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In a fluidized bed, the drag force acts to oppose the downward force of gravity on a
particle, and thus provides the main mechanism for fluidization. Drag models that are
employed in large-scale simulations of fluidized beds are typically based on either fixed
particle beds or the sedimentation of particles in liquids. In low Reynolds number (Re)
systems, these two types of fluidized beds represent the high Stokes number (St) and
low St limits, respectively. In this work, the fluid-particle drag behavior of these two
regimes are bridged by investigating the effect of St on the drag force in low Re systems.
This study is conducted using fully-resolved lattice Boltzmann simulations of a system
composed of fluid and monodisperse spherical particles. In these simulations, the particles
are free to translate and rotate based on the effects of the surrounding fluid. Through
this work, three distinct regimes in the characteristics of the fluid-particle drag force
are observed: low, intermediate, and high St. It is found that, in the low Re regime,
enhanced particle mobility, as quantified by a decrease in St, results in a reduction in
the fluid-particle drag. Based on the simulation results, a new drag relation is proposed,
which is, unlike previous models, dependent on St.
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1. Introduction

Constitutive models for the fluid-particle drag force are widely utilized in the analysis of
fluidized suspensions of solid particles (Sundaresan 2000). In fluidized beds, the buoyant
weight of particles is principally balanced by the drag force exerted by the flowing fluid.
As a result, the quantitative accuracy of model predictions depends critically on the
accuracy of drag force models. Therefore, in order to achieve quantitative precision in
the study of fluidized beds, such as those used in the pharmaceuticals or oil industries,
it is vital to accurately model the drag force at the particle-scale level. Despite this fact,
there are a number of limitations to the drag models that are currently available in the
literature, one of which is the inability to account for the effect of particle translation
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and rotation. This particular limitation is addressed and remedied through the current
work.

Models for the fluid-particle drag force have arisen through analytical (Kim & Russel
1985; Brinkman 1947; Koch & Sangani 1999), experimental (Carman 1937; Kozeny 1927;
Darcy 1856; Ergun 1952; Richardson & Zaki 1954; Wen & Yu 1966; Garside & Al-Dibouni
1977; Davis & Acrivos 1985; Nguyen & Ladd 2005; Gidaspow 1994) and computational
methods (Hill et al. 2001; van der Hoef et al. 2005; Beetstra et al. 2007; Tenneti et al.
2011). These drag relations seek to account for the interactions between fluid and particles
over a range of particle volume fraction, φ, and Reynolds number, Re. For a fluid-particle
system, the particle volume fraction, φ, is defined as:

φ =
NVp
Vtot

, (1.1)

where Vp is the particle volume, and N is the number of particles in the system of interest
with volume Vtot, while the Reynolds number, Re, is defined as:

Re =
ρf (1− φ) |us| dp

µf
, (1.2)

where ρf is the fluid density, µf is the dynamic fluid viscosity, dp is diameter of the
particle, and us is the slip velocity, which is the difference between the fluid velocity, uf ,
and the particle velocity, vp. Constitutive relations for the fluid-particle drag force are
often cast in terms of a dimensionless drag force, F , which is defined as:

F =
ffp · us

F d,Stokes · us
, (1.3)

where ffp is the total fluid-particle interaction force minus the generalized buoyancy
arising from the slowly varying stress field, and the Stokes drag relation on a single
spherical particle at infinite dilution in a viscous fluid is given by:

F d,Stokes = 3πµfdpus. (1.4)

Thus, the quantity F can be thought of as a quantitative measure of the deviation from
the ideal Stokes behavior (φ→ 0 and Re→ 0).

In the literature, two of the more commonly employed fluid-particle drag relations
are the Beetstra et al. (2007) and Wen & Yu (1966) models. In drag studies like that
of Beetstra et al. (2007), highly-resolved numerical simulations based on the lattice
Boltzmann method (LBM) are used to study the flow of fluid past a fixed bed of solid
particles. On the other hand, drag relations, like that of Wen & Yu (1966), are developed
from sedimentation experiments. At the low Re limit, the Beetstra et al. (2007) drag
relation as a function of φ is given by the van der Hoef et al. (2005) model:

Fvan der Hoef (φ) =
10φ

1− φ
+ (1− φ)

3
(

1 + 1.5
√
φ
)
, (1.5)

while the Wen & Yu (1966) equation is given by:

FWen−Y u = (1− φ)
−(n−2)

, (1.6)

with n = 4.65 (Wen & Yu 1966). In figure 1, the dimensionless van der Hoef et al. (2005)
and Wen & Yu (1966) drag curves as functions of φ are compared. Key similarities
between these two drag curves are that as φ→ 0, F → 1, and as φ increases, F increases
monotonically. In the low Re regime, the van der Hoef et al. (2005) dimensionless drag
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Figure 1. The dimensionless drag force, F , as a function of the particle volume fraction, φ, is
plotted for both the van der Hoef et al. (2005) model (low Re limit of Beetstra et al. (2007)
model) and the Wen & Yu (1966) model at the low Re limit. From this figure, it is clear that
Fvan der Hoef > FWen−Y u over the entire range of φ.

is significantly greater than the Wen & Yu (1966) drag over the entire range of φ. The
critical distinction between these two types of fluid-particle systems is that in the case of
van der Hoef et al. (2005), the particles are fixed in place and therefore unable to rotate
and translate, while in the case of Wen & Yu (1966), the rotational and translational
velocities of the particles are able to quickly adapt to the effects of the surrounding flow,
which allows the fluid to move through with less drag. The Stokes number, St, which is
defined as:

St =
ρp (1− φ) |us| dp

18µf
=
ρp
ρf

Re

18
, (1.7)

where ρp is the particle density, can be used to characterize this distinction. St is the
ratio of the particle relaxation time to the fluid relaxation time, and so it is a critical
parameter for quantifying the resistance of the particles to changes in their translational
and rotational velocities due to the surrounding fluid flow. From this definition, the fixed
bed (in the van der Hoef et al. (2005) case) represents the high St limit of fluidized
systems, while the sedimentation of solid particles in liquid (in the Wen & Yu (1966)
case) represents the low St limit behavior.

Even though the Beetstra et al. (2007) and Wen & Yu (1966) drag models are derived
from starkly different flow conditions and have significantly different values (figure 1),
they are often applied interchangeably. In the work of Igci & Sundaresan (2011) and Ozel
et al. (2013), the Wen & Yu (1966) model is used as the drag closure for the large-scale
simulations of a gas-solid fluidized bed, while in similar studies, Radl & Sundaresan (2014)
and Pepiot & Desjardins (2012) instead employ the Beetstra et al. (2007) model. Thus,
there is a great deal of ambiguity in the fluidization literature about the applicability of
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the different drag models, particularly in terms of the different St limits. Li & Kuipers
(2003) found that the predicted flow behavior of a fluidized bed can be very sensitive to
the form of the fluid-particle drag force, and so achieving precision in large-scale modeling
of fluidized beds relies heavily on using drag relations that are truly applicable to the
system of interest.

