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Through molecular dynamics, the sliding motion of a liquid drop embedded in another liquid over a substrate as a
result of a shear flow is studied. The two immiscible Lennard-Jones liquids have the same density and viscosity. The sys-
tem is isothermal. Viscosity, surface tension, and static contact angles follow from calibration simulations. Sliding
speeds and drop deformations (in terms of dynamic contact angles) are determined as a function of the shear rate. The
latter is nondimensionalized as a capillary number (Ca) that has been varied in the range 0.02–0.64. For Ca up
to 0.32, sliding speeds are approximately linear in Ca. For larger Ca, very strong droplet deformations are observed.
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Introduction

Pore-scale phenomena in oil recovery and CO2 storage,1,2

separation in membranes,3 manipulation of minute amounts of

liquids on patterned surfaces,4 and nanofluidics-based medical

diagnostics5 are examples of nanoscale flow and transport

processes. Oil recovery and CO2 storage in rock formations

highlight the often multiphase character (gas-liquid mixtures

or systems with multiple immiscible liquids—oil, water, pres-

surized CO2) of many such systems. To control and steer

motion of fluids in very confined spaces, quantifying the

dynamical interaction of the phases with one another and with

enclosing walls is essential. Surface phenomena—surface ten-

sion, adhesion forces—play a crucial role in these dynamics.
In this article, motivated by the aim to elucidate pore-scale

processes in oil reservoirs, we study through molecular

dynamics (MD) simulations the interaction between viscous

forces brought about by a shearing motion, forces due to sur-

face tension, and wall adhesion forces in geometrically simple

systems containing two immiscible liquids. The main question

to be addressed in this article is to what extent the shearing

motion of a continuous phase liquid is able to mobilize a nano-

size liquid drop attached to a solid substrate. For simplicity,

the two liquids (the drop and the continuous phase) have the

same density and viscosity. There is a surface tension between

the liquids and the liquids interact—in general—with different

strengths with the substrate. There are two reasons for per-

forming MD simulations in this study. In the first place, the

size of the (nano) pores makes MD a directly applicable

approach: the number of molecules in a representative portion

of the pore can be well dealt with in an MD simulation (dem-

onstrated by earlier studies in this field, e.g., Refs. 6 and 7). In

the second place, we want to generate results with MD simula-

tions that might be compared with simulations based on con-

tinuum assumptions of the fluids involved. Continuum

approaches are desirable as they are computationally less

intensive and thus have the advantage of being able to handle

larger portions of pore networks so that they are able to cap-

ture effects of geometrical complexity such as the tortuosity

and the branching characteristics of pore systems. One of the

intricate issues in the systems we study, however, is three-

phase (solid–liquid–liquid) contact lines and their motion over

solid surfaces. For describing this motion, continuum methods

need dedicated models,8 whereas in MD simulations such slip

would naturally occur given a set of molecular interaction

parameters. The MD simulations reported here are not based

on a specific but rather on a more generic liquid-liquid-solid

system; we use Lennard-Jones (LJ) liquids as Newtonian

model fluids and characterize them mainly by continuum-type

material parameters such as viscosity, surface tension, density,

and contact angle with a solid surface.
There is, of course, a vast literature on MD simulations in

general and of MD of LJ fluids in particular. A number of text-

books9,10 provide excellent introductions to MD and show its

versatility in a massive spectrum of applications. Since its

inception in the mid-50s of the previous century,11 MD has

found widespread use in many disciplines in science and engi-

neering. Trends and applications in chemical engineering have

been reviewed recently.12–14 Limiting this brief literature

review to topics most relevant to the current paper (MD of LJ

fluids, drops on substrates, and pore-scale modeling in oil

recovery), there is significant activity over the past 10 years.

Phase behavior of LJ fluids,15 their transport coefficients,16

and their interaction with solid substrates17–19 have been

reported in a variety of ways and situations, including defor-

mation of drops on surfaces due to force fields.20 Interaction

between liquids and substrates is also of key importance in the

formation and rupture of liquid bridges.21,22 As noted above,
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Boek and coworkers are prominent in the application of MD
simulations in the field of (enhanced) oil recovery.6,7

This article is organized along the following lines: in the

next section, the model system, its geometry, the simulation

approach, and the (dimensionless) parameter space covered

are introduced. Then, calibrations for viscosity, surface ten-

sion, and contact angle are described. The results of the actual

simulations comprise deformation and sliding speeds of drops

over a substrate as a result of an imposed simple shear flow.

