developed tool will be extended for the disper-
sion formation simulations under turbulent flow conditions (Kom-
rakova et al., in press).
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Appendix A. Benchmark cases

Benchmark case 1. Simulation parameters are
Re =1,Ca=0.27,4 = 1. To verify that at higher mesh resolution
the same influence of Pe and Ch holds, mesh refinement cases were
considered with the base-line drop radius of a =32 [lu]. The
refinement factors of 1.5 and 2.0 gave drop radii of 48 and 64
[lu]. The Cahn numbers of Ch = 0.0355 and 0.0625 at Peclet num-
bers of 1, 3 and 10 were examined.

The drop elongation and orientation angle are presented in
Fig. A.18(a) and (b), respectively. When Ch = 0.0625 and Pe =1
the simulations are unstable for a =48 [lu] (I' = 34.56 for this
case). Breakup of the droplet takes place in the following cases:
Pe=1,Ch=0.0355 and a=32 [lu]; Pe=3,Ch=0.0355 and
a < 48 [lu]; Pe = 10,Ch = 0.0625 and a < 48 [lu]. Thus, the same
trends with Pe on the results as at lower mesh resolution are ob-
served: higher Peclet numbers lead to more deformation and smal-
ler inclination angle of the drop.

Benchmark case 2. Simulation parameters are
Re = 0.0625,Ca = 0.1, 4 = 1. The relaxation times for both distri-
bution functions were set to 7y = 7 = 1.

In what follows two mesh refinement principles are considered.
In the first mesh refinement principle all dimensionless
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(@)

parameters are kept constant (physical Re, Ca and / and numerical
Pe and Ch). The second mesh refinement principle assumes keeping
Re, Ca, 4, Pe and ¢ the same when the mesh is refined. The thickness
of the interface is a numerical artifact and the reasoning is that Ch
should approach zero when the grid is refined thereby approaching
the real (physical) situation. This mesh refinement principle can be
considered as approaching the sharp-interface limit (Yue et al,,
2010). Both principles are tested further. A base-line drop radius
of 10 [lu] was chosen. The refinement factors g were 1.5, 2.0, 2.5
and 3.0. The first principle was tested at Pe=0.1 and
Ch = 0.1136. The second one was performed with fixed interface
thickness of ¢ =1.14 [lu] and different Pe numbers of 0.07, 0.1
and 0.2.

The results of drop deformation and orientation angle for the
Stokes flow simulations are presented in Fig. A.19(a) and (b),
respectively. Convergence for increased resolution towards an
asymptotic value is observed in each case. This means that both
mesh refinement principles work: upon refinement the solution
tends to become mesh independent. However, at
Pe =0.1,Ch = 0.1136 and a = 30 [lu] the simulations are unstable.

When a > 20 [lu] and constant interface thickness ¢ = 1.14 [lu]
the deformation results D agree well between different Pe. In addi-
tion, the deformation D is in a good agreement with the reference
VOF result (the deviation is less than 1% for the finest drops). How-
ever, the deviation of the orientation angle 0 from the reference
data is around 20%.

Benchmark case 3. Physical simulation parameters are
Re = 10,Ca = 0.15, 4 = 1. This capillary number is right below the
critical value for the given Re as discussed by Renardy and Cristini
(2001a). The reference VOF results (Renardy and Cristini, 2001a)
have L/a = 1.9 and 0 = 23°. To obtain the required Re, the viscosity
of the liquids was lowered by setting the relaxation time to
7; = 0.56. A mesh refinement procedure was performed with a
base-line drop radius of a = 20 [lu]. The refinement factors were
B =1.5 and 2.0 (drop radii of 30 and 40 lattice units). The Cahn
numbers were 0.0568 and 0.1. Also the second mesh refinement
principle was tested with two constant interface thickness
¢ =1.14 and 2.0 lattice units.

The simulation results are organized in Fig. A.20 and A.21 where
the L/a ratio and the orientation angle 6 are plotted versus drop ra-
dius a, respectively. In Figs. A.20(a) and A.21(a) the results of the
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Fig. A.18. Drop deformation results at Re = 1,Ca = 0.27, 2 = 1 and different Pe and Ch numbers. The L/a ratio (a) and the orientation angle 0 (b) as a function of drop radius

(Benchmark 1).
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Fig. A.19. Drop deformation D (a) and orientation angle of a drop 0 (b) for different drop radius a at Re = 0.0625,Ca = 0.1 and 4 = 1; first principle of mesh refinement at

Ch = 0.1136 = const; Il second principle of mesh refinement with & = 1.14 = const. Reference VOF computations of Li et al.,

(Benchmark 2).
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Fig. A.20. Elongation of a drop L related to initial drop radius a for different drop radii. Re = 10,Ca = 0.15, 7 = 1. Cases denoted by e, W refer to the first principle of mesh
refinement; cases denoted by o, refer to the second principle of mesh refinement (Benchmark 3).

first principle at Ch =0.0568 and the second one with fixed
&=1.14 [lu] at different Pe numbers are shown. The plot in
Figs. A.20(b) and A.21(b) shows similar results but for constant
Ch =0.1 and the fixed interface thickness in 2 [lu]. A significant
difference form the reference data is observed for both deforma-
tion parameters. However, the reference results of Renardy and
Cristini (2001a) show unexpected non-monotonic trends. Renardy
and Cristini (2001a) present L/a and 6 as functions of the Reynolds
number ranging from 0.0625 to 100. The results at Re = 10 and
Ca = 0.15 deviate from the general trend: by interpolation of near-
by results a smaller value of L/a and a higher 6 would be expected.
For example, Renardy and Cristini (2001a) show L/a = 1.8 and
0 =25°atRe =1 and Ca = 0.27. At Re = 60 and Ca = 0.053 the re-
sultis L/a = 1.52 and 0 = 53°. In both cases the capillary number is
sub-critical. Thus, for the case at Re=10 and Ca=0.15 an

elongation between 1.52 and 1.8 is expected since the drop short-
ens as Re increases. Similarly, an orientation angle between 25°
and 53¢ is expected because the drops tend to align more vertically
for higher Re. In addition, the deviation between the present and
reference data can be minimized if the Peclet number is increased.

