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Scalar transfer from a solid sphere to a surrounding liquid has been studied numerically. The simulation procedure
involves full hydrodynamic resolution of the solid-liquid interaction and the flow (laminar and turbulent) of the carrier
fluid by means of the lattice-Boltzmann method. Scalar transport is solved with a finite volume method on coupled over-
lapping domains (COD): an outer domain discretized with a cubic grid and a shell around the solid sphere with a
spherical grid with fine spacing in the radial direction. The shell is needed given the thin scalar boundary layer around
the sphere that is the result of high Schmidt numbers (up to Sc = 1000). After assessing the COD approach for laminar
benchmark cases, it is applied to a sphere moving through homogeneous isotropic turbulence with the sphere radius
larger (by typically a factor of 10) than the Kolmogorov length scale so that it experiences an inhomogeneous hydrody-
namic environment. This translates in pronounced scalar concentration variations and transfer rates over the sphere’s
surface. Overall scalar-transfer coefficients are compared to those derived from classical Sherwood number correla-
tions. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1202—-1215, 2014
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Introduction

Many processes in nature as well as engineering rely on
mass and heat transfer between a solid surface and an adja-
cent fluid. Examples are dissolution and crystallization, het-
erogeneous reactive processes (e.g., combustion of solid fuel,
catalysis), and drying. The scalar (heat and/or mass) transfer
is due to flow and diffusion. The absence of flow at the very
surface (no-slip and no-penetration) makes molecular diffu-
sion the dominant transport mechanism there. Some distance
away from the surface, average motion (flow) of the fluid
adds to (and often dominates) scalar transfer rates. Flow is
generated through the scalar itself (an active scalar and free
convection), is imposed by an external mechanism (forced
convection with a passive scalar), or is a combination of
both (mixed convection).

Engineering design uses mass and heat-transfer correla-
tions for predicting process rates. Such predictions directly
relate to overall interfacial area required to achieve design
objectives and therefore to estimations of equipment size. In
dimensionless form, the correlations are in terms of Sher-
wood numbers (or Nusselt numbers for heat transfer) as a
function of flow conditions and fluid properties via Reynolds
and Schmidt numbers (Prandtl numbers for heat transfer) for
canonical flow and transfer geometries, for example, flow
over plates, through pipes, past spheres, or cylinders. Such
correlations have a long and rich tradition and are based on
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tedious experiments and dimensional analyses.l_3 Data and
correlations have been collected and analyzed in articles and
book chapters.*®

The complexity of most practical situations with, for
example, dense, dynamic suspensions of solid particles
(instead of one sphere in an unbounded domain or a packed
bed of monosized spheres), or particles in turbulent flow
makes parameterizing the flow with a single Reynolds num-
ber challenging and (consequently) yields only coarse, inac-
curate scalar transfer predictions. Process designers therefore
also rely on experimentation, scale-up studies, and their
experience. Numerical simulations are potentially part of
their toolbox. The equations to be solved are largely known,
and so are the basic material properties (most notably viscos-
ities and diffusion coefficients) and there are many examples
of successful applications of numerical solutions to heat and
mass transfer problems in fluid-solid systems.””

Despite successes, challenges in the field of simulation of
scalar transfer in solid—liquid suspensions are abundant.
They relate to high Schmidt numbers, geometrical complex-
ity, and the presence of a broad range of length scales. Large
Schmidt numbers make scalar length scales much smaller
than dynamic (flow) length scales so that resolving the scalar
field gets a much more demanding task than only resolving
the flow field, an issue that has been well recognized in sim-
ulations of scalar transfer around bubbles.'®'* At the length
scales of the particles, the interstitial liquid resides in a com-
plexly shaped domain with particles moving relative to one
another as moving no-slip boundary conditions. Scalar and
particle length scales are in many applications much smaller
than the macroscales (e.g., equipment size). In addition,
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turbulence may add to the complexity by making flows fun-
damentally three-dimensional (3-D) and extending the spec-
trum of the scales to be resolved.

