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Abstract

This paper introduces an original 1-fluid method for direct simulation of the motion of rigid particles in fluids. The model is based on
the implicit treatment of a single fictitious fluid over a fixed grid, and uses an augmented Lagrangian optimization algorithm for the
velocity–pressure coupling. The paper focuses on the case of a rigid sphere settling in a viscous medium. For validation purposes,
simulations of the transient motion of a sedimenting sphere at Reynolds numbers ranging from 1.5 to 31.9 are compared to the PIV data
published by Ten Cate et al. [Ten Cate A, Nieuwstad CH, Derksen JJ, Van den Akker HEA. Particle imaging velocimetry experiments
and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys Fluids 2002;14(11):4012–25]. Accurate reproduction of
the experimental data is obtained. Further simulations are intended to investigate higher Reynolds numbers. Predictions of transient par-
ticle sedimentation at Reynolds number 280 are performed and compared with experimental data of the sedimentation trajectory, as well
as with simulation results based on the lattice-Boltzmann method.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of predicting interactions between hard
particles and a surrounding viscous fluid concerns many
industrial and environmental domains. The processing of
sophisticated fuels, foodstuffs, cosmetics or the transport
of aerosols in environmental flows are some examples.

The physical behavior of these flows is roughly charac-
terized by the Reynolds number regime, the density of each
of the phases and the liquid/solid volume fraction. These
parameters are used to evaluate the strength of the interac-
tions between the liquid and solid phases. In recent litera-
ture, many numerical approaches have tended to take
strong fluid/particle interactions into account. As an exam-
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ple, some of the early computational approaches to dis-
perse flows are the Eulerian/Eulerian two-fluid methods.
These techniques treat each of the phases as a single equiv-
alent fluid, and empirical coupling relations are used. The
latter methods yield good results when the scale of the com-
putational domain is far larger than the scale of the parti-
cle. The increasing performance of computers has recently
driven the modelling efforts to focus on direct numerical
simulation (DNS) methods. In DNS, every flow scale can
be captured at the expense of high spatial and temporal
resolution. This is made possible through the explicit
modelling of fluid/particle boundaries so that the bilateral
actions between both of the phases are computed without
empirical coupling.

This paper presents a DNS-related method for simulat-
ing the transient motion of rigid bodies in a viscous fluid.
The challenge lies in a reliable modelling of the liquid–solid
coupling over a wide range of Reynolds numbers.
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An overview of existing DNS approaches points out two
propensities related either to unstructured moving meshes
or to fixed Cartesian meshes.

In the first case, the interface is considered as a moving
boundary condition. An example lies in the arbitrary
Lagrange–Euler methods (ALE) where fluid and solid
momentum equations are combined together. Much of
the ALE method was provided by Hu et al. [18]. The time
and space dependent meshes are useful in the case of drop
and bubble modelling, as is attested in the recent paper of
Legendre et al. [24]. Yet, these methods involve costly
remeshing and the three dimensional implementation
remains manifestly difficult.

In the second case, many authors have proposed tech-
niques involving computing a Lagrangian tracking of
the dispersed phase on meshes fixed in time and space.
For an example we refer the reader to the front-tracking
methods (see [29]) and much earlier with the Marker and
cell volume tracking method (see [14]). Another way to
model liquid–solid suspensions on stationary meshes is
the fictitious domain approach developed by Glowinski
et al. [12]. The solid motion is ensured by a penalty tech-
nique based on distributed Lagrange multipliers (DLM)
at the interface level. The efficiency of the DLM method
has been proven in many cases like sedimentation of rigid
bodies and fluidization [12], or particle transport in pres-
sure driven channel flow [13].

In our research, we use the 1-fluid method (1F), that was
recently developed by Caltagirone and Vincent [3] who was
inspired by volume penalty methods in fictitious domains
[20] and interface reconstruction [30]. The term ‘‘1-fluid’’
means that fluid and solid phases are considered as a single
equivalent fluid in the sense of the Navier–Stokes equa-
tions. The equivalent fluid requires equivalent densities
and viscosities depending on time and space by means of
a phase function. The latter indicates whether the consid-
ered grid node belongs to fluid or solid phase, and drives
the coupling of the Navier–Stokes equations with the inter-
face transport equation. The following features make the
1F method very attractive for simulating particles in fluid;
(i) Using phase function allows to use fixed Cartesian grids,
which is computationally practical. (ii) The same set of
equations is solved in both dispersed and continuous
phases and the interface between the phases is only tracked
implicitly. As a result the computational effort does not
scale with the number of particles. (iii) The tensorial
penalty method [26] used to ensure both the incompress-
ibility constraint in the fluid phase and the non-deformabi-
lity constraint in the solid is just based upon two
parameters defined from the characteristic flow scales.
(iv) For solving the velocity–pressure coupling, the aug-
mented Lagrangian algorithm [11] is used in all phases.
This results in a stable and efficient technique.

An alternative method used for the direct simulation of
suspended particles is the lattice-Boltzmann method (LB).
This method has been introduced some 15 years ago as
an alternative method for the computation of fluid motion.
The fluid is represented by mass that propagates on an
equidistant cubic grid at discrete time steps. By applying
collision rules that conserve mass and momentum, it can
be demonstrated that the macroscopic system obeys the
continuity and Navier–Stokes equations for incompressible
flow.

A main advantage of this method is that scalability on
parallel computer platforms is excellent because most oper-
ations are local. For a background on the method we refer
the reader to [6,7,33]. Application of the LB method to
simulations of particles in fluid has been first proposed
by [22,23]. The good scalability of the method has made
the LB method quite popular for numerical studies of par-
ticle–fluid interactions. Some examples of recent studies are
[5,15,16]. In the recent paper of Ten Cate et al. [4], LB sim-
ulations of the sedimentation of a single sphere in the range
1.5 < Rep < 31.9 are compared with experimental data.
Here we define the particle Reynolds number in the
same way, i.e. Rep = qfu1dp/lf; (qf: fluid density, lf: fluid
dynamic viscosity, dp: particle diameter, u1: particle termi-
nal settling velocity).

The purpose of this paper is to validate classical bench-
marks and fully resolve unsteady simulations with a view to
built confidence about the implicit tracking of fluid–solid
interfaces via a viscosity-based penalty method. The first
step is to perform validations of the 1F method against
the experimental data of Ten Cate et al. [4] in the Reynolds
number range 1.5 < Rep < 31.9. The next step is to com-
pare Ten Cate’s LB simulations, our 1F simulations and
experimental data from Mordant and Pinton [25] at a
Reynolds number of 280. Concerning validations, we draw
heavily on two experimental results.

In the first case, particle imaging velocimetry (PIV) exper-
iments from Ten Cate et al. [4] concerning the case of a
sphere settling at Reynolds numbers Rep ranging from 1.5
to 31.9. Ref. [4] is actually one of the few papers where the
particle and domain sizes, the moderate regimes and the
measurement techniques are all designed for good validation
of DNS methods. The validation is focused on both fluid
and particle transient behavior. The LB simulations des-
cribed in the same paper match the experiments accurately.