The final section summarizes the main conclusions drawn

from these results.

Model System and Simulation Method

Model system

The model system consists of truncated and shifted LJ

(LJTS) fluids confined between two parallel solid plates that

make a shearing motion, that is, the plates move in opposite

directions, parallel to themselves, see Figure 1. The figure also

specifies the dimensions of the computational domain, and a

coordinate system that will be used throughout this article.

Fully periodic boundary conditions apply.
The pairwise LJ interaction potential uLJ

ij is written as

uLJ
ij rij

� �
¼ 4e r=rij

� �12
2dab r=rij

� �6
h i

(1)

with rij the separation between molecule i and j, and r and e
the molecular length and energy scale, respectively. The

parameter dab
23 controls the interaction between the three

phases present in the system: two immiscible liquids and a sol-

ids phase. Molecules belonging to the same phase interact

with daa ¼ 1. The molecules of the disperse liquid phase (the

droplet) and the continuous liquid phase interact according to

dcd ¼ 0:6. As we will see, this creates surface tension between

the two immiscible liquids. The two liquids have the same vis-

cosity and density. The continuous phase liquid interacts with

the solid with dcs ¼ 0:7. The interaction parameter between

the disperse phase liquid and the solid has been varied (in the

range 0:5 � dds � 0:9) to vary the contact angle of the drop on

the substrate. The LJ interaction potential has been truncated

at 2:5r and shifted so that eventually the molecules interact

according to uij rij

� �
¼ uLJ

ij rij

� �
2uLJ

ij 2:5rð Þ; rij < 2:5r and

uij rij

� �
¼ 0; rij � 2:5r.

The two plates consist of molecules arranged in an FCC lat-

tice with the [100] surface in contact with the liquid. The lat-

tice parameter is 1:55r. The thickness of the solid plates is

larger than the cutoff distance of 2:5r. The plates are rigid,

which means that the molecules in each plate move with the

same, imposed velocity, the upper ones in the positive x direc-

tion, and the lower ones in negative x-direction; they do not

undergo thermal motion.
The system is initialized by placing the liquid molecules on

a simple cubic lattice in between the plates, giving them ran-

dom velocities, and assigning the molecules that fall within a

half-sphere with radius R0 ¼ 20:4r centred around the middle

of the bottom plate to the disperse phase; the rest of the mole-

cules belong to the continuous phase. The density of the

liquids is q� � qr3 ¼ 0:84. Velocity scaling18 is used to main-

tain a constant temperature of T� � kBT=e ¼ 0:68 (with kB the

Boltzmann constant). Before starting the shearing motion,

the system is first equilibrated over a time period of at least

t�eq � teq e=mð Þ1=2=r ¼ 460 (m is the mass of a molecule; all

molecules have the same mass). The situation at the end of

the equilibration period is used to determine the static contact

angle (more details about this in the next section).
An in-house (Fortran) computer code is used to perform the

simulations. A link-list efficiently identifies interacting parti-

cle pairs. Once the interaction forces on each particle have

been determined, we perform a leapfrog velocity and position

update.9 The time step is Dt� ¼ 0:0046. In a typical simula-

tion, the number of dispersed phase molecules is 16,000, the

number of continuous phase molecules 240,000, and the num-

ber of solid molecules 46,000.

Parameter space

The simulations have been performed at fixed temperature

T� ¼ 0:68 and density q� ¼ 0:84. The main dimensionless

input variable governing the deformation of the drop in shear

is the capillary number Ca � qmGR0=c, with m the kinematic

viscosity of the liquids, G the shear rate, and c the surface ten-

sion between the two liquids. The static contact angle is the

second dimensionless input variable.
As already mentioned, the density ratio and viscosity ratio

of the two liquids have been set to one for simplicity. As we

will see, the Reynolds number based on initial drop radius and

shear rate (Re � GR2
0=m) is smaller than 1 in all cases which

signifies the minor relevance of inertial effects in our study.

Calibrations

A number of calibration simulations have been carried out

to determine viscosity, surface tension, and static contact

angle for the molecular system at hand at the given (and fixed)

temperature and density.

