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Numerical simulation of a dissolution process in a stirred tank reactor
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Abstract

A dissolution process of solid particles suspended in a turbulent flow of a Rushton turbine stirred tank is studied numerically by large eddy
simulations including passive scalar transport and particle tracking. The lattice-Boltzmann flow solver and the Smagorinsky subgrid-scale model
are adopted for solving the stirred tank flow. To the LES a finite volume scheme is coupled that solves the convection–diffusion equation for
the solute. The solid particles are tracked in the Eulerian flow field through solving the dynamic equations of linear and rotational motion of
the particles. Particle–particle and particle–wall collisions are included, and the particle transport code is two-way coupled. The simulation has
been restricted to a lab-scale tank with a volume equal to 10−2 m3. A set of 7 × 106 spherical particles 0.3 mm in diameter are released in the
top part of the tank (10% of the tank volume), resulting in a local initial solids volume fraction of 10%. The particle properties are such that
they resemble those of calcium chloride beads. The focus is on solids and scalar concentration distributions, particle size distributions, and the
dissolution time. For the particular process considered, the dissolution time is found to be at most one order of magnitude larger than the time
needed to fully disperse the solids throughout the tank.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Processes in which turbulently agitated solid–liquid suspen-
sions are involved, have a large share in various industrial appli-
cations. Examples are crystallization (Hollander et al., 2001),
suspension polymerization (initially a liquid–liquid dispersion
that in the course of the process turns into a solid–liquid mix-
ture, see e.g. Kiparissides, 1996), particle coating and catalytic
slurries. Such processes are very complex multi-phase. In or-
der to improve competitiveness, there is an industrial drive
for research on the hydrodynamic phenomena, and their cou-
pling with chemistry and heat and mass transfer. This work
aims at a contribution to reliable numerical predictions of com-
plex, multi-phase processes. For this purpose, we focus here
on the physical mechanisms occurring in a dissolution process
by means of a detailed large eddy simulation (LES) including
passive scalar transport and particle tracking.
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One of the key aspects in the (dynamic) behavior of the pro-
cesses mentioned is the role of hydrodynamics. On a macro-
scopic scale, the hydrodynamic conditions control, e.g. resi-
dence time and circulation time in the specific flow system (e.g.
a stirred tank). On a microscopic scale, rate-limiting processes
such as mass transfer (needed for nucleation and growth in
crystallization), agglomeration and attrition (a major source for
secondary nucleation), collisions, and the yield of a chemical
product (in case of competitive chemical reactions) are largely
determined by the smallest-scale flow phenomena.

In this work, the focus is on a dissolution process under
strongly turbulent conditions induced by a Rushton turbine in
a stirred tank. Because of limited computational resources, the
strongly turbulent flow cannot be fully captured by the compu-
tational grid. Consequently, direct solving the flow system un-
der consideration goes beyond the present and future foresee-
able computational possibilities. As a result, we need to revert
to modeling. The basis of the simulation discussed here is a rep-
resentation of the continuous flow by means of LES. Compared
to a Reynolds-averaged Navier–Stokes (RANS) approach,
turbulence modeling by means of LES leaves less room for
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speculation in modeling the turbulence and the motion of the
solids immersed in the flow. Furthermore, the turbulence lev-
els are accurately resolved in an LES compared to a simulation
based on the RANS approach. The latter approach underpre-
dicts the turbulence levels by 50% (Hartmann et al., 2004a),
which certainly affects the mixing patterns and consequently
solid–liquid mixing. Promising LES results of the single-phase
flow in a stirred tank have been presented in the past by Eggels
(1996), Derksen and Van den Akker (1999), Hartmann et al.
(2004b), Hartmann et al. (2004a),Yeoh et al. (2004), and Bakker
and Oshinowo (2004).

In the LES flow field, spherical particles are released in the
top part of the tank. The motion of the particles and collisions
are handled by a solver developed by Derksen (2003). For the
inter-phase mass transfer between the disperse and continu-
ous phases, a single-particle correlation of Ranz and Marshall
(1952) is applied. Information on the local scalar concentra-
tion field, needed for the determination of the mass transfer
rate, is obtained by solving the convection–diffusion equation.
Exactly as in a LES, the latter equation is solved in an Eule-
rian framework through a finite volume discretization. The fi-
nite volume scheme used in this work has been described by
Hartmann (2005).