In the second case, the experiments from Mordant and
Pinton [25] give the velocity of a settling particle by mea-
suring the Doppler shift of scattered ultrasound. The
resulting particle velocity time series are shown to be cor-
rectly fitted by a single exponential relation within the par-
ticle Reynolds number range that runs from 40 to 8000.

A description of the 1F methodology and the way in
which its numerical parameters are set is described in the
following section. As a validation step, the experimental
data from [4] are compared with 1F simulations in Section
3. In Section 4, the experiments from [25] are briefly des-
cribed and applied to the cross-validation of both 1F and
LB simulations concerning the sedimentation of a single
particle at a Reynolds number Rep = 280. Comparisons
of the methods’ efficiency and modularity are discussed in
the conclusion.
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2. Numerical methodology

This section gives details about the problem statement
and presents the computational aspects of the 1F method.

2.1. 1-Fluid model

A way in which the problem can be expressed reads

q
ou

ot
þ qðu � rÞu ¼ qg�rp þr � ðlðruþrtuÞÞ; ð1Þ

oC
ot
þ u � rC ¼ 0; ð2Þ

r � u ¼ 0; ð3Þ

where (1) is the momentum conservation, (2) the equation
of advection applied to the phase function C and (3) the
continuity equation. We have to define the spatial and tem-
poral evolution of the volume fraction solid/fluid C(x, t)
which could be extended to the case of N immiscible
phases: C ¼

PN
i¼1Ci, Ci being the specific volume fraction

attached to the ith phase.
The results presented in this paper are restricted to the

case of a single solid phase. Consequently a Cartesian grid
is used where the volume fraction field C(x, t) represents the
multiphase topology of the flow. Thus D indicates the
domain, oD its boundary, Df the liquid phase, and Dp the
solid phase. So if M(x, t) is a point of the field, the equiva-
lent volume fraction reads

Cðx; tÞ ¼ 0 if M 2 Df ;

Cðx; tÞ ¼ 1 if M 2 Dp:

�
ð4Þ

After discretization, the interface can be located where the
phase function is C = 0.5. The equation of advection (2)
applied to the phase function C ensures the interface
displacement. These equations are available in both fluid
and solid phases. Finally one must add the equations of
state for l and q. Note that in Eq. (1) the dynamic viscosity
l is not expressed as a pre-factor of a Laplacian term since
both viscosity and density q depend on space. The equiva-
lent fluid is incompressible with both q and l depending on
time and space. In fact, if a Lagrangian tracking is per-
formed on any equivalent fluid particle, the associated den-
sity keeps its initial value. As a consequence the equivalent
density obeys

Dq
Dt
¼ 0: ð5Þ

Furthermore the mass conservation must be obeyed in the
whole equivalent fluid and it reads classically

Dq
Dt
þ qðr � uÞ ¼ 0: ð6Þ

The combination of Eqs. (5) and (6) shows that the whole
velocity field must be divergence free. Both density q and
viscosity l are chosen as functions depending on C. A sim-
ple linear function of interpolation [2] is used:
lðx; tÞ ¼ lfð1� Cðx; tÞÞ þ lpCðx; tÞ; ð7Þ
qðx; tÞ ¼ qfð1� Cðx; tÞÞ þ qpCðx; tÞ: ð8Þ

Interpolations of physical parameters are also necessary
within the spatial discretization. In that case, Eq. (8) is still
employed but Eq. (7) is unavailable when large viscosity
gradients occur. By using a harmonic mean,

lðx; tÞ ¼
lplf

ð1� Cðx; tÞÞlp þ Cðx; tÞlf

; ð9Þ

the interpolation of viscosity over mixed cells is now com-
patible with the viscous stress continuity [27]. Once the
fluid dynamic viscosity lf, the fluid density qf and the solid
density qp are defined according to the physical properties,
the free parameter lp must be chosen of a sufficiently large
value in order to ensure the undeformability condition. The
latter is satisfied when the deformation tensor, D ap-
proaches the zero tensor:

Dij ¼
1

2

oui

oxj
þ ouj

oxi

� �
� 0; 8M 2 Dp; i; j ¼ 1; 2; 3 ð10Þ

with the velocity directions u1, u2, u3 and position x1, x2, x3

related respectively to ux, uy, uz and x, y, z.
In order to transport accurately the high gradients

located on the fluid/particle interface, Eq. (2) is solved by
means of the hybrid geometrical/Lagrangian VOF piece-
wise linear interface construction (PLIC) method of
Youngs et al. [36]. The phase function gradient gives the
normal to the particle surface in each of the interfacial
cells. The latter surface is divided into planes placed in each
control volume (see Section 2.2) and advected through the
fixed mesh. The algorithm comes to an end by computing
the new volume fraction within each control volume. To
sum up, the VOF-PLIC method is a geometrical way to
solve Eq. (2) that assures that the interface thickness is
restricted to the size of a single cell.

2.2. Computational method

To solve the system of Navier–Stokes equations, and
in particular the velocity–pressure coupling, the augmented
Lagrangian (AL) method based on Uzawa’s iterative
method for saddle point problems [11] is used. A vectorial
projection method [2] is used as a correction step to
improve the fluid incompressibility.

For time discretization of the Navier–Stokes equations, a
semi-implicit formulation of the left-hand side of (1) is used
following the discretization q unþ1�un

Dt þ qðun � rÞunþ1, where
the non-linear convective term has been linearized by
replacing un+1 by un. There is no CFL restriction on the time
and space steps like those required when using an explicit
discretization. The time scheme applied to the transient
term estimation is first-order accurate. Second-order accu-
rate time schemes can be used instead but the AL algorithm
tends to reduce the global order to unity.



Table 1
Setup of characteristic scales for a sphere settling in a viscous medium H,
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The spatial discretization is done by means of a finite
volume method on a staggered mesh (see [14]), i.e. a pres-
sure node is defined at the center of a control volume,
and velocity components are defined at the centers of the
control volume faces. All of the terms are approximated
by a second-order accurate centered spatial scheme, well
known for its accuracy [17]. That scheme is also known
to lead to numerical oscillations, but none of them were
observed in our simulations.

The algebraic system, resulting from the discretization
of the various equations on the staggered mesh, is pre-con-
ditioned with a MILU method prior to its inversion done
by means of an iterative BiCG-Stab technique [35].