The current work looks to determine a drag model that is applicable to low Re fluidized
systems over a full range of St and φ. Towards this goal, LBM simulations are employed,
in which, unlike the majority of prior LBM drag studies, the particles are allowed to
freely translate and rotate based on the effects of the surrounding fluid. In doing so,
the effects of particle translation and rotation are accounted for in a drag relation that
bridges the transition from the low St regime (Wen & Yu (1966) type model) to the high
St regime (van der Hoef et al. (2005) or Beetstra et al. (2007) model). Due to the fact
that the drag model derived from the current work is valid over the entire range of St
and φ, its application to larger-scale simulation studies of fluidized beds will result in
greater quantitative precision.

In section 2, we summarize the simulation method. In section 3, we present the
simulation results, and provide the equation for the drag model that accounts for both
St and φ in the low Re regime. Finally, in section 4, we provide some concluding remarks
on the overall findings of this work.

2. Simulation method

2.1. Numerical set-up for LBM scheme

In LBM, the fluid flow is simulated by the movement of fluid parcels along a three-
dimensional lattice of nodes (Benzi et al. 1992). The movement from one node to its
neighbor is governed by the Boltzmann equation, which is discretized in both time
and space. It can be demonstrated that the equations that describe the fluid dynamics
obey the incompressible Navier-Stokes equations in the low-Mach number limit (Chen
& Doolen 1998; Aidun & Clausen 2010). LBM was first employed in the study of fluid
flows in the works of Higuera & Succi (1989), McNamara & Zanetti (1988), and Higuera
& Jimenez (1989). The scheme used in this study for the evolution of the fluid density
and momentum distributions is described by Somers (1993) and Eggels & Somers (1995).
This implementation is a slight variant of the widely used LBGK scheme (Qian et al.
1992), with a more stable behavior at low viscosities, and second-order accuracy in space
and time. LBM was first used to study the interaction between fluid and solid particles
by Ladd (1994). In the current scheme, the no-slip condition at the boundaries between
the fluid and particles is handled with a forcing scheme, which is similar to the immersed
boundary method (Goldstein et al. 1993; Derksen & van den Akker 1999; ten Cate et al.
2002). This type of method for resolving the fluid-particle boundary, which utilizes an
internal fluid, is stable for values of ρp/ρf that are sufficiently larger than 1 (ten Cate et al.
2002). In this forcing scheme, additional forces are imposed on the fluid at the surface
of the solid sphere, such that the fluid velocity matches the local velocity of the solid
surface. The force and torque that the fluid exerts on a solid particle is then computed
by summing over these local forces that are needed to maintain a no-slip condition at
the particle’s surface.

There are a number of sub-grid particle-particle interaction forces that are explicitly
included in the LBM scheme. As two particles approach each other, the accuracy of the
LBM breaks down due to a lack of spatial resolution in the gap between the particles
(Ladd 1997). An additional particle-particle lubrication force is therefore introduced in
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order to account for the contributions of the unresolved part of the flow field (Kim &
Karilla 1991; Nguyen & Ladd 2002). Further details of the numerical scheme used in our
study can be found in the work of Derksen & Sundaresan (2007).

In order to facilitate the computational scheme for modeling the particle-particle
collisions, the particles are assigned a degree of softness. This softness is characterized
by a collision time, tc, between two particles. The Hookean spring constant, k, for the
elastic collisions is defined as:

k =
π3ρpd

3
p

6t2c
. (2.1)

A particle-particle interaction force therefore arises due to these soft collisions. In this
work, the collision between particles is assumed to be elastic and frictionless. For all
of the simulations in the current study, tc is taken to be 10 LBM time steps, which
corresponds to a maximum particle-particle overlap of about 0.001dp. The total force
and torque acting on each particle are then used in the equations of motion to update
each particle’s velocity and position.

Spherical monodisperse particles are used in the current LBM simulations. The input
diameter, in units of lattice spacing, is specified for the particles. Because the spherical
particle is defined over a cubic grid, the effective hydrodynamic diameter of the spherical
particle, dp, differs slightly from the input diameter. A calibration procedure, based on
the work of Ladd (1994), is used to determine dp from the input diameter and kinematic
viscosity, νf , of the fluid. Larger values of dp correspond to a more fully resolved fluid
flow profile, and thus a finer grid resolution. This calibration method results in similar
dynamics to that of the two-relaxation-time method, which is described by Ginzburg
(2007).

Throughout the current study, fully periodic boundary conditions in all three dimen-
sions are employed. Furthermore, a body force is applied to both the particles and fluid
in order to drive flow in the system, as described by Derksen & Sundaresan (2007). This
body force can be interpreted as the superposition of a downward gravity force and an
upward pressure gradient. In this periodic system, the strength of the pressure gradient
is set such that the total body force on the fluid and particles is zero. However, since
ρp > ρf , the net body force on the particles is downward, while the net body force
on the fluid is upward. Since the lattice units are dimensionless, the lattice spacing, ∆,
and the time step are simply taken to be 1. For a given simulation system, the key
parameters that need to be provided are dp, νf , the particle-to-fluid density ratio, ρp/ρf ,
the strength of the applied external body force, fext, the total number of particles, N ,
and the dimensions of the lattice, nx, ny, and nz. Additionally, the initial coordinates
of each of the particles are provided. From equation 1.1, the domain-averaged particle
volume fraction, φ, is determined from N , dp, and the system dimensions. For a typical
simulation in the current study, dp is taken to be 12, νf is taken to be 0.1, and nx, ny,
and nz are all taken to be 6dp. A study of the sensitivity of the observed fluid-particle
dynamics to changes in the grid resolution is provided in section 3.2.2. Furthermore, fext
and ρp/ρf are both varied over a range of values, such that the flow remains in the low
Re regime, but a large range of St is sampled. It is important to note that because Re
and St are both functions of us, they are not set a priori. Instead, these parameters are
determined from the results of the simulations.

In this study, we also investigated the characteristics of systems at the two limits of
St: a high St limit bed (fixed bed) and a low St limit bed. The additional constraints
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that must be applied to simulations of high St and low St limit beds are discussed in the
following section.

2.2. Simulating high and low St limit cases

In order to gain a more complete understanding of the behavior of fluidized beds at the
two St limits: high and low, we look to simulate these two cases using the LBM scheme.
However, in order to simulate the proper dynamics of these two limiting cases, additional
constraints are necessary. These constraints are ascertained by analyzing the effect of Re
and St on the governing equations of motion.