2. Flow system

The stirred tank used in this work was a standard config-
uration cylindrical tank of diameter T, with four equi-spaced
baffles of width 0.1T mounted along the perimeter of the tank.
The liquid height was set equal to the tank diameter, H = T .
The impeller was a six-bladed Rushton turbine with standard
dimensions, mounted at height T/3. A schematic representation
of the flow system is shown in Fig. 1. If geometric similarity is
maintained, the single-phase flow can be fully characterized by
the Reynolds number (Re=ND2/�, with N the impeller speed,
D the impeller diameter and � the viscosity of the continuous
phase). In this work, the Reynolds number amounts to 105.

The tank volume (V ) is set to 10−2 m3, which implies an
impeller diameter of D = 7.78 × 10−2 m. The continuous
phase is water (with viscosity � = 10−6 m2/s and density
�l = 103 kg/m3). A set of Np0 = 7 × 106 mono-disperse
spherical particles with diameter dp0 = 0.3 mm, and density
�p = 2150 kg/m3 is released uniformly distributed over the
upper part (0.9T −T ) of the tank. The saturation concentration
(csat) is set to 600 kg/m3, and the molecular diffusion coeffi-
cient (�mol) equals 0.7 × 10−9 m2/s, which yields a Schmidt
number of about 1400. The settings of the particle diameter,
the saturation concentration and the diffusion coefficient are
typical for calcium-chloride beads in water. Since calcium ions
are larger than chloride ions they have a lower diffusion coeffi-
cient. As a result, the diffusion of calcium ions is rate-limiting,
and therefore the diffusion coefficient in the simulation is that
of calcium ions. The initial solids volume and mass fractions
of the set of particles released in the top part of the tank
amount to 10% and 21.5%, respectively (the tank average
volume and mass fractions are 1% and 2.15%, respectively).
The initial macroscopic Stokes number (i.e., the ratio of the
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Fig. 1. Cross-section of the tank (left). Plan view and cross-section of the
impeller (right). At the top level there is a lid. The impeller is a Rushton
turbine mounted at height T/3 and has a diameter T/3.

Stokesian particle relaxation time and the time of one impeller
revolution; Stk = (�p/�l )(d

2
p0N/18�) yields Stk =0.1774. The

initial microscopic Stokes number which relates the Stokesian
particle relaxation time to the time scale of the smallest turbu-
lent fluctuations (i.e., the Kolmogorov time scale based on the
tank-averaged energy dissipation rate) equals 600. As a result,
the particles will initially follow the large-scale turbulent fluc-
tuations. During the course of the simulation, the particle size
decreases and the motion of the particle will be influenced by
an increasing part of the turbulence spectrum (i.e., the particle
will behave more and more as a tracer).

The impeller speed is chosen to be above the (initial) just-
suspended impeller speed according to the Zwietering (1958)
correlation

Njs = s
d0.2
p0 �0.1(g��)0.45�0.13

m0

�0.45
l D0.85

(1)

with g the magnitude of the gravitational acceleration vector,
�� = �p − �l , �m0 the initial solids mass fraction in %, and
s is a constant that equals 8 for the particular configuration.
The impeller speed is set to 16.5 rev/s, whereas the (initial)
just-suspended speed is 11.4 rev/s. Since the particles dissolve
during the course of the simulation, the particle size and solids
mass fraction decreases in time, and consequently the just-
suspended speed decreases.

3. Simulation procedure

We apply LES, as the strongly turbulent flow (Re = 105)

cannot be fully recovered by the computational grid. The
Smagorinsky (1963) model has been used to include the effect
of the subgrid-scale velocity fluctuations on the larger flow
scales. For more details on the LES methodology embedded
within the lattice-Boltzmann discretization scheme we refer to
Hartmann et al. (2004a), Derksen and Van den Akker (1999),
Chen and Doolen (1998) and Somers (1993).

The particle transport solver used for the simulation of the
dissolution process makes use of the Eulerian–Lagrangian ap-
proach and has been developed by Derksen (2003). For the
determination of the drag force, subgrid-scale velocity fluc-
tuations have been included by means of a Gaussian random
process. Next to the solution of the solid particles dynamics,
particle–wall, particle–impeller and particle–particle collisions
are considered in the solver. The latter mechanism proved to
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be crucial in order to obtain a realistic particle distribution
throughout the tank (Derksen, 2003).