The AL method is an iterative algorithm used to solve
the velocity–pressure couple via a saddle-point method,
and used for the coupling of the velocity components. It
is formulated by adding, in Eq. (1), the constraint
r$($ Æ u) where r is a penalty parameter usually kept con-
stant over space and time. It is shown that r should exceed
the greatest term in the conservation equation by 2 or 3
orders of magnitude. The problem lies in the choice of this
term since our equivalent fluid is not homogeneous. Conse-
quently a new technique called the adaptive augmented
Lagrangian method [34] is applied. Starting from the
characteristic scales u0, L0, t0, p0 and using a dimensionless
constant M ranging from 102 to 103, the local penalty
parameter r is defined as the solution of the equation
D and W are the three characteristic length scales of the domain

Unsteady + inertial
2

Gravity
2

Viscous
rðx; tÞ ¼ M max qL2
0=t0; qu0L0; qL2

0g=u0; p0L0=u0; l
� �

; ð11Þ

qL0=t0, qu0L0 qL0g=u0 constraint l

u0 (fluid) huðx; tÞiDf
0 –

u0 (solid) huðx; tÞiDp
u1 –

L0 (fluid) H, D, W (domain) 0 –
L0 (solid) dp dp –
q (fluid) qf qf –
q (solid) qp qp –
l (fluid) – – lf

l (solid) – – lp

M (fluid) Mf

M (solid) Mp

Setup of righthand side  B’.
(NS explicit & linearized terms)

Setup of left–hand side  A’.

n (global time step index)
k (augmented Lagrangian iteration number)
which discriminates the largest term in the conservation
equation. This results in different values of r in the liquid
and solid phases. Once r is defined, the classical AL algo-
rithm reads

ujk¼0 ¼ ujn; pjk¼0 ¼ pjn; Cjk¼0 ¼ Cjn: ð12Þ

qk¼0 ukþ1

Dt
þ ðuk � rÞukþ1

� �

¼ qk¼0g�rpk þr � ½lk¼0ðrukþ1 þrtukþ1Þ�

þ qk¼0 uk¼0

Dt

� �
þ rðx; tÞrðr � ukþ1Þ; ð13Þ

pkþ1 ¼ pk � rðx; tÞr � ukþ1; ð14Þ

ujnþ1 ¼ ujkþ1
; pjnþ1 ¼ pjkþ1

: ð15Þ

(Spatial discretization of NS eq. + AL terms)

Resolution of the linear system ’AX=B’
via the BiCG–Stab solver.

Pressure update. k=k+1

Vectorial projection step.

Interface advection (VOF–PLIC).

Update of physical properties.

k>k

no

yes

max

n=n+1

Fig. 1. Summarized algorithm for the 1F method.
It is initialized in the equation set (12), where n is the global
time step index and k the AL algorithm iteration number.
The pressure calculation is done by accumulating the
incompressibility constraint r($ Æ u) in Eq. (14). Concerning
the simulations in different regimes, the greatest contribu-
tion is first related to viscous forces so lf and lp are used
to define r in the fluid phase and in the solid phase, respec-
tively. When inertial effects overstep viscous ones, the con-
vective term qu0L0 is used instead of l. As an example,
Table 1 gives our choice for the length, time and velocity
scales used in the case of a sphere settling in a viscous
media.

One can act on convergence via the BiCG-Stab iteration
number but the penalty parameters used by the adaptative
AL algorithm are also essential to respect at one and the
same time the velocity–pressure coupling, velocity compo-
nent coupling and mass conservation. In the fluid phase, M

may be tuned so as to improve either the Navier–Stokes
resolution (M! 102) or the incompressibility constraint
resolution (M! 103). In the solid phase, M = Mp drives
the ratio lp/lf that acts on the coupling between the solid
and liquid phases. In case of higher Reynolds number
flows, the divergence of the flow field tends to increase.
To prevent excessive increase, the vectorial projection tech-
nique of Caltagirone and Breil [2] is used to improve the
fluid incompressibility. Boundary conditions on walls are
implicitly enforced via additional terms in conservation
equations. The way in which this contribution is used for
several kinds of boundary conditions has been detailed
for example in [34]. The sequence of operations of the 1F
method are summarized in a general algorithm in Fig. 1.
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2.3. Setup of numerical parameters

This section deals with the convergence in space and
time of the 1F method. Apart from the spatial and tempo-
ral resolution, another critical parameter is the viscosity
gradient located on the fluid/solid interface, and we must
focus on the role the ratio lp/lf plays in the interfacial
shape conservation. To our knowledge, there is almost no
theoretical data about transient motion of spheres in a
bounded fluid. Consequently, experimental results are used
here to check ‘a posteriori’ the influence of both viscosity
ratio and temporal resolution on the calculated solution.
Concerning the convergence in space, our benchmark is
based on analytical solutions of steady Stokes flows in
ordered arrays of spheres. The last part shows to what
extent the particle/wall interactions are reliable without
explicit modelling of lubrication forces.

2.3.1. Convergence as function of the spatial resolution

This section deals with a 1F method validation case
which is related to the Stokes drag on a sphere fixed in
Fig. 2. Contour levels of the relative velocity magnitude juj/max(juj) of Stokes
direction by a uniform body force. The grid resolution is N = 80. Solid volume
the number of grid units used in the sphere diameter for different values of (c
the laboratory frame. Many authors provided both
theoretical and numerical results giving the drag force f

as a function of the solid volume fraction c (e.g. Hasimoto
(1959), Sangani and Acrivos (1982), Zick and Homsy
(1982), we refer the reader to a comprehensive account of
these papers by Hill et al. [15]). The computation is done
over a fixed cubical unit-cell and a spherical obstacle whose
radius is a located at its geometric center. All of the bound-
ary conditions are periodic so that the domain is similar to
a simple cubic array of spheres. The Cartesian mesh is fully
defined by N which is the number of nodes per direction.

Fig. 2(a)–(c) depict three steady flows with N = 80 and
solid volume fractions c ranging from 0.1 to 0.5. Stream-
lines are shown in particular flow slices. The contribution
due to gravity does not affect the results and g is set to zero
in the present simulations. The creeping flow is driven in
the positive x direction by a uniform body force acting
on the fluid that effectively mimics an average pressure
gradient. The latter is chosen sufficiently weak so that the
non-dimensional drag force dependency on ReStokes is as
F(ReStokes) = constant. F is defined as F = f/fStokes where
flows in a simple cubic array of spheres. The flow is driven in the positive x

fractions are respectively c = 0.1 (a), c = 0.3 (b), c = 0.5 (c). Table (d) gives
,N).
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f is the drag force on the sphere array and fStokes =
6plfahjuji is the classical Stokes drag. ReStokes is based on
the average velocity hjuji (integrated over the whole unit
cell) so that ReStokes = qfhjujia/lf (see [15]).

We are interested in the drag force convergence as the
grid resolution increases. Fig. 3 points out the steady
spatial convergence of the 1F method along with the solu-
tion of Zick and Homsy. The error increases with the solid
volume fraction but decreases when the grid is refined. In
fact at low volume fraction the convergence is related to
the number of cells used to define the sphere. Toward high
volume fractions, the convergence is related to the number
of cells used to define the fluid phase. Fig. 4 compares the
convergence rates at different solid volume fractions, where
e is the relative error of the 1F method. The method is
shown to be first-order accurate in space.
Fig. 3. Non-dimensional drag force F as a function of solid volume
fraction c and spatial resolution N. The solid line is from Zick and Homsy,
the symbols are from 1F simulations.