The equation of motion for the position of a single particle is given as:

dxp
dt

= vp, (2.2)

where xp is the position of the particle. In a fluidized suspension, the linear momentum
balance for a spherical particle is given by:

ρp
π

6
d3p
dvp
dt

= (ρp − ρ)
π

6
d3pg + ffp, (2.3)

where ρ = φρp+
(
1− φ

)
ρf is the mixture density, and g is the gravitational acceleration

vector. Other forces, like particle-particle contact, which are included in the LBM
simulations, can be added to the right hand side of equation 2.3, but for the purposes
of simplifying the current analysis, they are not included. Furthermore, the angular
momentum balance for the spherical particle is given by:

ρp
π

60
d5p
dΩp

dt
= T , (2.4)

where Ωp is the angular velocity of the particle, and T is the torque of the fluid acting
on the particle.

The equations of motion for the fluid phase are given as:

∂ (ρf (1− φ))

∂t
+ ∇ · (ρf (1− φ)uf ) = 0, (2.5)

Df

Dt
(ρf (1− φ)uf ) = − (1− φ)∇p′+(1− φ) (ρf − ρ) g−(1− φ)∇·τ f−

6

π

φ

d3p
ffp, (2.6)

where τ f is the deviatoric fluid stress tensor, and
Df

Dt is the total fluid material derivative
with respect to time. ∇p′ is the rapidly-varying pressure gradient term, where the total
pressure gradient, ∇p, is given by: ∇p = ρg + ∇p′. At the surface of each particle, no
slip and no penetration boundary conditions are imposed.

Using a scaling analysis, in which we look to retain all of the contributions to the net
force (right hand side in equations 2.3 and 2.6) and assume that ρf does not vary, we
obtain the following set of non-dimensional governing equations:

dx̃p

dt̃
= ṽp, (2.7)

Stc
dṽp

dt̃
= g̃ + f̃fp, (2.8)
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Stc
dΩ̃p

dt̃
= T̃ . (2.9)

∂ ((1− φ))

∂t̃
+ ∇̃ · ((1− φ) ũf ) = 0, (2.10)

Rec
Df

Dt̃
((1− φ) ũf ) = − (1− φ) ∇̃p̃′− 18

(
ρ− ρf
ρp − ρ

)
(1− φ) g̃− (1− φ) ∇̃ · τ̃ f − 18φf̃fp.

(2.11)
where x̃p = xp/dp, ṽp = vp/uc, t̃ = t/ (dp/uc), g̃ = g/g, f̃fp = ffp/ (3πdpµfuc),

Ω̃p = Ωp/ (uc/dp), T̃ = T /
(
3πd2pµfuc/10

)
, ∇̃ = dp∇, ũf = uf/uc, p̃

′ = p′/ (µfuc/dp),
and τ̃ f = τ f/ (µfuc/dp). In these expressions, the characteristic superficial slip velocity is
uc = (1− φc) |us,c|, where the subscript c denotes a characteristic quantity, and g = |g|.
Furthermore, the characteristic Stokes number, Stc, and characteristic Reynolds number,
Rec, are given by:

Stc =
ρpucdp
18µf

, (2.12)

Rec =
ρfucdp
µf

. (2.13)

It is clear that equations 2.12 and 2.13 have the same form as equations 1.7 and 1.2,
respectively. Furthermore, uc is chosen such that the drag force balances the force of
gravity and the effects of the imposed pressure gradient on a single particle at infinite
dilution:

uc =
(ρp − ρ) d2pg

18µf
. (2.14)

From this non-dimensionalization, the effect of St and Re on the particle and fluid
governing equations can be ascertained.

Focusing on the left hand side of equations 2.7-2.11, it is observed that Re multiplies the

term
Df

Dt̃
((1− φ) ũf ), Stmultiplies the terms

dṽp

dt̃
and

dΩ̃p

dt̃
, and the term

dx̃p

dt̃
is multiplied

by 1. The high and low St limit cases are then cast in terms of these dimesionless groups:
Re, St, and 1. Since the current study focuses on the low Re regime, Re � 1. Thus, in
the high St limit, Re� 1� St, and so the particle velocities (both linear and angular)
evolve over a much longer time than do the particle positions, which, in turn, evolve
over a much longer time than does the fluid velocity. Thus, the fluid velocity field is in
a quasi-steady state (QSS) relative to the particle positions and velocities. In the low St
limit, Re, St� 1, and so the particle positions evolve over a much longer time than do
the particle velocities and fluid velocity. The fluid and particle velocities, therefore, are
in a QSS relative to the particle positions.

It is important to specify that Re refers to the Reynolds number based on the mean
slip velocity. We can express vp and Ωp as:

vp = 〈vp〉+ v′p, (2.15)

Ωp = 〈Ωp〉+Ω′p, (2.16)

where 〈vp〉 and 〈Ωp〉 are the average linear and angular velocities, respectively, of all
of the particles in the simulation region. v′p and Ω′p are the corresponding fluctuations
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from the mean value. Since 〈Ωp〉 = 0 in our systems of interest, we can consider two
additional Reynolds numbers based on the two fluctuation velocities:

ReT =
ρfdp
µf

√
1

3

〈
v′p · v′p

〉
, (2.17)

ReΩ =
ρfd

2
p

µf

√
1

3

〈
Ω′p ·Ω

′
p

〉
, (2.18)

where the 〈 〉 notation is used to designate a quantity that is averaged over all of the
particles in the system. In this study, we limit our attention to ReT , ReΩ , Re � 1.
In moderate to high Re gas-solid systems, Wylie et al. (2003) and Kriebitzsch et al.
(2013) demonstrated the significance of the effect of fluctuations in the velocities of
the particles, quantified by the granular temperature, on the fluid-particle drag force.
However, in low Re systems, these effects of granular temperature are found to be less
pronounced. Furthermore, recent work by Zhou & Fan (2014) has used LBM simulations
to look at additional contributions to the fluid-particle interaction force besides the drag
force, namely the Magnus lift force, which arises due to the effects of strong particle
rotation. However, in the current study, the flow conditions are such that the drag force
is the single dominant contribution to the overall interaction force. In these systems,
the fluid-particle interaction forces that are perpendicular to the slip velocity, like the
Magnus lift force, represent less than 1% of the total interaction force.

2.2.1. High St limit

At the high St limit (Re � 1 � St), the fluid relaxes very quickly compared to
the particles, and so the fluid is in QSS relative to the particles. In the reference frame
where 〈vp〉 = 0, the high St fluidized system is characterized by a mean fluid velocity,
〈uf 〉, v′p, and Ω′p. Since ReT , ReΩ , Re � 1, this system can be interpreted as a linear
superposition of the following three systems: (1) a fixed bed system, in which there is a
mean fluid velocity, 〈uf 〉, but v′p = Ω′p = 0; (2) a system in which the particles have

fluctuations in their linear velocities, but 〈uf 〉 = Ω′p = 0; and (3) a system in which the
particles have fluctuations in their angular velocities, but 〈uf 〉 = v′p = 0. Since there is
no mean flow in systems (2) and (3), these systems do not contribute to the overall fluid-
particle drag force. Thus, the drag force for the overall high St fluidized system arises
solely from system (1). Thus, the high St limit case can be represented by a fixed particle
bed. In the LBM simulations of the high St limit case, the fluid moves around the fixed
particles, and eventually, a quasi-steady state flow distribution is established for a given
particle configuration and external driving force. Since the particles do not translate or
rotate in any way to adjust to the surrounding flow, the high St limit provides the upper
limit for the dimensionless drag force, F , in the low Re regime.