Figure 1. Simulation domain and coordinate system.

Top: Cross section at y ¼ W=2; green is solid, white is con-

tinuous phase liquid, red is disperse phase liquid; all par-

ticles have the same size. Bottom: A three-dimensional

view with the same color coding and the continuous phase

liquid invisible. The shearing motion is indicated by the

velocity vectors ush. L� � L=r ¼ 102; H� ¼ 50; W� ¼ 68.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Viscosity

The same shear cell as defined in Model System and Simula-

tion Method Section is now filled with a single-phase liquid. Its

viscosity is estimated from the shear force on the plates to main-

tain a shearing motion and the average velocity profile in the liq-

uid. Figure 2a shows a time series of the average shear stress on

the upper and lower plate. The system is started (at t 5 0) by

impulsively switching on the shearing motion of the plates from

an equilibrated situation with zero shear. As can be seen, a steady

state sets in after t� � 50. In Figure 2b, the average shear veloc-

ity profile is shown, averaged over the two homogeneous direc-

tions (x and y) and over time (in the period 80 � t� � 380).

From the time-averaged shear stress and the slope of the linear

part of the velocity profile, the viscosity is determined: the data

in Figure 2 imply an average stress of �s� ¼ 0:0245; the average

shear rate is G� � G
ffiffiffiffiffiffiffiffi
m=e

p
r ¼ 0:00667. As a result, the

dynamic viscosity is l� ¼ �s�=G� ¼ 3:67. This is well in line

with viscosity results presented by Ref. 16; at T� ¼ 0:7 and

q� ¼ 0:85, their figure 7 indicates l� � 3:5. The kinematic vis-

cosity is m� � m
ffiffiffiffiffiffiffiffi
m=e

p
=r ¼ 4:37. Based on the latter value,

momentum penetration over half the channel height H�=2 ¼ 25

takes t� ¼ H�2

4pm� � 50 which agrees well with the length of the
transient phase as observed in Figure 2a.

This procedure for determining the viscosity has been
repeated for a number of shear rates to confirm the Newtonian
character of the liquid, see Figure 3. The increase in statistical
uncertainty for the lower shear rates is a result of the relatively
higher levels of fluctuations (in average velocity and shear
stress) at low shear and the for all cases fixed time interval
over which averaging takes place.

Surface tension

Two types of simulations have been performed to estimate
the surface tension between the two liquids. The first estimate
is based on planar interfaces and the “virial route”10,24: the
two liquids are placed in equal amounts in a cubic, fully peri-
odic domain with two interfaces coinciding with yz planes;
there are no solid walls (see Figure 4c). Temperature and den-
sity are set to the default values of T� ¼ 0:68 and q� ¼ 0:84.
After equilibration, surface tension is determined according
to24

c ¼ 1

2A

�XN

i¼1

XN

j>i

123x2
ij=r2

ij

� �
rij

@u rij

� �
@rij

�
(2)

with N the total number of particles, and A the surface area of
the yz plane (the factor 2 in front of A is because there are two
interfaces). The angled brackets indicate ensemble averaging
which in practice is done by averaging over many realizations
that were collected after equilibration.

The cubic domain has side length L� ¼ 43 and contains
67,200 molecules with equal amounts for each liquid. The sys-
tem is equilibrated over a time t� ¼ 600. Applying Eq. 2 over
a set of 200 independent realizations results in c� ¼ 1:556

0:05 where the uncertainty has been estimated from using dif-
ferent sets of realizations in the ensemble.

In the second approach for determining surface tension, the
system is initialized differently. Again there is a fully periodic,
three-dimensional cubic domain (with side length L� ¼ 60),
see Figure 4b. In the center, a spherical droplet is placed. After
equilibration, the radial pressure profile is calculated. The
pressure difference over the interface Dp and the radius of the
drop R then determines the surface tension (Young–Laplace
equation): c ¼ 1

2
DpR. The pressure distribution is determined

in a volumetric way.25 The average pressure in a volume X is

Figure 2. Left: Time series of the shear stress s� � sr3=e on the top (black) and bottom (red) solid wall in a
single-phase shear simulation; each data point is the average of 1000 time steps with Dt� ¼ 0:0046.
Right: Average wall-normal x-velocity profile. In this case, u�sh � ush

ffiffiffiffiffiffiffiffiffi
m=e

p
¼ 0:14.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3. Dynamic viscosity as a function of shear rate.