Fig. 4. Convergence rate of 1F simulations. Relative error e versus spatial
resolution N, as a function of the solid volume fraction c.
2.3.2. Convergence in time

The convergence study was performed with respect to
experimental results (see Section 3) concerning the sedi-
mentation of a sphere of diameter dp.

The implicit integration used in the 1F method provides
flexibility in the choice of time steps. Consequently a phys-
ical criterion based on characteristic times scales is required
so as to avoid both over- and under-estimated discretiza-
tions. It is known that the particle relaxation time calcu-
lated from the Boussinesq–Basset–Oseen equation (see
for example [32]):

T a ¼
2 qp þ 1

2
qf

� �
a2

9lf

; ð16Þ

is based on both initial particle acceleration and terminal
settling velocity, and that makes it a good estimator of
the time it takes for the particle to reach its steady velocity.
Consequently, the computational time step Dt [s] (see
Section 2.2) is a constant chosen as a certain fraction a�1

of Ta (known also as the inertial time scale of particle
acceleration).

Table 2 shows the evolution of U(a) = up(Ta,a)/u1
where up(t,a) denotes the instantaneous particle velocity
at time t calculated with a time step Dt = Ta/a, and u1
the steady-state velocity. Here the convergence is based
on the sedimentation velocity at the specific time t = Ta

in the transient phase. The settling regime is defined by
the particle Reynolds number Rep = 31.9. Numerical
results for various values of Dt are compared to the exper-
imental one. Three different time steps Dt are chosen so as
to range over one order of magnitude. Here it is shown that
dividing the time step by 10 yields an error reduced by one
order of magnitude. We use second-order time schemes but
by adding the augmented Lagrangian algorithm, the
method tends to be first-order accurate in time.

2.3.3. Impact of the viscosity ratio on the liquid–solid

coupling

This section demonstrates the impact of the solid to
liquid viscosity ratio k = lp/lf on the particle behavior.
Two extremes are found. In the former, when lp! lf,
the interface is subjected to strong deformations and in
absence of surface tension models, it results in an under-
estimated particle drag. In the latter, that is to say lp� lf,
the efficiency of the interpolation functions like (7) and the
VOF algorithm convergence are both altered. As a conse-
quence the solid penalty effects propagate to the flow next
to the particle whose motion is slowed down. A correct cal-
culation consequently requires the introduction of a bal-
anced viscosity ratio. The convergence as a function of
the viscosity ratio has been investigated starting from the
Table 2
Convergence in time

a = Ta/Dt 138 276 1380 Exp.

U(a) 0.4323 0.4949 0.5362 0.5492
Error % 27.04 10.97 2.42



Fig. 5. Effect of viscosity ratio k on the terminal settling velocity of a
sphere at Rep = 31.9. u1=uexp

1 is the ratio between simulated and
experimental terminal velocity.

Fig. 6. Dimensionless drag coefficient versus particle/wall gap. Numerical
(1F) (—), analytical [10] (�), Rep = 0.01.
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same validated data as those mentioned before (i.e. a
sphere settling at Rep = 31.9, see Section 3). Fig. 5 repre-
sents the evolution of the dimensionless settling velocity
u1=uexp

1 versus k. It is clear that the value of reference
uexp
1 is reached on a plateau that ranges roughly from 103

to 106.

2.3.4. Particle/walls interactions

By studying the lubrication effects involved in particle/
wall interactions, the minimal gap width beyond which
the 1F model is invalid is estimated. DNS methods do
not implicitly require lubrication models when they keep
large enough particle/particle or particle/wall separations.
We chose to check the resolution limit by simulating a
sphere settling under gravity towards a wall in the Stokes’
regime.

Because of the long range action of viscous forces we
need to use a large computational domain. For numerical
efficiency the flow was simulated in an axisymmetric
domain where the sphere moves along the axis of symme-
try. In practice, the mesh is a square defined by 420 · 420
nodes. The boundaries are all of a no-slip kind except the
symmetric one. The sphere is initially placed 10 diameters
away from the top and bottom walls and 20 diameters from
the side wall. The particle resolution is approximately 18
nodes per diameter and the expected particle Reynolds
number is Rep = 0.01. Once the acceleration phase is com-
plete the error in the terminal settling velocity with respect
to Stokes’ velocity does not exceed 1%. Lubrication effects
on approaching the bottom are represented in Fig. 6. Here
the effect of the bottom wall on the particle is measured
through the change in Cd=C1d where Cd is the drag coeffi-
cient, and C1d the Stokes drag coefficient in an unbounded
medium. The sphere/bottom wall separation is expressed as
the normalized gap R = yc/a � 1, where yc is the vertical
coordinate of the particle center. By comparing that curve
to the ‘exact’ theory of Brenner [1] confirmed by Elasmi
et al. [10] one can see that the particle/wall interactions
are correctly simulated until the gap reaches R = 0.2 or
approximately R = 2d, when expressed in grid units d. Past
this gap, the simulated drag coefficient is significantly over-
predicted. At this point, the two solutions are either to
increase the grid resolution or to include sub-grid lubrica-
tion models. As noted above, such models are still in devel-
opment and the results presented here are good enough for
the scope of the paper.

Practically, the above results should help to set opti-
mized numerical parameters prior to performing a simula-
tion. The spatial convergence has been made clear here.
Concerning low to moderate Rep regimes and low volume
fractions, roughly 10d per particle diameter are necessary
to provide quantitatively acceptable results, and there is
no need for considering any radius calibration. A good
approach for temporal resolution settings consists in
choosing the time step Dt of the order of OðT a=1000Þ. Con-
cerning the solid viscosity lp, a compromise respecting
both transport scheme resolution and non-deformability
conditions is to choose a ratio k ranging from 103 to 104.

3. Experimental setup and validations

The experimental configuration has been designed for
the validation of LB direct numerical simulations. Settings
and results are not presented in detail as they have been
reported elsewhere (see [4]). As we focus first on the exper-
imental characteristics required for the 1F method to be
initialized, the simulation settings like spatial and temporal
resolution and boundary conditions are justified. Finally
the experimental results are presented in comparison to
the 1F simulations.