2.2.2. Low St limit

At the low St limit (Re, St� 1), the fluid and particle velocities are in QSS relative
to the particle positions. In this case, the velocities (linear and angular) of the particles
evolve much faster than their positions, as the particles respond immediately to the
flow. Lattice Boltzmann simulations, in which the particle positions are frozen, are used
as a computational method for finding the quasi-steady state velocities of the particles
and fluid. At each step in the simulations, the particle velocities are updated, as usual,
based on the net forces and torques acting on each particle. The particle positions, on
the other hand, are not changed. As these simulations converge to a steady state, the
net force and torque on each particle approach zero. The computed equilibrium velocity
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profile provides the dynamics for a low St limit bed at a single snapshot in time. Since
the linear and angular velocities of the particles adjust very quickly to the flow of the
surrounding fluid, the low St limit provides the lower limit for F in a low Re fluidized
bed.

3. Simulation results

3.1. High St limit with a random array of particles

The high St limiting behavior is established by simulating a fixed particle bed, as
motivated in section 2.2.1. It is understood that all of the relevant Reynolds numbers
are small, leaving St and φ as the only dimensionless quantities of interest for the
present study. For each simulation, the particles are arranged in a random, homogeneous
configuration. To obtain each random configuration, the particles are thermalized using a
discrete element method (DEM) simulation. This thermalization method places particles
in the DEM simulation box at random, assigning each particle a random velocity from a
Gaussian distribution. The particles are then allowed to move around and collide without
the effects of the fluid or gravity. After each particle has undergone many collisions, a
snapshot of the DEM simulation is taken. The random, homogeneous configuration of
particles for the LBM simulations is then obtained from this DEM snapshot. In this case
and throughout the study, the dimensionless drag force, F (equation 1.3), is computed
by averaging the fluid velocity, particle velocities, and fluid-particle interaction forces
over the entire domain (Euler-Euler approach). In these domain-averaged calculations,
the values of φ and φ are equivalent. The data that is used to compute F for a fixed
bed is taken from a snapshot of the system after the steady state has been reached. A
particle diameter of dp = 12 and a kinematic fluid viscosity of νf = 0.1 are used for these
simulations. These fixed bed simulations are conducted over a wide range of φ values.
For each value of φ, the results are averaged over a large number (between 10 and 60) of
random, homogeneous particle configurations. Since the particle positions are held fixed
and all of the simulations are conducted in the low Re regime, the high St drag results
are independent of fext and ρp/ρf . In figure 2, the results for F as a function of φ are
presented for three different cubic periodic domain sizes, nx = 6dp, 9dp, and 12dp. From
figure 2, we see that the effect of the domain size on the high St limit case is negligible.
Furthermore, from figure 2, we see that the high St limit drag curve matches very closely
with the van der Hoef et al. (2005) drag curve (equation 1.5), which was also computed
for fixed particle systems. This result confirms the validity of the current LBM numerical
scheme. This same set of parameters, with a cubic domain size of nx = 6dp and a grid
resolution of dp = 12 and νf = 0.1, is used for the majority of the current study.

3.2. Simulations of fluidized beds

Relaxing the constraint that the particles have to be held fixed in place, we then look
to study the dynamics of a fluidized bed, in which the particles are free to translate
and rotate based on the forces and torques that act on them. For each fluidized bed
simulation, fext and ρp/ρf are specified. The initial configuration of particles is random
and homogeneous, and is obtained using a DEM thermalization technique. As time
evolves, the particle positions change as particle structures and voids form in the system.
The data that is used to compute F for a fluidized bed is taken from snapshots of the
system after a statistical steady state has been reached. At each of these snapshots in
time, taken from simulations of fluidized beds, we extract the particle positions, fluid
and particle velocities, as well as the fluid-particle interaction forces. The criterion for
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Figure 2. The dimensionless drag force, F , is computed over a range of domain-averaged particle
volume fractions, φ, for a fixed particle bed (high St limit), for three different cubic periodic
domain sizes: nx = 6dp, 9dp, and 12dp. The effects of the domain size appear to be negligible
for the high St limit case. These drag curves match very closely with the van der Hoef et al.
(2005) drag curve.

determining the statistical steady state is based on the time evolution of the domain-
averaged slip velocity (as shown in the inset to figure 3). Due to the mobility of the
particles, the slip velocity does not approach a single steady state value, as in the fixed
bed simulations, so the statistical steady state is based on the time-averaged slip velocity
approaching a constant value. As in the high St limit case, an Euler-Euler averaging
approach is used for determining the values of F . For each set of ρp/ρf , fext, and φ,
the value of F is determined by averaging over the results of 10 different initial particle
configurations. Since St is a function of the slip velocity, St, like F , is determined by
averaging over the results of the different initial particle configurations.

3.2.1. Effect of domain size on dynamics of fluidized beds

In figure 3, the results for F over a range of φ for a St = 11.5 fluidized bed are
presented for three different cubic periodic domain sizes, nx = 6dp, 9dp, and 12dp. The
value of fext is set such that Re is on the order of 0.1, and properly adjusted in order to
achieve the desired value of St, which we show in section 3.6 is the key parameter for the
current study. From figure 3, over the entire range of φ, there is a significant decrease
in F as the domain size, nx, increases. Due to the mobility of particles in the fluidized
case, as the domain size increases, the length scales over which particle structures form
increases, which leads to an increase in the extent of flow-induced inhomogeneities in the
distribution of particles. Increases in the extent of inhomogeneities lead to the formation
of larger voids in the system. The fluid is able to preferentially move through these larger
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Figure 3. F is computed over a range of domain-averaged particle volume fractions, φ, for
a St = 11.5 fluidized bed for three different cubic periodic domain sizes: nx = 6dp, 9dp, and
12dp. For all of these cases, dp = 12 and νf = 0.1. As nx increases, there is a decrease in the
value of F . This drag reduction is due to an increase in the extent of inhomogeneities in the
particle configuration that comes from increases in the domain size. In the inset to this figure,
the magnitude of the fluid-particle slip velocity, |us|, is plotted as a function of time for the
φ = 0.3, nx = 6dp case. This type of plot is used to determine when the fluidized bed has
reached a statistical steady state.

voids, leading to a smaller overall fluid-particle drag force, thus explaining the reduction
in F as nx increases. While there is a clear effect of domain size on the drag results for
a fluidized bed, the current study looks to make conclusions about the effect of particle
translation and rotation on the fluid-particle drag force that are applicable to essentially
homogeneous systems. Thus, we focus on studying the dynamics of fluidized beds with
a cubic periodic domain size of nx = 6dp, and then look to form conclusions that can be
extended to homogeneous systems.