On data points without error bars, the uncertainty is

less than the symbol size.
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p ¼ 1

3X

�XN
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XN

i¼1

XN

j>i

‘ijrij

@u rij

� �
@rij

�
(3)

with N the total number of molecules, Ki equal to 1 if the cen-
ter of molecule i falls within X and 0 otherwise; ‘ij the fraction
of the line connecting molecules i and j that falls within X;
and vi the velocity of molecule i. Concentric spherical shells
with thickness Dr� ¼ 2:5 were taken as the volumes in which
the average pressure was determined. A cross section through
the simulation domain and a typical radial pressure profile are
shown in Figures 4b, a, respectively. From this pressure pro-
file, a surface tension of c� ¼ 1:53 6 0:1 has been estimated.
As can be judged from the profile, there is some uncertainty
in the pressure levels inside and outside of the drop as well as
in the radius of the equilibrated drop which is reflected in the
60:1 margin that we report.

For the purpose of determining capillary numbers, in the
remainder of this article, the surface tension between the two
liquids will be assumed to be c� ¼ 1:54 with the realization
that this is order 10% accurate.

Static contact angle

By varying the interaction parameter dds between the dis-
perse phase liquid and the solid while keeping that of the con-
tinuous phase liquid with the solid constant (dcs ¼ 0:7), drops
with different static contact angle on the substrate are created.
Figure 5 shows their time-averaged shape, including estimates

of the contact angle. Each of the drops shown in the figure is
initialized as a hemisphere with radius R�0 ¼ 20:4 in contact
with the substrate so that each drop has the same volume.
Note that R0 is the length scale, that is, used when determining
the capillary number. These systems are equilibrated over
t� ¼ 460. The time averages shown in Figure 5 were collected
over a subsequent period t� ¼ 460. As has been observed in
earlier studies,18 layering occurs near the substrate, most visi-
ble for the drops with the smaller contact angles. When fitting
a circular arc to the interface to determine the static contact
angle, the part of the interface near the substrate is discarded.
The fitting procedure will be discussed in detail in Results
Section where the more general case of deformed drops is con-
sidered. The angle with which the arc intersects with the top
surface of the substrate is our estimate for the static contact
angle. In this study, it varies between h 5 658 and 1118.

Results

The main interest of this study is deformation and sliding of
drops over a substrate as a result of a shear flow. The main
dependencies to be studied are those with the capillary number
Ca � qmGR0=c and the static contact angle h. The five equili-
brated, static droplets as depicted in Figure 5 are the starting
points for the shear simulations. At t 5 0, the plates impul-
sively start moving in opposite direction. The capillary num-
ber has been varied—between 0.02 and 0.64—by varying the
shear rate G; the other parameters defining Ca have not been

Figure 4. Determining surface tension. (a) Radial pressure profile (with resolution Dr� ¼ 2:5) inside and outside the
drop a cross section of which is shown in (b). (c) Cross section through the simulation domain for deter-
mining surface tension of a planar interface via the virial route.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Equilibrated droplet shapes and contact angle estimates.

In all cases, dcs ¼ 0:7 (see Eq. 1). From left to right, dds ¼ 0:9; 0:8; 0:7; 0:6; 0:5. The white curve is the best fit of a circular arc

(with its center x-location at x 5 0.5L and its radius and center z-location as fitting parameters) to the interface. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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varied. The consequence of this strategy is that also the Reyn-
olds number varies. The maximum Reynolds number is 0.6
which is considered sufficiently low to discard inertial effects.
Uncertainty in Ca is mainly due to uncertainties in m (approxi-
mately 5%) and c (10%) and thus is approximately 15%.

The way the droplets are analyzed will be demonstrated for
drops which have a static contact angle of h ¼ 89o. In Figure
6, we show cross sections through these drops in a reference
frame moving with the lower plate. The xy cross sections
closely above this plate (showing the “footprint” of the drop)
indicate a slight motion to the right which indicates that the
drop is sliding over the lower plate due to the shear flow. In
this process of sliding, the drop’s footprint remains approxi-
mately circular. The xz cross sections (right column of panels

in Figure 6) show the deformation of the drop. Beyond
t� � 100, the drop does not change shape anymore and a

(dynamic) steady state sets in.
Sliding speeds have been estimated by tracking the center of

mass of the footprint as a function of time, see Figure 7. After
an initialization stage, these time traces get approximately linear.