3.1. Experimental setup

With respect to simulation constraints a wall-bounded
geometry is set, and the particle’s radius a is large enough,
given that the spatial resolution of the simulation depends
on the aspect ratio 2a/l, where l is the length of the edge of
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the domain’s base (see Fig. 7). The container dimensions l,
l, H are respectively 0.1, 0.1, 0.16 [m], the sphere diameter
is dp = 0.015 [m] and its density qp = 1120 [kg/m3].
Reynolds numbers are modified as several silicon oils are
successively used as fluid phases (see table in Fig. 7).
Regarding the relevance of the classical rheology laws used
for modelling these oils, we refer the reader to [4]. Different
dimensionless parameters are introduced to qualify the
physical behavior. The particle Reynolds number Rep =
qf Æ u1 Æ dp/lf is based on the upper velocity limit u1 of a
sphere sedimenting in an unbounded medium. The particle
Stokes number St = 1/9Repqp/qf which includes the density
effects compares the response time of the particle to the
characteristic time associated with the flow field. The parti-
cle’s position is characterized by the dimensionless gap
height h/dp separating the sphere’s bottom from the ves-
sel’s, and initially is set to 8. The initial distance separating
the sphere’s top from the free surface is roughly 1.7dp.
There was no visible disturbances of the free surface during
experiments. Both sphere and fluid velocities are normal-
ized by u1. Experiments have been performed with three
distinct Rep values detailed in Fig. 7 where particle Rey-
nolds numbers were calculated with help of the Abraham
drag coefficients:

Cd ¼
24

ð9:06Þ2
9:06ffiffiffiffiffiffiffiffi

Rep

p þ 1

 !2

: ð17Þ

PIV measurements were done in the acquisition plane rep-
resented in Fig. 7. Post-processed data consists of velocity
fields picked-up for some acquisition frequencies ranging
from 60 Hz to 248 Hz. Moreover, direct visualization, fil-
tering and thresholding techniques are employed to extract
the particle’s trajectory. Note that an increase in resolution
gives a decrease in frame size. So depending on the Rep

value, 3 or 4 camera frames are used successively, and it
is required that the sphere be released from the initial posi-
tion 3 or 4 times to capture the full trajectory. Finally, all
experiments have been done twice to check reproducibility.
O
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Fig. 7. Experimental settings: tank dimensions (mm) and ph
3.2. Simulation parameters setup

3.2.1. Boundary conditions

Fig. 8 depicts the four lateral boundary conditions. The
tank’s bottom is modeled by a no-slip condition. Concern-
ing the free-surface of the tank, no-slip conditions have
been set in the original LB simulations, but here it is con-
sidered more appropriate to set free-slip conditions.

To limit memory consumption, two symmetry bound-
ary conditions are set in the flow. Theses conditions are
located on two perpendicular planes whose intersection
coincides with the sedimentation axis (see Fig. 8). This
statement needs a justification: with these flow conditions
in unbounded media, the particle Reynolds number is
small enough for the flow to be laminar and inherently axi-
symmetric. In order to check that the square container
does not alter our assumption, a computation was made
on a 50 · 50 · 80 mesh covering the whole physical domain.
Fig. 9 compares the averaged radial component of velocity

hukiy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

x þ u2
y

qD E
y

to the averaged orthoradial compo-

nent of velocity hu?iy ¼ h
ffiffiffiffiffi
u2

z

p
iy . The subscript y denotes

the direction of averaging. These two quantities are calcu-
lated in a slice corresponding to the plane of symmetry
z = 0 (see the origin of coordinates ‘O’ in Fig. 9). One
can measure that the maximum ratio is ðhu?iyÞ <
2

100
ðhukiyÞ so that our hypothesis is numerically acceptable,

keeping in mind that it would not be so with higher Rep

values where the particle’s wake tends to be three-dimen-
sional. An additional computation on a 51 · 51 · 82 mesh
was performed in order to verify that the non-zero hu?iy is
not due to either an odd or even number of grid units in
the particle diameter (see Fig. 9).

3.2.2. Impact of spatial and temporal resolution

Three simulations with increasing spatial resolution
have been performed and compared to the experimental
case Rep = 31.9. A PIV slice is extracted when the dimen-
sionless gap height h

dp
¼ 1

2
. Fig. 10 has been obtained by
ysical parameters for three particle Reynolds numbers.



Fig. 8. Overview of the computational domain.

Fig. 9. Balance of radial and orthoradial velocity components on the
symmetry planes. 1-Fluid simulations: (—) 50 · 50 · 80, (- - -)
51 · 51 · 82.

Fig. 10. Spatial convergence of the velocity direction fields. Experimental
(—), simulation: 160 · 50 · 50 (—), 80 · 25 · 25 (- Æ - Æ -), 48 · 15 · 15 (- - -).
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plotting the experimental and the three numerical fields on
a single graph. It is shown that the vector field direction
converges well to the experimental field, but that there is
no global order of convergence. Indeed, one can see that
in low-sheared zones all of the four vector fields are almost
collinear, implying a very fast convergence. In the high-
sheared zones, a continuous evolution from the low-resolu-
tion field to the high-resolution field is depicted, the latter
being for each point of the fluid practically identical to
the experimental field. This fact would justify the imple-
mentation of an adaptive mesh refinement in the 1F
method.

In the following simulations, a resolution of 50 · 50 ·
160 grid units is used to represent a quarter domain (see
Section 3.2) (i.e. a sphere diameter becomes 15d). From
our simulations at lower resolutions it was found that the
global trajectory and velocity of the sedimenting sphere
reproduced the experimental results well at a resolution
of 7.5d per diameter. Nevertheless, Fig. 10 shows that at
higher resolution, the details of the simulated flow field still
improved. Therefore, the highest resolution was chosen for
further simulations.

The temporal resolution is defined by a = 1380 so as to
obtain a good accuracy. The resulting time step is adapted
to the Rep = 31.9 regime, but for reasons of computing
time, we kept the resulting time step constant (i.e.
Dt = 1 · 10�4 [s]) with the Rep = 1.5 and Rep = 11.6
regimes.

3.3. Comparison of experimental and 1F simulated results

The primary validation steps consist of reproducing the
transient motion of the particle. Next the comparison is
focused on the topology of the velocity field around the
particle in its acceleration phase. Finally, time series are
calculated on a fixed point of the fluid to check our meth-
od’s accuracy for each of the velocity components
independently.

3.3.1. Particle time series

The simulated cases are related to the three experiments
detailed in Fig. 7. In Fig. 11 the simulation results are com-
pared to the experimental data. At Rep = 1.5 the steady
state velocity reached by the particle is due to high viscous
forces and to side-walls effects since the equivalent velocity
in an unbounded medium is significantly higher (about
5%). With higher Reynolds numbers, these long-range
interactions with walls progressively vanish, the particle
reaching the bottom before its acceleration phase is being



Fig. 11. Particle settling velocity, 1F simulations and measurements,
Rep = 1.5, 11.6, 31.9.