Mass transfer is controlled by a mass transfer coefficient (k)
and a driving force, which is the difference between the satura-
tion concentration (csat) and the concentration of the surround-
ings (c)

ṁint = kA(csat − c), (2)

where ṁint is the inter-phase mass transfer rate between the
particle and liquid, and A = �d2

p is the surface of the spherical
particle. The mass transfer coefficient can be written as

k = Sh
�mol

dp

, (3)

where Sh is the Sherwood number. In this work, Ranz and
Marshall (1952) correlation is used for the calculation of the
Sherwood number

Sh = 2.0 + 0.6Re1/2
p Sc1/3, (4)

where Rep is the particle Reynolds number, defined as

Rep = vsldp

�
, (5)

where vsl is the slip velocity (i.e., the magnitude of the velocity
of the particle relative to the fluid).

The concentration of the surroundings in Eq. (2) is assumed
to be the average concentration in the control volume. The
effect of concentration fluctuations at the subgrid-scale level on
the mass transfer rate has been ignored, since the mass transfer
rate linearly scales with the concentration (see Eq. (2)), and the
effect of fluctuations tends to average out. The cell-averaged
concentration is determined via the discrete solution of the
convection–diffusion equation. This is achieved by coupling a
scalar mixing solver to the LES and particle transport solvers.

Eggels and Somers (1995) have performed scalar transport
calculations on free convection cavity flow with the lattice-
Boltzmann discretization scheme. This scheme, however, is
more memory intensive than a finite volume formulation of the
convection–diffusion equation. Therefore, we have coupled a
compressible finite volume discretization scheme for the scalar
transport to the compressible lattice-Boltzmann scheme. The
convection–diffusion equation in compressible form reads

��lc

�t
+ �ui�lc

�xi

= �

�xi

(
�l�

�c

�xi

)
+ Sc, (6)

where �l is the density of the continuous phase, c is the scalar
concentration, ui is velocity component i, � is the diffusion
coefficient and Sc is a source term. Note the summation over
the repeated index i. The diffusion coefficient is the sum of
the molecular and eddy diffusion coefficients: � = �mol + �e.
The eddy diffusion coefficient is related to the eddy viscosity
via a turbulent Schmidt number (Sct ) through �e = �e/Sct .
For the turbulent Schmidt number we have chosen a value of
0.7. The finite volume solver used in the context of this work
has been described in detail by Hartmann (2005). It contains a

high-resolution flux-limited TVD scheme (Total Variation Di-
minishing, see Harten, 1983) for minimizing numerical diffu-
sion.

The discretized source term Sc,i describes inter-phase mass
transfer and reads

Sc,i = �l�V −1
Np,i∑
j=1

ṁint,j , (7)

where �V is the volume of cell i (which is the same for all cells
in the uniform, cubic grid), Np,i is the number of particles with
their center of mass in cell i and ṁint,j is the inter-phase mass
transfer rate (see Eq. (2)) between particle j and the surrounding
continuous phase. The diameter of particle j is adjusted each
time step as follows:

dn+1
p,j = 3

√
(dn

p,j )
3 − 6

�
�−1

p ṁint,j�t , (8)

where �t is the time step.
The code runs on the parallel computer platform ‘Aster’ lo-

cated at SARA in Amsterdam. Aster is an SGI Altrix 3700 sys-
tem, consisting of 416 CPUs (Intel Itanium 2, 1.3 GHz, 3 Mbyte
cache each), 832 Gbyte of memory and 2.8 Tbyte of scratch
disk space. The total peak performance is 2.2 Teraflop/s. Within
the parallel environment of ‘Aster’ the code makes use of do-
main decomposition: the computational domain was horizon-
tally split in 30 equally-sized subdomains (i.e., normal to the
tank centerline). Dynamic load-balancing was not implemented
in the code. This initially results in a poor parallel efficiency
and a low calculation speed, as all particles are located in the
upper subdomains. Gradually, the calculation speed increases
due to dispersion of the particles throughout the tank, and due
to the dissolution process causing a decreasing load of the col-
lision algorithm. The MPI message passing tool has been used
for communication between the subdomains.