The results based on the first mesh refinement principle (con-
stant Ch) converge marginally better than the results based on
the second one (constant ¢). The simulations of the drops with
a =40 [lu] and fixed ¢ = 1.14 [lu] at Pe = 3 and 4 resulted in break-
up. The reason is a low mobility coefficient I. When a = 40 [lu] and
Ch = 0.1 = const at Pe = 1.5 and 2 the simulations are unstable be-
cause of a too high I' value (I' = 107 and 80, respectively). Drops
are more deformed if they have a thinner interface. In addition
an increase in Pe leads to an increase of deformation. The droplets
incline more when Pe is smaller.
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Fig. A.21. Orientation angle of a drop 6 for different drop radii. Re = 10,Ca = 0.15, 1 = 1. Cases denoted by e, B refer to the first principle of mesh refinement; cases denoted
by o, O refer to the second principle of mesh refinement.
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Fig. A.22. Drop shape (¢ field) and streamlines at steady-state at Re = 10,Ca = 0.15, 2 = 1, Pe = 1 and different Ch numbers: (a)-(c) the first principle of mesh refinement; (a),
(d), (e) the second principle of mesh refinement (Benchmark 3).
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Fig. A.23. Drop shape (¢ field) and streamlines at steady-state at Re = 10,Ca = 0.15, 2 = 1, Pe = 4 and different Ch numbers: (a)-(c) the first principle of mesh refinement; (a),

(d), (e) the second principle of mesh refinement (Benchmark 3).

In the Stokes flow limit, only one vortex forms inside the drop
(see Fig. 8). The drop inclines towards the flow direction and has
an ellipsoidal shape. With increasing Reynolds number, three ma-
jor events take place (Renardy and Cristini, 2001a). First, the drop
becomes more aligned with the vertical axis and shortens in the
horizontal direction. Second, two vortices appear in the drop.
And the third change is that the symmetry over the mid-plane at
steady state is lost (see Fig. 13). These effects can also be observed
in Fig. 5(c) presented by Renardy and Cristini (2001a). To validate
the present numerical technique, the velocity field inside the drop
was compared to the reference data.

In Fig. A.22 the drop shapes together with streamlines inside
the drop are plotted for the cases with Pe = 1 for two types of mesh
refinement: (a)-(c) fixed Ch = 0.0568 (the first principle); (a), (d),
(e) fixed interface thickness ¢ = 1.14 [lu]. Pe = 1 has been chosen
because the drop does not break in the entire range of drop radii.
The black curves in Fig. A.22 show the interface (¢ = 0). In every
case two vortices can be seen. However, the drop is deformed dif-
ferently. Consider the first type of mesh refinement (figures (a)-
(c)). With increasing resolution, the interface widens, and the drop
deforms less and shortens in the flow direction. On the other hand,
finer drops with thinner interface (figures (d) and (e)) are more de-
formed compared to the base-case. The internal circulations mi-
grate almost to the tips of the drop (compare figure (c) and (d)).
The same remarks refer to other cases at different Pe.

Now consider a higher Ch (with the interface thickness of 2
[lu]). The drop shape and internal circulations are shown in
Fig. A.23 at Pe = 4 for different mesh refinement types: (a)-(c) con-
stant Ch = 0.1 (the first principle); (a), (d), (e) fixed interface width
of two lattice units. Pe = 4 was chosen because simulations are sta-
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Y
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0 5000 10000 15000
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Fig. B.24. Drop elongation L/a change in time obtained using CPU and GPU codes.
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Fig. B.25. The horizontal velocity component u obtained using CPU and GPU codes as a function of vertical coordinate y starting from the drop center and up to the wall (a)

and the difference between these two values (b).

ble in the entire range of drop radii. As one can see, none of the
mesh refinement simulations with the first principle were able to
capture two vortices inside the drop. The interface is so thick rela-
tive to the drop diameter that the circulations cannot develop.
When the size of the drop was increased while keeping the inter-
face thickness constant, two vortices were captured (figures (d)
and (e)). However the intensity of these circulations is different.
The finest drop has more developed flow inside.

Appendix B. Comparison of CPU and GPU codes

To compare the results of the CPU and GPU codes, the following
simulation was performed: a drop with radius a = 20 [lu] in a sim-
ulation domain of 6.4a x 6.4a x 6.4a (full size before symmetry-
type boundary conditions) at Re =0.375,Ca=0.1,A=1,Pe = 3.2,
and Ch = 0.1. The evolution of drop elongation L/a in time is shown
in Fig. B.24. The relative deviation between steady state values is
0.15%. This deviation is attributed to the difference in the velocity
fields caused by the use of two different types of velocity boundary
conditions. The velocity of the moving wall in the CPU code was set
using a procedure proposed by Mussa et al. (2009), and in GPU
code the boundary condition of Ladd (1994) was utilized. In the
method of Mussa et al. (2009), the wall is located exactly on the
last node, while in the method of Ladd (1994) the wall is located
one-half grid spacing beyond the last fluid node. This difference
is shown in Fig. B.25 where the horizontal velocity component ob-
tained with the two codes is plotted along a line starting from the
center of the drop and up to the sheared wall. Since the difference
between the elongation of the drop in simulations with the two
codes is negligibly small, it is concluded that the CPU and GPU
codes produce effectively identical results.
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