Fig. 12. Comparison of 1F method (left-hand side of each frame) and PIV
slices (right-hand side of each frame). Contours of normalized velocity
magnitude juj/u1, direction of velocity field. Rep numbers are respectively
1.5, 11.6, 31.9 from top to bottom. Simulation/experimental times are
respectively Tstr ’ 0.1 s, Tacc ’ 0.5 s and Tstd ’ 1 s from left to right.
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achieved. Fig. 11 shows that the unsteady behavior is well
reproduced by the 1F method. We may notice some imper-
fections by looking at the acceleration phase: the particle’s
velocity is slightly under-estimated so that a delay appears
upon approaching the bottom, especially with low particle
Reynolds numbers. This is certainly due to the fact that the
simulations are under-resolved in time when decreasing the
Rep regime, so that a (see Section 2.3.2) is successively
aðRep¼31:9Þ ¼ 1380, aðRep¼11:6Þ ¼ 710, aðRep¼1:5Þ ¼ 200. Never-
theless the dynamic balance of the forces on the sphere is
clearly validated.

3.3.2. Direction and magnitude of the velocity field

This section focuses on the evolution of the flow field
along the particle’s motion. In the previous paper [4],
PIV slices were presented as frames issuing from a single
camera position at a time. Here we are interested in the
wake development during the acceleration phase, so we
need to depict different camera frames simultaneously.
Consequently one starts from the same initial data (i.e.
untreated vector fields) to perform the complete top to bot-
tom connections of the flow field. Comparisons over the
three regimes are represented in Fig. 12 where the left part
is a slice extracted from the three-dimensional simulation,
the right one being the PIV slice. Each frame is a focus
on the flow field surrounding the particle. Walls do not
appear there.

An important feature to highlight is that each frame is a
new measurement, and the result is that those frames could
be connected in time very well as the wake extends contin-
uously over different camera frames. As a consequence the
reproducibility of the experiment is not to be called in ques-
tion. Arrows in the figures indicate the flow direction. The
frames where flow directions are incoherent and velocity
magnitudes are very low, are dominated by experimental
noise. In Fig. 12, views are picked at specific times Tstr ’
0.1 s, Tacc ’ 0.5 s and Tstd ’ 1 s where the subscripts ‘str’,
‘acc’ and ‘std’ denote the startup phase, the acceleration
phase and the steady-state phase respectively. The contour
levels correspond to the normalized velocity magnitude
ranging from 0% to 100% of the terminal settling velocity.
By comparing the two sides on each figure, it is shown that
the numerical approach reproduces accurately the flow
phenomena.

We may notice the inertial effects acting on the flow
topology as Rep increases: it appears that the lateral exten-
sion of the flow decreases while the wake is elongated. One
may notice some structures elongated in the streamwise
direction on the particle sides. These correspond to the
vortex position in which velocities are very weak. This
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curvature is clearly accentuated when the recirculation is
stretched along the particle’s trajectory by increasing Rep.
Such a phenomenon is explained by expressing Rep as the
ratio Rep = sm/sp,a where sm is the diffusive time qf d

2
p=lf

and sp,a = dp/u1 the advection time. This ratio decreases
with increasing Rep, indicating that at elevated Rep, the
momentum diffusion in the wake and on the particle sides
is reduced compared to the particle advection.

3.3.3. Fluid time series

In this section, comparisons are performed by looking at
the respective magnitude of each velocity component. The
way that was dealt with in [4] was to set a monitor point
one diameter away from the tank’s bottom and one diam-
eter away from the trajectory axis (the monitor point and
the axis directions are depicted in Fig. 7).

Fig. 13(a)–(f) represents measured time series in the fluid
Vx(t) and Vy(t) compared with what the 1F method pre-
dicts. By looking at Vx for the case Rep = 1.5, one may
see that there is an acceleration followed by a deceleration
which coincides with the deceleration of the particle. This
strong correlation due to viscous effects vanishes with
higher Reynolds numbers. Indeed by looking Vx for
Rep = 11.6 and Rep = 31.9, it occurs that once the particle
stops, the fluid contained in the wake goes on moving
around the particle, rejecting the initial vortex sideways.
For example in Fig. 13(b), the first deceleration is related
to the vortex core that gets closer to the monitor point,
the consecutive acceleration being due to the inertial
behavior of the wake that causes the vortex rejection.
The last deceleration corresponds to dissipation of the
kinetic energy in the fluid.
Fig. 13. Fluid time series for normalized velocity components ux/u1 and uy/u1
(dots). Arrows indicate when the particle reaches the bottom of the tank.
Comparison of results shows that these strong velocity
fluctuations are very well predicted by our numerical
method. Although the spatial resolution is the same over
the three simulations, we may see that where the higher
Reynolds numbers are well predicted, differences appear
in fluid time series with Rep = 1.5. Again these may be
explained by a lack of temporal resolution as mentioned
earlier in Section 3.3. There are also disruptions along
the Rep = 1.5 curves (see Fig. 13(a) and (d)) appearing just
when the particle comes to a halt. These are due to weak
inertial effects in the particle wake, maybe a consequence
of the particle’s velocity which is not correctly estimated
as the particle/wall gap falls below 2 grid units. However,
at this level, the experimental noise is too high to either
confirm or invalidate the prediction.

4. Simulation of a single sphere settling at Rep = 280: Cross-

validation by means of 1-fluid and lattice-Boltzmann methods

In this section, the motion of a steel bead settling under
gravity at a particle Reynolds number Rep = 280 is simu-
lated using both the 1F method and the LB method. The
results are compared with the experimental data of Mor-
dant et al. [25].

4.1. Experiment definitions

These experiments give the velocity of a settling particle
by measuring the Doppler shift of scattered ultrasound.
Measurements are performed in a tank filled with water
at rest (container dimensions H · D · W = 0.75 · 1.1 ·
0.65 [m], dp = 0.8 [mm]). Mordant et al. [25] show that in
. From left to right: Rep = 1.5, 11.6 and 31.9. 1F (lines) and experimental



Table 4
Overall characteristics for 1-fluid and lattice-Boltzmann simulation
methods

1F method LB method

Advantages Accuracy with few grid
points, modularity

Numerically fast, second-order
spatial schemes

Drawbacks Computational cost High resolution needed for
accuracy, radius calibration

Table 3
Experimental settings for Rep = 280 [25]

Rep (–) St (–) lf (Pa s) qf (kg/m3) qp (kg/m3) u1 (m/s) Ta (s) s95 (s) d95 (m)

280 240 8.9 · 10�4 1000 7710 0.316 ± 1% 0.328 0.108 0.0233
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the range 40 < Rep < 8000, the particle’s trajectory may be
reproduced with the exponential law up(t) = u1(1 � exp
(3t/s95)), where s95 is defined as the time it takes for the
sphere to reach 95% of the terminal velocity. For the
Rep = 280 case, experimental data are summarized in Table
3, where d95 is the average distance covered by the particle
during s95. Mordant et al. show that for the given Reynolds
and Stokes number the particle sedimentation trajectory
remains rectilinear.