A least squares fit with a straight line (fits also shown in Figure

7) then provide an estimate for the average sliding speed. An
overview of the average sliding speeds of all simulations is

shown in Figure 8. This figure shows that to a fair approximation

and for Ca � 0:32, the sliding speed is linear with the capillary
number. As the capillary number has been varied by varying the

shear rate G, this implies a fixed velocity ratio vslide

GR0
for each of

the drops. Figure 9 shows this velocity ratio as a function of the
static contact angle: the higher the static contact angle, the more

the drop is susceptible to the shearing motion and thus the faster

it slides over the substrate.

Figure 6. Evolution of a shear simulation at Ca 5 0.16
in terms of dispersed (drop) phase density
contours.

Left column: xy cross sections directly above the substrate

(footprint of the drop); right column: Symmetry plane xz
cross sections. Time increases from top to bottom. Each

panel is a time average over an interval Dt� ¼ 19:7. The

time reported per panel corresponds to the middle of the

time averaging interval. The drop has static contact angle

h ¼ 89o. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 7. Footprint center position (x�c) as a function of
time for various capillary numbers.

The straight lines are best fits through the data points and

have been used for estimating the average sliding velocity.

All cases have h ¼ 89o. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Steady-state droplet sliding velocity as a
function of the capillary number for droplets
that have static contact angle h as indicated.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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The linear trend between sliding speed and capillary number
is not continued until the highest capillary number
(Ca 5 0.64); at this level of Ca, sliding speeds fall below the
linear trend, the more so for the larger static contact angles. As
we will see, Ca 5 0.64 is a special situation for which the
drops—at least within the limits of our computations—do not
reach a steady shape; they keep deforming while sliding over
the substrate with an approximately constant velocity.

For Ca � 0:32, a steady drop shape is eventually reached.
These shapes are shown in Figure 10. This figure shows drop
shapes averaged over a time period of at least t� ¼ 460
(100,000 time steps) where in the averaging process, we move
with the (sliding) drop. The stronger the liquid shear, the
stronger the for-aft asymmetry. To characterize the latter, a
receding and advancing contact angle (hr and ha, respectively)
have been defined. They are determined by fitting circles to
portions of the liquid-liquid interface,26 see Figure 11, with
the interface defined as the location with qd=hqi ¼ 0:5. The
angle with which the fitted circles intersect the top of the sub-
strate is then measures for the contact angles. The parts of the
interface close to the substrate where layering occurs (most

notable in Figure 10 for h ¼ 65o) are discarded from the fitting

process. The same procedure was followed for determining

static contact angles (Figure 5), except that then a single circle

was fit to the interface.
For most of the drop shapes in Figure 10, one then can

quantify how advancing and receding contact angles depend

on the capillary number, see Figure 12. The main trend is that

the difference ha2hr is a strong function of the capillary num-

ber. For situations where the advancing side of the droplet has

a complex shape with, for example, curvature changing sign,

ha could not be determined. This is illustrated in the inset of

panel h ¼ 100o of Figure 12 where it shows that the right

circle cannot accurately describe the advancing side of the

drop which leads to a significant overestimation of ha. Similar

difficulties apply to determining hr for cases with relatively

high Ca and small static contact angle h. Then, curvature

changes strongly over short distances above the substrate

which already is a problematic region for fitting given the

effect of layering.
No steady droplet shape could be established for Ca 5 0.64;

the drop keeps on stretching. Once its length is comparable

with the length L of the domain, the drop starts interacting

with itself over the periodic boundaries which is physically

unrealistic. In Figure 13, some of the later stages of these high

Ca simulations are shown with interesting features, such as the

drop’s footprint being very different for different static contact

angles and the extreme extension of the drop. These results for

Ca 5 0.64 clearly are preliminary. They have been included in

this article to highlight the departure from linearity, see Figure

8, for capillary numbers above some threshold. We leave a

more systematic study of such nonlinear effects for future

work (that clearly needs longer simulation domains).