3.2.2. Effect of grid resolution on dynamics of fluidized bed

In order to assess the sensitivity of the simulation dynamics of the fluidized bed to
changes in the grid resolution, the drag curve is determined for a fluidized bed for several
different grid resolutions. Keeping νf fixed at a value of 0.1, the effect of grid resolution
on the fluid-particle drag force is assessed by analyzing systems with three different
particle diameters: dp = 8, 12, and 18. The results of this grid resolution study are shown
in figure 4, where F is plotted as a function of φ for a St = 11.5 fluidized bed. From
figure 4, we observe that there is a very small difference in drag between the dp = 12
and dp = 18 cases. Thus, we conclude from this grid sensitivity analysis that a value of
dp = 12 provides a sufficient amount of resolution. System parameters of dp = 12 and
νf = 0.1 are used for the remainder of this study.
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Figure 4. F is computed over a range of domain-averaged particle volume fractions, φ, for a
St = 11.5 fluidized bed for three different grid resolutions (or particle diameters): dp = 8, 12,
and 18. For all of these cases, νf = 0.1. From this grid sensitivity analysis, a small difference
between the dp = 12 and dp = 18 drag curves is observed. Therefore, a value of dp = 12 is taken
to provide a sufficient amount of grid resolution for the current study.

3.2.3. Comparison of the drag curve for the high St limit and fluidized beds

In figure 5, the results for F as a function of φ for a St = 11.5 fluidized bed are
compared with the high St limit (fixed particle bed) drag values. From figure 5, the drag
values for the St = 11.5 fluidized bed are clearly smaller than those for the high St
limit case. This drag reduction in the fluidized bed relative to the fixed bed is due to a
combination of two factors: the ability of the particles to translate and rotate due to the
effects of the surrounding fluid, and the development of inhomogeneities in the particle
configuration. Through this work, we look to better understand each of these effects on
the drag force.

3.3. Effect of particle translation and rotation: High St vs low St limit

The extent to which the particles are able to translate and rotate in response to the
effects of the surrounding fluid decreases as St increases. As discussed in section 3.1, the
fixed particle bed represents the high St limit case. At the other extreme is the low St
limit case, for which the linear and angular velocities of the particles evolve much faster
than the particle positions, as discussed in section 2.2.2. The drag curve for the low
St limit case is determined using simulations, in which the configuration of particles is
random, homogeneous, and static. In order to ensure that there is no bias from the particle
configurations when comparing the results of the low St limit with that of the high St
limit, the same random configurations that were obtained using DEM simulations for the
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Figure 5. The drag values, F , over a range of φ are compared for a St = 11.5 fluidized bed and
a high St limit (fixed particle) bed. For both sets of simulations, the following set of parameters
are used: dp = 12, νf = 0.1, and nx = 6dp. It is found that there is a drag reduction going from
the high St limit curve to the fluidized bed curve.

high St limit case are used for the low St limit case. Like the high St simulations, the
low St simulations are conducted over a wide range of φ values. For each value of φ, the
results are averaged over a large number (between 10 and 60) of random, homogeneous
particle configurations. Since the particles are held at their initial positions and all of the
simulations are conducted in the low Re regime, the low St drag results are independent
of fext and ρp/ρf .

3.3.1. Effect of domain size on the low St limit simulations

We start by analyzing the effect of the domain size on the fluid-particle drag in the
low St limit case. In figure 6, the results for F as a function of φ are presented for three
different cubic periodic domain sizes: nx = 6dp, 9dp, and 12dp. From figure 6, there is a
clear reduction in drag in the low St limit case as the domain size increases. In contrast
to the fluidized bed case, as an equilibrium velocity profile is established in the low
St limit simulations, the development of flow-induced inhomogeneities is suppressed by
keeping the particles fixed in place. Thus, the effects of periodicity (or domain size) can
be eliminated by extrapolating the low St limit drag results to an infinite domain size.
Using a 1/nx dependence, as shown in the inset of figure 6 for the φ = 0.3 case, the drag
results are extrapolated to an infinite domain size (nx →∞). While the drag curve given
by equation 1.6 has a constant exponent, n, the nx →∞ drag results are best fitted with
an exponent that varies with φ: n(φ) = 6.2− 2.5φ. Outside of the dilute limit, this value
of n primarily lies in the 4.65 to 5.5 range given by the sedimentation experiments of Wen
& Yu (1966), Garside & Al-Dibouni (1977), and Richardson & Zaki (1954). Furthermore,
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Figure 6. F is computed over a range of domain-averaged particle volume fractions, φ, for
a low St limit bed for three different cubic periodic domain sizes: nx = 6dp, 9dp, and 12dp.
System parameters of dp = 12 and νf = 0.1 are used for all of these simulations. Using a 1/nx
dependence, these results are extrapolated to an infinite domain size (nx →∞), as shown in the
inset for the φ = 0.3 case. The nx →∞ low St limit drag curve matches very closely with the Wen
& Yu (1966) type drag curve (equation 1.6), with a φ-dependent exponent: n (φ) = 6.2− 2.5φ.

this drag curve has a similar form to the analytical approximation of Brady & Durlofsky
(1988) for the hindered sedimentation velocity. Such a result confirms that the low St
limit simulations indeed provide an accurate depiction of the fluid-particle interactions
in liquid-solid sedimentation.

3.3.2. High St limit vs low St limit

As discussed in section 3.2.1, our goal is to form conclusions about the dynamics of
fluid-particle interactions that can be extended to nearly homogeneous systems by using
periodic simulation cells of domain size nx = 6dp. Towards this goal, we compare the
high St and low St drag curves using results obtained from simulation cells of domain
size nx = 6dp. These results for F as a function of φ are shown in figure 7, where we
observe a significant reduction in drag when moving from the high St limit curve to
the low St limit curve. This drag reduction ranges from 10% for φ = 0.05 to 19% for
φ = 0.5. Since the high and low St limit cases are both simulated using identical random,
homogeneous particle configurations, this drag reduction is not a result of changes in the
extent of inhomogeneities. Instead, this drag reduction is due to the evolution of the
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Figure 7. F as a function of φ is compared for (1) the high St limit case, (2) high St limit
case with particle rotation, (3) low St limit case without particle rotation, and (4) the low St
limit case. The results for all of these cases are taken from periodic cells with a domain size
of nx = 6dp. In order to ensure that there is no bias due to the configuration of particles, all
four cases use the same random, homogeneous particle configurations. It is clear that the low
St limit cases has the lowest drag over the entire range of φ. This drag reduction moving from
the high St limit to the low St limit is due to the evolution of the linear and angular velocities
of the low St limit particles in response to the fluid velocity field.

linear and angular velocities of the particles in response to the effects of the surrounding
fluid in the low St limit case. Since the low St limit particles are able to adapt to the
fluid velocity field, there is less fluid-particle drag in the low St limit case when compared
to the high St limit case, where the particles are not able to adjust at all to the effects
of the surrounding fluid. From this analysis, we conclude that for any given particle
configuration in the low Re regime, the high St limit case maximizes the fluid-particle
drag in the system, while the low St limit case minimizes the drag. Figure 7 is analogous
to figure 1 where the van der Hoef et al. (2005) curve is compared with the Wen & Yu
(1966) curve.