4.2. 1F and LB Simulations setup

The LB simulations were done using the approach pre-
sented in [4]. While in lattice-Boltzmann simulations of
moving particles generally the single relaxation BGK type
LB scheme with bounce-back boundary conditions is used
(see [22,23,6,7,33]), the method used and presented in this
paper is slightly different. The lattice-Boltzmann scheme
is based on the approach of Eggels and Somers [9,31]. This
scheme is used for its enhanced numerical stability. The
boundary condition of the sedimenting sphere is based on
the adaptive force-field method of [8]. For further details
the reader is referred to [4].

For our simulations, reproducing the entire experimen-
tal domain is not feasible. However, since the Rep and St

numbers are relatively high, the simulation domain can
be taken much smaller than the experimental domain with
minimal perceptible effect on the particle sedimentation
trajectory. The experimental data show that 95% of the
upper velocity limit is obtained after 0.0233 [m] of sedimen-
tation. Therefore, the computational domain is taken as a
box with dimensions H · D · W = 0.064 · 0.004 · 0.004
[m], with no-slip boundary conditions on all walls. With
this height it is expected that a steady state velocity is
achieved before the sphere reaches the bottom. Further,
at this high Reynolds number it is expected that a relatively
narrow containment has negligible impact on the sphere’s
sedimentation trajectory. In contrast to the 1F low Rep

simulations, the simulations are now done using the full
sphere. All other physical parameters are set according to
Table 3.

Several test simulations have been performed to set these
parameters. It was found that the LB prediction improves
as the spatial resolution increases and quantitatively
acceptable results are found starting from dp = 16d. In
the same way, 1F predictions improve when the spatial res-
olution is successively defined as dp = 7d, 8d and 10d, but
there is no significant changes in both particle trajectory
and velocity fields between dp = 8d and dp = 10d. For the
simulations reported below, the following settings are used
and the computational efforts are shortly described:
(i) 1F method: A 800 · 50 · 50 Cartesian grid (dp = 10d)
is used with a temporal resolution a = Ta/Dt = 4686.
The simulation required 3500 time steps and
N = 2 · 106 grid points. The resulting monoprocessor
job was performed on a SGI Altix/3300 (12 cpus ia64
Madison/1300 MHz/L3/3Mo). It required 1225 h of
CPU time and the memory used is evaluated as
N · 300(arrays of real numbers) · 8(bits) � 5 Gbytes.

(ii) LB method: A 1376 · 86 · 86 Cartesian grid is used
with a temporal resolution a = Ta/Dt = 24,095. The
particle diameter is dp = 16.0d, and in a practical
way dp hydro = 17.22d after the hydrodynamic radius
calibration of the particle. The LB simulation
required 20,000 time steps and N = 10.2 · 106 grid
points. The resulting job was performed via eight pro-
cessors (MPI/900 MHz Pentium 3 linux system) and
required 37 h of CPU time. The allocated memory
was 143 Mbytes · 8(processors) giving roughly
1.14 Gbytes total memory. The advantages and draw-
backs for both of the methods are summarized in
Table 4.

4.3. Simulation results

4.3.1. Velocities and trajectories comparison

The computed settling velocity up(t) is represented in
Fig. 14(a). Globally, our predictions match well with the
expected transient behavior shown to be exponential in
[25]. The 1F simulation results in a 2% underestimation
of the terminal settling velocity u1, versus a 6% overesti-
mation with the LB simulation, and a convergence to the
experimental value was observed for both methods by
increasing the spatial resolution. Consequently, the trajec-
tories plotted in Fig. 14(b) match the experimental curve
very well from time t = 0 [s] to time t ’ 0.22 [s] when the
particle reaches the solid bottom.

4.3.2. Flow field and wake structure comparison

Flow field slices are depicted in Fig. 15(a) (1F) and (b)
(LB) at times t = 0.028, 0.091, 0.175 [s] and t = 0.027,



Fig. 14. (a) Settling velocity up(t) at Rep = 280, 1F method (�), LB method (4), exponential fit of averaged experimental values (bold line). (b) Particle
trajectory yp(t) at Rep = 280, 1F method (�), LB method (4), exponential fit of averaged experimental values (dashed line).
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0.088, 0.177 [s], respectively. The contour levels correspond
to juj/u1, the indexes refer to the vertical position divided
by dp while the black circle points out the release position.
Some three-dimensional (1F) and in-plane (LB) streamlines
are also depicted. By studying the spatial distribution of
juj/up over the acceleration phase, one must notice the
increasing backflow, and the steady upstream field. The
two methods predict that the disturbed fluid is mainly
located in a vertical cylinder whose diameter is similar to
dp. The difference lies in the bead’s terminal velocity. Since
the latter is under-estimated by the 1F method and over-
estimated by the LB method, some more kinetic energy is
transmitted from the particle to the fluid in the first case.
This may explain why the steady-state wake extension is
lower in the LB case.

The wake development is presented in more detail in
Fig. 16(a) (1F Method) and (b) (LB Method). Both figures
depict the axial distribution of velocity magnitude ju(xa, t)j/
up(t), with xa(xa,za,y) the coordinates of the sedimentation
axis (i.e. xa(W/2,D/2,y)). For improving readability, the
evolution in time of the axial velocity magnitude is given
in a frame of reference attached to the sphere motion. That
moving frame of reference Y relates to the static frame
according to the relationship Y = y � yp(t) + dp/2, such
that the sphere center is fixed at Y/dp = 0.5. For both the
1F and the LB method, the upstream profile is self-similar
all along the instationary phase. The long range wake esti-
mation is predicted as well. Right behind the sphere a back
flow due to fluid inertia is noticed (ju(t)j/up(t) > 1). Locally,
the prediction of the dynamic and static behavior differs
according to the method used. The 1F method gives a
monotonic increase of ju(t)j/up(t) to the maximum fluid
velocity um/u1. In the lattice-Boltzmann method ju(t)j/
up(t) goes through a peak value before reaching its steady
value.

Fig. 16(a) and (b) are used to determine the development
of the recirculation length LR, given in Fig. 17. This length
is defined by the location in the wake relative to the sphere,
where the fluid velocity in the wake equals the value of the
sphere velocity. On Fig. 17 the recirculation length steadily
converges for both simulation methods but a discrepancy
of 13% is noticed on the steady state value.

As the Stokes number is considered to be high
(St = 240), the contribution to the velocity field due to
spanwise displacements of the particle is presumably weak.
Indeed, it is found that the lateral particle displacements
are not distinguishable from numerical noise, so the com-
parison with a fixed sphere in a stream can be made.
According to the numerical results of Kim et al. [21], the
dimensionless recirculation length behind a fixed sphere is
LR/dp ’ 1.4 in the Reynolds number range 250 < Rep <
300. Both simulation methods show convergence to higher
values than the one of Kim et al. With similar fixed sphere
configurations, Johnson and Patel [19] provide details on
averaged velocities in the near wake, and the maximum
velocity in fluid is found to be jujm/u1 = 1.22. This fixed-
sphere value is found to be closely framed by the LB and
the 1F values on steady state (see Fig. 16(a) (1F Method)
and (b) (LB Method)).