The particles are released in a quasi steady-state flow field.
The scalar concentration at the start of the simulation equals
zero throughout the tank. The simulation has been executed on
a cubic, Cartesian grid of 2403 lattice cells. The diameter of
the tank equals 240 lattice spacings, resulting in a spatial res-
olution of 0.973 mm. The temporal resolution is limited by the
lattice-Boltzmann method. The tip speed of the impeller is set
to 0.1 lattice spacings per time step in order to meet the in-
compressibility limit. This results in a temporal resolution of
25 �s. Inside the computational domain, the no-slip boundary
conditions for the velocity components at the cylindrical tank
wall, the baffles, the impeller, and the impeller shaft were im-
posed by an adaptive force-field technique (Derksen and Van
den Akker, 1999). The zero-gradient boundary condition for the
scalar concentration at the (moving) walls has been imposed via
a newly developed immersed boundary technique (Hartmann,
2005). The total memory requirements of the simulation re-
sulted in an executable of about 2.5 GByte. The full simulation
of 100 impeller revolutions took about 6 weeks.
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Fig. 2. Snapshots of the particle distribution in a vertical plane mid-way between two baffles. In the graphs, the particles in a slice with thickness T/240 have
been displayed. The diameter of the particles is 3 times enlarged for clarity. The respective concentration distributions are shown in Fig. 3.

4. Results

4.1. Snapshots of the particle distributions and concentration
fields

Figs. 2 and 3 give an impression of the dissolution process
during the course of the simulation. The scalar concentrations
are normalized with the final concentration c∞ defined as

c∞ = Mp0

V
= 2

3
Np0�p

(
dp0

T

)3

, (9)

where Mp0=Np0�p(�/6)d3
p0 is the total particle mass at Nt=0.

During the first 5 impeller revolutions, the particles are trans-
ported toward the impeller region. High particle concentrations
are accompanied by high scalar concentrations, and a clear in-
teraction between the particles and turbulence is identified. The
particles are swept radially outward by the revolving impeller,
and are subsequently entrained in the lower recirculation loop.
In the next 5 impeller revolutions, the particles are distributed
throughout the tank. During the first 10 impeller revolutions,
clear macroscopic scalar concentration structures are identified.

The snapshots of the particle distributions at Nt = 10 and 20
show high particle concentrations at the bottom and outer walls.
Because of the particle inertia and the density of the particles
being higher than that of the liquid, the particles are swept
out of the high-vorticity regions (streaky patterns). Due to a

decreasing solid particle mass during the process, the particle
inertia decreases (the streaky patterns die out), the particles
residing at the bottom are more easily resuspended (compare
the snapshots at Nt = 20 and 40), and the particle distribution
is becoming more and more homogeneous.

For Nt > 10, the macroscopic structures in the scalar con-
centration have disappeared (see Fig. 3). A decrease of the par-
ticle mass observed in the snapshots in Fig. 2 is associated
with an increase of scalar concentration. At the wall separa-
tion points and at the bottom of the tank spots of high con-
centration are observed that correspond with local high solids
concentrations.

In Fig. 4 two snapshots of the particle distribution at Nt=26.5
and 60 are shown. The particle distribution at Nt = 26.5 shows
an axial gradient in the average particle size. The particles trans-
ported in the lower recirculation zones are generally smaller
than the particles transported in the upper recirculation zone.
The reason for this effect is that compared with the upper re-
circulation loop, the lower recirculation loop is stronger and
this induces an increased mass transfer rate. A comparison be-
tween the upper and lower graphs clearly shows the difference
in particle size. The spatial particle distribution at Nt = 60 is
nearly homogeneous.

The snapshot of the particle distribution at Nt = 26.5 shows
a region void of particles extending from the bottom to closely
underneath the impeller, slightly right from the tank center-
line. This region is associated with a slowly precessing vortex
that crosses the cross-section. This precessing vortex, here in
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Fig. 3. Snapshots of the concentration distribution in a vertical plane mid-way between two baffles. The respective particle distributions are shown in Fig. 2.

interaction with the particles, is the manifestation of a macro-
instability (see Hartmann et al., 2004b; Nikiforaki et al., 2002).

4.2. Stages in the dissolution process

Fig. 5 shows time-traces of the number of particles in ten
axial slices of height 0.1T , with a focus on the top and bottom
slices. Based on the observations in the previous subsection
and the path of the curves shown in Fig. 5, five stages can be
identified: (Stage I; 0�Nt < 12) Mixing and dispersing, (Stage
II; 12�Nt < 24) Quasi steady-state, (Stage III; 24�Nt < 42)
Resuspension, (Stage IV; Nt�42) Dissolution, and (Stage V;
Nt�58) Homogeneous suspension.