In figure 7, the drag results for two additional hypothetical cases are shown: high St
limit with particle rotation (to achieve zero net torque), and low St limit without particle
rotation. Due to the ability of the particles to rotate in response to the surrounding fluid
in the high St limit with rotation case, there is a small reduction in drag when compared
to the regular high St limit case. This drag reduction ranges from 1% for φ = 0.05 to
4% for φ = 0.5. Furthermore, when the particles are not allowed to rotate in the low St
limit, there is a small increase in drag when compared to the regular low St limit case.
This increase in drag ranges from 2% for φ = 0.05 to 6% for φ = 0.5. Thus, the difference
in F between the high St and low St limits is mostly due to the ability of the particles
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in the latter case to attain non-zero translational velocity in order to achieve zero net
force. In appendix A, further details of the impact of particle velocity fluctuations on
drag are given. It is demonstrated there that in the low St limit, the fluctuations are
coherent and lead to reduction of drag as compared to fixed beds (i.e. the high St limit).
It is also shown that random, uncorrelated velocity fluctuations do not induce a drag
reducing effect.

3.4. Effect of flow-induced inhomogeneities

In order to assess the importance of flow-induced inhomogeneities on the fluid-particle
drag, we isolate the effects of inhomogeneities from that of particle translation and
rotation by simulating high and low St limit beds using what we refer to as “frozen”
fluidized particle configurations. These “frozen” configurations are obtained by taking a
snapshot from a fluidized bed simulation long after a statistical steady state has been
reached. Due to the formation of particle clusters and voids in the fluidized beds, these
“frozen” configurations are inhomogeneous. High St and low St limit simulations are then
conducted using these inhomogeneous configurations. The same set of inhomogeneous
configurations are used for both the high and low St limit cases. In figure 8, the results
of F over a range of φ for the inhomogeneous high (figure 8a) and low (figure 8b) St
limit cases are compared with their respective values taken from random, homogeneous
configurations. The inhomogeneous configuration are taken from fluidized beds with
St = 11.5. In the high St limit case (figure 8a), when moving from the homogeneous
curve to the inhomogeneous curve, there is a small, but noticeable reduction in drag at
lower particle volume fractions (φ < 0.3), and no change in drag as the packing fraction
approaches the close packing limit (φ > 0.3). From these results, the development of
inhomogeneities appear to be hindered at higher particle volume fractions. In the low St
limit case (figure 8b), when moving from the homogeneous curve to the inhomogeneous
curve, there is a significant reduction in drag over the entire range of φ. Thus, it
appears that inhomogeneities in the particle configuration have a stronger effect on the
fluid-particle drag when the particle velocities are able to adjust to the effects of the
surrounding fluid. Overall, inhomogeneities have a noticeable effect on the fluid-particle
interactions, and must therefore be accounted for when devising a drag model.

The goal of this study is to obtain a drag model that can be applied to larger-
scale numerical studies of fluidized beds. For these types of studies, the drag relations
are typically applied at length scales over which the particle configuration is taken to
be approximately homogeneous. Therefore, we seek to obtain a drag relation that is
applicable to fluidized beds with homogeneous particle configurations. To achieve this
goal, we need to isolate the effects of particle translation and rotation from the effects of
inhomogeneities.

3.5. Quantification of relative fluidized bed behavior

In order to isolate the effect of particle translation and rotation from the effect of
inhomogeneities, we compare the dimensionless drag curves taken from the following
three systems: (1) St = Stgiven fluidized bed, (2) the high St limit bed that uses the
inhomogeneous configuration of particles taken from snapshots of the Stgiven fluidized
bed, and (3) the low St limit bed that uses the inhomogeneous configuration of particles
also taken from the Stgiven fluidized bed. In doing so, we are comparing these three
different types of systems by taking drag data from snapshots that contain identical
configuration of particles. Thus, the observed differences in the drag values are solely a
result of the differences in the abilites of the particles to translate and rotate. In figure
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(a) (b)

Figure 8. The values of F over a range of φ taken from the “frozen,” inhomogeneous fluidized
configurations are compared with values taken from a random, homogeneous configuration for
both the (a) high St limit case and (b) low St limit case. The inhomogeneous configurations are
obtained by taking snapshots of St = 11.5 fluidized beds long after a statistical steady state
has been achieved. In the high St limit case, when moving from the homogeneous curve to the
inhomogeneous curve, there is a small reduction in drag in the range φ < 0.3, and no effect
on the drag in the range φ > 0.3. In the low St limit case, the inhomogeneous drag curve is
significantly lower than the homogeneous curve over the entire range of φ. Overall, the effects
of inhomogeneities tend to result in a drag reduction.

9, these three drag curves are shown for particle configurations, taken from St = 11.5
fluidized bed simulations. We see that as expected, the high St limit case maximizes the
drag, while the low St limit case minimizes the drag for any given configuration. The
drag for the fluidized bed lies in between these two limits over the full range of φ.

The relative behavior of the fluidized bed compared to the high and low St limit cases
is quantified using the ratio α, which we define as:

α =
Ffluidized − Flow St, inhom

FhighSt, inhom − Flow St, inhom
. (3.1)

Since the high and low St limit cases provide the two limiting values for the drag,
0 6 α 6 1. For a fluidized bed exhibiting low St limit behavior, α = 0, and for a fluidized
bed exhibiting high St limit behavior, α = 1.

3.6. Using α to define a new drag model

Using the method shown in figure 9 and equation 3.1, α is computed over a range of φ,
ρp/ρf , Re, and St. A sample of these results is presented in table 1. From the first two
rows of data in table 1, it is clear that when two different systems have the same φ and
Re, but have a different ρp/ρf , the value of α is different. Furthermore, by comparing
the third and fourth rows of table 1, it is clear that when two different systems have the
same φ and ρp/ρf , but have different values of Re, the value of α is different. Finally, by
comparing the fourth and fifth rows of data in table 1, it appears that when two different
systems have the same φ and St, but different values of ρp/ρf and Re, the value α is
nearly the same. Thus, α = α(φ, St) .