Figs. 15–17 show remarkable differences in the details of
the flow field of the two types of simulations. Fig. 15 shows
that the near-particle flow field of the LB simulation exhib-
its more detailed structure than that of the 1F simulation.
Figs. 16 and 17 show that although the upstream field is
practically identical between the two approaches, slight dis-
crepancies appear in the wake development following the
type of simulation.

The detailed structure of the flow field is highly sensitive
to the implementation of the boundary conditions and
these are completely different for the two simulations.
For the 1F method the boundary condition is directly
linked to the numerical scheme. For the LB method,
besides the adaptive force-field method, a range of bound-
ary condition approaches is available (e.g. see [28]), each
with its own advantages and disadvantages. The current
test reveals that a detailed examination of the impact of
the boundary condition on the structure of the flow field
at high Rep is justified. This, however, exceeds the purpose



Fig. 15. Flow field slices, Rep = 280, 1F (top) and LB (bottom) simulation methods.
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of the current paper. Furthermore, the comparison to the
external data shows that the global performance of both
methods can be regarded satisfactory, certainly in light of
the high Reynolds number considered.

4.3.3. Onset of wake instability

An important issue is that the predicted axisymmetric
topology is not broken along the particle trajectory, irre-
spective of the method used. Furthermore the non-averaged
experimental data showed that the particle sedimented
without diverging from a straight trajectory. These facts
are necessary to argue the lack of instabilities in the wake,
but at this time, experiments do not provide much more
clues about the fluid topology. Otherwise, a reason why
the wake remains stable is that with both of the methods,
the small spanwise dimensions of the domain and the sym-
metric initial conditions may suppress the development of
wake oscillations. Generally speaking, it is shown that in
the range 250 < Rep < 300, the flow past a fixed sphere expe-
riences a transition from steady planar-symmetric to
unsteady planar-symmetric topologies [19]. The global
topology of the simulated flow fields does not show such
transitions, but we try here to detect instabilities at a lower
level.



Fig. 16. Axial distribution of velocity magnitude ju(xa,za,y, t)j/up(t), plotted versus the axial position Y/dp expressed in the frame of reference attached to
the sphere, with time t ranging from 0.0375 to 0.125 (s) by steps of 0.0375 (s). 1F method (a), LB method (b).

Fig. 17. Dimensionless recirculation length LR/dp versus time, 1F method
(n), LB method (�), fixed sphere value (dashed line).

Table 5
Characteristic scales: 1F, LB, references

1F method LB method Reference

Settling velocity u1 (m/s) 0.310 0.337 0.316 [25]
Maximum velocity jujm/u1 (–) 1.27 1.15 1.22 [19]
Backflow length LR/dp (–) 1.74 2.00 1.4 [21]
Strouhal number St (–) 0.104 0.169 0.137 [21]
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The first clue for oscillations must appear with out-of-
plane motions, i.e. that for an axisymmetric wake, the
velocity field Vz(x,y, 0) is theoretically zero. Consequently
our investigation is focused on the two-dimensional veloc-
ity field Vz(x,y, 0)/u1 which is depicted in Fig. 18 for the
two simulation methods. A zero-centered logarithmic scale
is set so as to make contrast between the zone where
Vz(x,y, 0)/u1 could be alternatively negative or positive.
Fig. 18 shows an interesting coincidence between 1F and
LB simulations methods, since analogous ‘V-shape’ struc-
tures are predicted. The spatial distribution of these struc-
Fig. 18. Vz(x,y, 0)/u1, LB metho
tures in the wake is clearly periodic. This makes possible to
evaluate the Strouhal number St = fdp/u1 of the flow
where f is the frequency associated to the structures
development.

In Table 5 where the comparisons between fixed-sphere
data and the two simulation methods are summarized, it is
made clear that the predicted Strouhal numbers are of the
same order of magnitude as in literature.

5. Conclusions

We have described the 1-fluid method as a way to per-
form direct numerical simulation of particulate flow. The
associated techniques have been designed to make the 1F
method fully implicit. This results in excellent numerical
stability properties. Several benchmark simulations were
done to demonstrate good numerical consistency with the
literature. The sensitivity of the method to a number of
numerical parameters was studied. Criteria are provided
d (top), 1F method (bottom).
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for the choice of these parameters that make the method
operational in a wide range of flow configurations.

Validation of the 1F method has been done by compar-
ing simulation data of the motion of a single sedimenting
sphere with the experimental data of Ten Cate et al. [4].
The experimental dataset consists of the particle trajectory,
flow fields and velocity time series at 1 < Rep < 32. The
good reproduction of the experimental data showed that
the 1F method is an accurate method for simulations of
transient particle motion.

To extend the range of particle Reynolds and Stokes
numbers, simulations of the sedimentation of a metal bead
at Rep = 280 have been performed with both the 1F and
the LB method. The experimental data of Mordant et al.
[25], consisting of the transient sphere velocity, was used
as an external reference. For this case, both methods gave
globally good results. At a converged resolution, the 1F
method gave a slight underprediction of the steady state
velocity of 2%, while the LB simulations gave an overpre-
diction of 6%.

The wake structure obtained with both simulation meth-
ods has been discussed in detail. The growth of the recircu-
lation length during sedimentation was shown to be
comparable for both methods. The steady state recircula-
tion length showed to be somewhat larger than values
reported in literature for a fixed sphere in the range
250 < Rep < 300. In both simulation methods, periodic
structures were observed in the out-of-plane fluid velocity
in the midplane of the simulation domain. These structures
reveal the onset of wake instability. Literature values sug-
gest that the transition from steady to unsteady flow occurs
at Rep ’ 250 and the corresponding Strouhal number of
the wake structure was of the same order as has been
reported for fixed spheres. Nevertheless, the magnitude of
the unsteady wake flow was too small to have an impact
on the transient sphere motion, which remained fully recti-
linear over the entire sedimentation trajectory, in agree-
ment with the experimental observations of Mordant
et al. [25]. Also, between the 1F and LB method local dif-
ferences in details of the wake structure near the sphere
were observed. At this moment no further investigations
were done to examine these differences.

A comparison of the computational performance of the
two methods has showed large discrepancies. The 1F
method has showed very good numerical accuracy at low
spatial resolution, but also showed to be computationally
very intensive. The LB method has shown to be more than
an order of magnitude faster in numerically efficiency at the
cost of numerical accuracy, thus requiring high spatial res-
olution to achieve comparable accuracy as the 1F method.

Currently, we are working on two points to improve and
extend the 1F method for multi-particle simulations: (i)
efficient parallelization of the method is implemented to
reduce the limitations of the large computational cost of
the 1F method; (ii) for particle–particle or particle–wall
interactions near contact, we are investigating methods to
implement sub-grid lubrication forces.
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