In stage I (mixing and dispersing), the solids are distributed
throughout the tank till a quasi steady-state situation is reached
(stage II). During stage II, the dissolution process proceeds,
but the number of particles in all slices remains approximately
constant. The number of particles in the bottom slice is about
1.6–2.3 times higher than the number of particles in the other
slices. At Nt = 24 the number of particles in the bottom slice
starts to decrease significantly (stage III), as the particles get
more easily resuspended due to their decreased size. After about
42 impeller revolutions, the first particle is fully dissolved (the
onset of stage IV). Stage V is a part of stage IV and starts at
the time instant Nt = 58 when a fully homogeneous suspension
is reached. For the particular case studied here, the time to
dissolve all particles (i.e., the dissolution time) is at most one
order of magnitude larger than the time to distribute the particles
throughout the tank.

4.3. Evolution of particle size distribution in time

In Fig. 6 the particle size distributions are shown at nine
instants in time. The first six distributions correspond to the
particle distributions shown in Fig. 2. During the course of the
simulation, the particle size distribution broadens and shifts
toward smaller particle sizes. At Nt = 60, 80, 100 a peak is
observed in the first bin, representing the number of dissolved
particles (i.e., 16.8%, 97.3%, 99.9% of the total amount of
particles released).

A peculiar feature of the particle size distributions at Nt=60,
80 and 100 is its steep slope at the smallest particle sizes. This
can be explained by Eqs. (2) and (3). As dp → 0 the Sherwood
number approaches 2. Consequently, the mass flux scales as
d−1
p , and the mass transfer rate as dp. A mass conservation equa-

tion describing the inter-phase mass transport results in the time
derivative of the particle diameter to scale with d−1

p . As a result,
the particle size distribution collapses faster at low particle sizes
than at higher particle sizes. This effect relates to the slight in-

crease of the Sauter diameter (d32 = (
∑Np

i=1 d3
p,i)/(

∑Np

i=1 d2
p,i))

seen in the final stage of the dissolution process (see Fig. 7).

4.4. Dissolution time

The dissolution time is the time needed to fully dissolve all
the solids. In a numerical simulation including particle tracking,
the total number of solid particles is monitored, and hence the
dissolution time is the time when the total number of particles
has reached the zero value.
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Fig. 4. Snapshots of the particle distribution in a vertical mid-way baffle
plane. In the graphs, the particles in a slice with thickness T/240 have been
displayed. The diameter of the particles is 10 times enlarged for clarity, and
the colors represent the dimensionless particle diameter.

In Fig. 8 the evolution of the total number of particles normal-
ized with the number of released particles as a function of time
is shown. The dissolution process starts at Nt=42.5 (not shown),
and from Nt = 50 a steep decrease in the number of particles is
observed till Nt = 70. The simulation was stopped at Nt = 100
when less than 0.1% of the total amount of released particles
was left. With a view to a sensible use of computational effort,
it is not believed that any valuable information apart from the
dissolution time is to be found for Nt > 100. The time instant
where 99% of the particles is dissolved is �s,99% = 84N−1.

4.5. Time series of concentration

In Fig. 9, time series of the scalar concentration are shown,
recorded at two monitoring points. One monitoring point is

N
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Fig. 5. Evolution of particle number in ten axial slices of height 0.1T . The
focus is on the top and bottom slices. Five stages in the dissolution process can
be defined: Mixing and dispersing (I), Quasi-steady-state (II), Resuspension
(III), and Dissolution (IV). At time instant Nt=58 a more-or-less homogeneous
suspension is reached (Stage V).

located in the upper recirculation loop (i.e., in a mid-way baf-
fle plane at z/T = 0.67 and r/T = 0.25), and the other in
the lower recirculation loop (i.e., in a mid-way baffle plane at
z/T = 0.19 and r/T = 0.25). In the first 12–15 impeller rev-
olutions strong concentration fluctuations are observed, which
correspond with the macroscopic structures seen in Fig. 3. The
concentration fluctuations registered at the monitoring point at
z/T =0.67 (solid line Fig. 9) are stronger compared to those at
the monitoring point at z/T =0.19 (dashed line in Fig. 9). This
is because the particles were released in the top part of the tank.

Subsequently for Nt > 15, the concentration recorded at both
monitoring points gradually increases to a final level of about
1.12c∞. The significant, unphysical scalar mass increase of
12% in 100 impeller revolutions is due to our (novel) im-
mersed boundary technique for the scalar concentration to im-
pose a zero-gradient constraint at the walls that are off-grid
(see Hartmann, 2005). At the current grid resolution, the tech-
nique is unable to accurately represent the edges of the im-
peller blades, impeller disk and baffles. In future research, the
immersed boundary technique needs to be improved. Possible
solutions for better conserving scalar mass are (local) grid re-
finement, and the use of a cylindrical grid by the scalar trans-
port solver.