In figure 10, α is plotted as a function of St for domain-averaged particle volume
fractions, φ, ranging from 0.1 to 0.4. For each α vs St curve, three distinct regimes are
observed: (1) the low St regime, where as St→ 0, α→ 0; (2) the intermediate St regime,
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Figure 9. The drag values, F , as a function of φ are shown for three different system types:
(1) the St = 11.5 fluidized bed, (2) the high St limit bed using inhomogeneous particle
configurations taken from snapshots of the St = 11.5 fluidized bed, and (3) the low St limit
using inhomogeneous particle configurations taken from snapshots of the St = 11.5 fluidized
bed. There is a reduction in drag going from the high St limit case to the fluidized bed case to
the low St limit case due to the effects of particle translation and rotation.

φ ρp/ρf Re St α

0.1 4 0.25 0.056 0.0034
0.1 1500 0.25 21 0.68
0.2 300 0.17 2.8 0.36
0.2 300 0.31 5.2 0.49
0.2 600 0.16 5.2 0.47

Table 1. The results for α for several different types of fluidized beds are presented.

where there is a gradual increase in α as St increases; and (3) the high St regime, where
as St→∞, α→ 1. Thus, we see that α describes the transition from the low St regime
to the high St regime. As φ increases, the transition from the low St regime to the high
St regime occurs at lower values of St. The reason for this is that at higher values of φ,
the fluidized bed tends to behave more like a packed bed, and so the transition to a high
St limit type behavior occurs at lower values of St.

Analyzing the results of figure 10, we see that we can collapse the α vs St curves onto
a single curve by using a modified Stokes number, S̃t, which is defined as:

S̃t =
St

(1− φ)
2 , (3.2)
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Figure 10. α is plotted as a function of St over a wide range of φ. The simulation results are
taken from a periodic domain size of nx = 6dp. For each value of φ, three distinct regimes are
observed: (1) the low St regime (as St → 0, α → 0), (2) intermediate St regime (α gradually
increases as St increases), and (3) high St regime (as St → ∞, α → 1). Furthermore, as φ
increases, the fluidized bed tends to behave more like a packed bed, and so the transition to a
high St limit type behavior occurs at lower values of St.

with St defined as in equation 1.7. The results of α as a function of S̃t for a wide range of
φ are shown in figure 11. The exponent of 2 in equation 3.2 provides the most complete
collapse of the α vs St data onto a single curve, and seems to capture the effect of higher
packing fractions hindering the free translation and rotation of particles, causing the flow
to transition to the high St limit at lower values of St for more packed-bed like cases
(higher values of φ). Thus, for a domain size of nx = 6dp, α is solely a function of S̃t.

3.6.1. Effect of domain size on α

The effect of the domain size on α as a function of S̃t is shown in figure 12. In figure
12, we see that even as the system size is changed from nx = 6dp to nx = 9dp to

nx = 12dp, the curve of α as a function of S̃t remains approximately unchanged. As
the size of the system size increases, the extent to which the particles are able to form
structures increases, and so the extent of inhomogeneities increases. Thus, we have found

that α
(
S̃t
)

is applicable to nearly homogeneous systems. A simple curve that follows

the shape of α
(
S̃t
)

is given by:

α
(
S̃t
)

=
1

2

(
1 +

S̃t− 10

S̃t+ 10

)
. (3.3)
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Figure 11. α is plotted as a function of S̃t over a wide range of φ values. The choice of
S̃t = St/ (1− φ)2 allows all of the α curves to collapse onto a single curve. For a domain size of

nx = 6dp, α is solely a function of S̃t.

The form of equation 3.3 appears to suggest that S̃t = 10 is the center point for the
intermediate St regime. For S̃t < 1, the fluid-particle system is in the low St regime,
while for S̃t > 100, the system is in the high St regime.

From figure 12, we see that with the use of this α analysis, we have successfully
formed conclusions about the fluid-particle interactions that are applicable to nearly
homogeneous systems. We have observed a dependence of S̃t on the fluid-particle drag
force, primarily using simulation systems with a domain size of nx = 6dp, that remains
valid even as the domain size changes. Such conclusions are particularly powerful, in that
they allow us to study the dynamics of the fluid-particle interactions with the use of a
relatively small number of particles.

As discussed in section 3.4, the goal of this study is to obtain a constitutive relation
for the fluid-particle drag force that is applicable to larger-scale simulations of fluid-
particle systems. In these larger-scale simulations, the particle configuration is typically
taken to be approximately homogeneous at the scale of the fluid grid size, and so we
seek a drag model that is applicable to homogeneous configurations, which we denote as

Ffluidized,hom. Because α
(
S̃t
)

does not vary with nx, we can extrapolate the results to

a system where the particle configuration is homogeneous:

α
(
S̃t
)

=
Ffluidized − Flow St, inhom

FhighSt, inhom − Flow St, inhom
=
Ffluidized,hom − Flow St, hom
FhighSt, hom − Flow St, hom

. (3.4)

Rearranging the terms in equation 3.4, we find that in the low Re regime, the drag
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Figure 12. α is plotted as a function of S̃t for domain sizes of 6dp, 9dp, and 12dp. From this

curve, we see that α
(
S̃t

)
does not vary significantly with the domain size. A single fitted curve

is then used to describe this α
(
S̃t

)
curve. The results shown in this plot are taken from a large

range of φ.

relation, which is applicable to homogeneous particle distributions, is given by:

F (φ, St) = Ffluidized,hom = α
(
S̃t
)
FhighSt, hom (φ) +

(
1− α

(
S̃t
))

Flow St, hom (φ) .

(3.5)
Since, in the low Re regime, FhighSt, hom = Fvan der Hoef and Flow St, hom =

(1− φ)
−(n(φ)−2)

, equation 3.5 can be reexpressed as:

F (φ, St) = α
(
S̃t
)
Fvan der Hoef (φ) +

(
1− α

(
S̃t
))

(1− φ)
−(n(φ)−2)

, (3.6)

where α
(
S̃t
)

is given by equation 3.3, Fvan der Hoef (φ) is given by equation 1.5, and

n (φ) = 6.2 − 2.5φ, as shown in figure 6. In equation 3.6, we have proposed a new drag
model, which is dependent on both φ and St.