Conclusions

Sliding and deformation of a liquid drop on a substrate as a

result of shear of a surrounding liquid has been studied by

Figure 9. Sliding velocity relative to shear rate times
initial drop radius as a function of the static
contact angle h.

Figure 10. Time-averaged shape of sliding droplets.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 11. Fitting procedure for determining the reced-
ing and advancing contact angles (hr and ha,
respectively).

The square symbols are locations in the density con-

tour plot (see Figure 9) on the curve qd=hqi ¼ 0:5; the

red circle segment is a least squares fit through the red

open symbols; the blue circle segment is a least squares

fit through the open blue symbols. The filled symbols

do not take part in the fitting process. The reference

level for determining contact angles z�0 is one diameter

above the center location of the top level molecules of

the substrate. In this example: Ca 5 0.081, h 5 898.

[Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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means of MD simulations. The two immiscible LJ liquids

involved have the same density and viscosity. Surface tension

between them is the result of a weaker attractive part of the

interaction potential between unlike molecules as compared

with like molecules. The main dimensionless parameter con-

trolling the drop deformation is the capillary number (Ca) that

can be interpreted as the ratio between (deforming) viscous

forces and (restoring) forces due to surface tension. Next to

Ca, the second variable whose influence on sliding and defor-

mation has been studied is the static contact angle of the drop

on the substrate.
First-calibration simulations were performed to determine

transport coefficients and material properties of the actual sys-

tem that in the MD simulations is only defined in terms of

interaction potentials, overall density, temperature, and the

structure and density of the substrate. The viscosity calibration

showed favorable agreement with what is known from the lit-

erature.16 The surface tension was determined by two methods

(the virial route and the Young–Laplace law) that showed a

consistent outcome. Variation in static contact angle (between

65 and 1108) was achieved by changing the interaction

strengths between liquid and substrate molecules.
Over the entire capillary number range considered

(0:02 � Ca � 0:64), the drop was sliding over the substrate.

For Ca � 0:32, the sliding speed was proportional to the shear

rate with a proportionality constant that was dependent on the

static contact angle of the drop: an increasing contact angle

increases the sliding speed as the drop protrudes further into

the shear flow. Dependent on the static contact angle, the slid-

ing speed is between 10 and 30% of shear rate times (initial)

drop radius. The deformation of the drop under shear was

quantified—where possible—with receding and advancing

dynamic contact angles with the difference between the two

increasing with increasing Ca.
The highest capillary number studied (Ca 5 0.64) showed

very strong deformation and deviation from the linearity

Figure 12. Receding contact angle hr (red symbols) and
advancing angle ha (blue symbols) as a func-
tion of Ca for all static contact angles h

(green symbols) investigated.

The inset in the second panel from the top relates to

the filled data points in that panel and is discussed in

the text. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 13. Impressions of drop deformation at
Ca 5 0.64 for three static contact angles.

Instantaneous realizations at indicated moments.

Note the periodicity of the computational domain.

[Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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between sliding speed and shear rate. This high end of the cap-

illary number is worthwhile investigating further with more
intensive calculations in larger domains to better accommo-

date strong drop deformation.
There are many more avenues for future research. In the

first place experimental validation, where it is not directly nec-

essary to go down to the—in principle—very small scales con-

sidered in this article (if r ¼ O 1 nmð Þ, drop radii would be
order 20 nm). We hypothesize that, given our generic

approach, much larger drops in experiments behave similar

(even in a quantitative sense) to our simulated nanodrops at

the same capillary number and static contact angle, as long as
in such experiments the Reynolds number stays (well) below

one. In the second place and also instigated by the need for

experimental validation, studying the effects of systems where

the liquids have different viscosity and/or density would be an

important exercise. In the third place, the sensitivity of the cur-
rent results with respect to the properties of the solid substrates

needs attention. Lattice structure and lattice spacing should be

varied. More importantly the assumption of nonthermal sub-

strates as used so far requires investigation. This we will study
in ways as, for example, described in Ref. 27 with the solids

atoms thermally vibrating around their equilibrium position in

harmonic potentials. Some preliminary single-liquid, nonequi-

librium MD simulations (similar to the ones we reported for

determining viscosity) including thermal walls showed virtu-
ally no effect of solids thermal motion on average liquid

velocity profiles and measured viscosities up to levels of solid

atom mean-square displacements that are close to melting; this

finding is in line with, for example.28
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