5. Conclusions

A simulation of a dissolution process (i.e., a solid–liquid
suspension) according to an Eulerian–Lagrangian approach has
been presented in this paper. Under the action of a driving
force (i.e., the difference between the saturation concentration
and the concentration of the surroundings) and a mass transfer
coefficient (depending on the particle slip velocity) the 7 million
solid, spherical particles, slowly dissolved during the course
of the simulation. The effect of subgrid-scale concentration
fluctuations on the mass transfer rate has been ignored.
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Fig. 6. Instantaneous realizations of the particle size distribution (lin-log plots).
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Fig. 7. Evolution of the Sauter mean diameter in time. The crosses correspond
with the particle size distributions shown in Fig. 5.

Various stages in the dissolution process considered in this
work have been identified by means of snapshots of the solids
and scalar concentration distributions, and time series of the
particle number in ten axial slices of width 0.1T . In the first
stage (0–12 impeller revolutions), the particles are dispersed
throughout the tank. Subsequently, the system is in a quasi
steady-state situation (i.e., the second stage, 12–24 impeller rev-
olutions). In these two stages, the particles organize in streaky
patterns, by leaving high-vorticity regions. Furthermore, high
solids and scalar concentrations are found below the impeller,
at the bottom of the tank, in front of the impeller blades, at the
outer walls, and at the wall separation points. Large regions
void of particles are observed behind the impeller blades.
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N
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Nθs,99%

Fig. 8. Evolution of number of particles throughout the tank in time, starting
at Nt = 50.

The decrease of the particle mass in the course of the process
has two important implications. In the first place, the high par-
ticle concentration at the bottom of the tank disappears as the
particles get resuspended. Secondly, the streaky patterns disap-
pear due to decreasing inertia of the particles. These observa-
tions occur in the third stage (i.e., 24–42 impeller revolutions).
The fourth and final stage covers the dissolution of the parti-
cles. At roughly 58 impeller revolutions a homogeneous solids
suspension is reached.

The non-homogeneous mixing and consequently mass trans-
fer in a stirred tank reactor is expressed in the evolution of
the particle size distribution. During the course of the simula-
tion, the particle size distribution broadens and moves to lower
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Fig. 9. Simulated time traces of the concentration normalized with the fi-
nal concentration c∞. The two monitoring points are at a radial position
r/T = 0.25 in a mid-way baffle plane.

particle diameters. The peculiar steep slope observed at the
smallest particle sizes is due to the mass transfer rate increas-
ing at decreasing particle diameter for very small particles. This
latter effect causes the slight increase of the Sauter diameter in
the final stage of the process.

Time traces of the concentration show in the first 15 im-
peller revolutions strong concentration fluctuations, and subse-
quently a slow increase of the concentration toward 1.12c∞.
The artificially higher concentration provides a reduced mass
transfer rate, and consequently an overprediction of the disso-
lution time. In the present case studied, the final concentration
is a factor 30 lower than the saturation concentration. As a re-
sult, the overprediction of the dissolution time is expected to
be marginal (only 0.5% based on a back-of-the-envelope calcu-
lation). The significant, unphysical increase of scalar mass of
12% is attributed to our (novel) immersed boundary technique.
At the current grid resolution, the impeller blade, the impeller
disk, and the baffle edges are not accurately recovered.

There are still quite some issues open for improvement with
respect to the modeling attempt here. The volume fraction oc-
cupied by the particles, which is significant in the first stages of
the dispersion, has not been taken into account. For further is-
sues related to the particle transport solver we refer to the paper
of Derksen (2003). The mass leakage into the system induced
by our (novel) immersed boundary technique may be repaired
by (local) grid refinement or the usage of a cylindrical grid in
case of the scalar transport solver.

The simulation of a dissolution process through LES in-
cluding passive scalar transport and particle tracking gave a
detailed insight in the complex phenomena (i.e., the intricate
interplay of turbulence, mass transfer, motion of particles,
collisions, etc.) occurring during the process. For the process
considered in this work, it has been shown that the dissolu-
tion time is at most one order of magnitude longer than the

dispersion time scale. The current successful application of
the coupled LES/particle transport/scalar mixing solvers opens
worthwhile future directions of numerical research like crys-
tallization processes.
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