As shown in figure 13, the new drag relation is able to bridge the gap between the
low St type models, like Wen & Yu (1966), and the high St type models, like van der
Hoef et al. (2005), and is applicable over a full range of St in the low Re regime. This
bridging property of the proposed drag model represents a significant improvement on
prior drag relations, as this new model is able to more fully capture the effect of particle
mobility on the fluid-particle interactions. In figure 13, the proposed drag model is shown
for both St = 1 and St = 10 with F as a function of φ. As expected, the St = 10 drag
is higher than the St = 1 drag. When comparing these curves with the van der Hoef

et al. (2005) curve and a Wen & Yu (1966) type drag curve, F = (1− φ)
−(n−2)

with
n (φ) = 6.2 − 2.5φ, we see that there is a significant difference between the predictions
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Figure 13. The proposed drag model (equation 3.6) is shown with a plot of the dimensionless
drag force, F , as a function of φ, for both St = 1 and St = 10. These drag curves are compared
with the van der Hoef et al. (2005) curve and with the Wen & Yu (1966) type drag curve,

F = (1− φ)−(n(φ)−2), with n (φ) = 6.2− 2.5φ.

given by the new drag relation and that given by traditional models (van der Hoef et al.
2005; Wen & Yu 1966) and hybrid models (Gidaspow 1994) that are simply equal to the
Wen & Yu (1966) type curve at low φ and equal to the van der Hoef et al. (2005) type
curve at high φ. Thus, in the low Re regime, unlike prior drag models, the proposed drag
model (equation 3.6) is able to describe the fluid-particle drag force over a full range of
St and φ.

4. Summary

Through this work, a new drag model (equation 3.6) has been proposed that, unlike
previous drag models, is a function of both φ and St in the low Re regime. Prior LBM
drag studies have developed models for the fluid-particle drag force that are valid over the
entire range of φ, but are only applicable to high St systems. Furthermore, prior hybrid
drag models, like that of Gidaspow (1994), have blended fixed bed (for high φ) and
sedimentation (for low φ) drag models, but have implicitly assumed that fluid-particle
systems exhibit high St behavior at high φ and low St behavior at low φ. We have found
that such a simplification is not accurate over a full range of St. In the current work,
we have developed a drag model that provides a smooth blending of the packed bed
and sedimentation drag models over both φ and St. This new drag model bridges the
transition from low φ to high φ, as well as from low St to high St. By accounting for
the effect of particle translation and rotation on the interactions between the fluid and
particles, this St-dependent drag relation is able to capture a wider range of fluid and
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particle properties than was previously attainable through the drag models available in
the literature.

The current drag model is constructed using LBM simulations with a cubic periodic
domain. For larger-scale simulations of fluid-particle systems, the fluid grid size is larger
than the particle diameter, and so the fluid-particle drag force cannot simply be computed
by summing the forces over the surface of the particle, as is done in the case of LBM.
Instead, the fluid-particle drag force is determined from an input constitutive relation.
Since the distribution of particles is typically taken to be approximately homogeneous
at the fluid grid scale, the drag model derived in the current work must be applicable
to homogeneous configuration in order for it to be used as a constitutive relation in the
larger-scale simulations. Using a combination of fluidized, fixed, and low St limit bed
simulations, the methodology for obtaining the drag relation is successfully extrapolated
to a homogeneous system. Thus, a drag model that is applicable to homogeneous particle
distributions is obtained.

In summary, we have presented a framework for developing drag laws based on φ and
St. While the current analysis is for low Re systems, this methodology can be extended
to higher values of Re. Through its application to larger-scale numerical models of
fluidized beds, this new drag relation has the potential to increase the quantatitive
precision of these models, and thus widen our understanding of a range of industrial
processes.

This work is supported by a grant from the ExxonMobil Research & Engineering Co.,
and by a fellowship awarded to GR by the National Science Foundation (DGE-1148900).

Appendix A. Effect of velocity fluctuations in the low Re regime

The validity of the low Re fixed bed simulations is further probed by analyzing the
effect of fluctuations in the angular and linear particle velocities on the drag force.
The strength of the fluctuations in vp is characterized by ReT (equation 2.17), while
the strength of the fluctuations in Ωp is characterized by ReΩ (equation 2.18). In the
homogeneous low St limit simulations, particles attain non-zero values of vp and Ωp,
such that the net force and torque on each particle is 0. In this low St limit case,
ReT ≈ 0.05 and ReΩ ≈ 0.06. Although Re, ReT ReΩ � 1 in the low St limit case,
there is a significant reduction (between 10 and 20%) in drag when compared to the
fixed bed (high St limit) case, as discussed in section 3.3.2. The reason for this drag
reduction is that while the fluctuations in vp and Ωp are small, they are not random.
There is a clear correlation in the particle velocity fluctuations based on their locations
within the flow, as shown in figures 14a and 14b. These correlated velocity fluctuations
in the low St limit case act to reduce the drag of the fluid flow past the homogeneous
array of particles.

Since Re, ReT ReΩ � 1, the low St limit case with fext and non-zero values of vp =
vp, low St and Ωp = Ωp, low St can be broken into a superposition of the following three
systems: (1) fixed bed with fext, and zero vp and Ωp; (2) system with zero fext and
Ωp, and vp = vp, low St; and (3) system with zero fext and vp, and Ωp = Ωp, low St.
By simulating each of these subsystems, we found that such a superposition is valid by
confirming that: us, low St = us, case 1 +us, case 2 +us, case 3. This result demonstrates that
the fluctuations in vp and Ωp in the low St limit case are indeed small. Furthermore, we
observe that the small, correlated values of vp and Ωp in cases (2) and (3), respectively,
produce a mean flow (non-zero value of us) even in the absence of an external force, fext.

Next, we look to investigate the effect of small, random fluctuations in vp andΩp, with
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(a) (b)

Figure 14. The correlations of fluctuations in (a) vp and (b) Ωp in the low St limit case with
particle separation distance are shown. In these plots, the subscripts i and j designate two
different particles in the system, while vt is the terminal particle velocity, and ri is the position
of particle i. There is a clear positive correlation in both vp and Ωp at small particle distances,
which signifies that the velocity fluctuations in the low St limit case are not random.

intensities equivalent to that of the correlated fluctuations in the low St case: ReT ≈ 0.05
and ReΩ ≈ 0.06, respectively. We study these random fluctuations via the following four
systems: (1) system with fext and random fluctuations in vp; (2) system with fext and
random fluctuations in Ωp; (3) system with zero fext and random fluctuations in vp;
and (4) system with zero fext and random fluctuations in Ωp. In each case, the imposed
velocity value on each particle is chosen at random from a Gaussian distribution. We find
that the dimensionless drag force, F , for case (1) is nearly equivalent to that of the fixed
bed. In fact, these drag values differ by just 0.02% at φ = 0.3, and by 0.67% at φ = 0.25.
Similarly, we find that the values of F for case (2) are equivalent to within 0.1% that of the
fixed bed. Since Re, ReT ReΩ � 1 in both of these cases, the contribution of the random
fluctuations to the overall fluid-particle drag force is, as expected, negligible. Additionally,
in simulating cases (3) and (4), we find that the small, random (uncorrelated) values of
vp and Ωp are unable to produce a mean flow in the absence of fext. These sets of
simulations further confirm the validity of the LBM scheme in the low Re regime.
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