It is the aim of this article to contribute to tackling some
of the above challenges by suggesting, testing, and applying
a numerical procedure for simulating solid-to-liquid scalar
transfer at the level of individual moving particles. The pro-
cedure is specifically designed for dealing with high Schmidt
numbers. Although in this article, we limit ourselves to sim-
ulations with one, spherical particle that is allowed to trans-
late and rotate over a fixed grid, extensions to multiple
particles are clearly feasible (although not trivial). In part of
our simulations, the particle is exposed to a turbulent flow
with a Kolmogorov scale typically one order of magnitude
smaller than the particle size. This implies that the particle
experiences an inhomogeneous hydrodynamic environment
and we study the consequences of this for scalar transfer.

The remainder of this article starts with a description of
the numerical procedure, where the novel part is the coupled
overlapping domain (COD) approach to scalar transport. We
then present results for benchmark cases: scalar transfer due
to creeping flow and flow at finite Reynolds numbers past a
sphere. Subsequently, the sphere is placed in a homogene-
ous, isotropic turbulent field. Flow, particle motion, and sca-
lar transport are solved simultaneously and fully coupled in
a 3-D time-dependent fashion. Conclusions are reiterated and
future work is proposed at the end of the article.

Although the terminology in the article is geared toward
mass transfer (e.g., Sherwood and Schmidt numbers), the
numerical procedure is applicable to forced-convection heat
transfer as well.

Numerical Approach
Liquid-solid flow dynamics

In the simulations, a single, solid sphere (radius a, density
pp) is placed in a 3-D domain containing a Newtonian fluid
(density p, kinematic viscosity v). Usually, the boundary
conditions at the edges of the domain are periodic. Through-
out this work, the density ratio p,/p =4, which is representa-
tive for a solid-liquid system. Flow is generated by forcing
the fluid and/or the particle. In the benchmark simulations, a
uniform body force creates a laminar flow past the sphere. In
the turbulence simulations, linear forcing'* generates homo-
geneous, isotropic turbulence (HIT) with a preset power sup-
ply per unit liquid mass. The simulations fully resolve the
turbulence [direct numerical simulations (DNS)]. The motion
of the fluid and the particle are two-way coupled, that is, the
particle moves under the influence of hydrodynamic forces;
conversely, the fluid feels the translational and rotational
motion of the particle through the no-slip and no-penetration
conditions at the sphere’s surface. In many of the benchmark
simulations, the sphere is held in a fixed location.

The lattice-Boltzmann (LB) method,'>'® supplemented
with an immersed boundary (IB) approach17 to enforce no-
slip and no-penetration at the sphere surface, is used to
evolve the flow system in time. The IB method provides the
hydrodynamic force and torque on the sphere that are used
to update the sphere’s linear and angular velocity and posi-
tion. The flow is solved on a uniform, cubic grid and (if the
sphere is mobile) the sphere moves over this grid. The
default resolution is such that the sphere radius spans eight
grid spacings: a = 8A. Excursions to @ = 12A and 16A have
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been undertaken to assess grid effects. In the turbulence sim-
ulations, the Kolmogorov scale typically is nx ~ A. This
numerical approach, including turbulence generation, hydro-
dynamic radius calibration, and resolution tests has been
documented in previous articles of ours.''?

Scalar transport

To study solid-liquid scalar transfer, a passive scalar with
concentration c¢(X, #) is introduced in the liquid. Its transport
equation reads

ac

+u-Ve=T'V% 1
atch Ve (D

with u the liquid velocity field, and I" the scalar diffusivity.
The Schmidt number is recognized as Sc = v/I'. A bound-
ary condition ¢ =1 is imposed at the surface of the solid
sphere. This boundary condition implies that in this study,
we do not consider transfer processes inside the particle
(such as intraparticle heat transport). The particle radius a
does not depend on time, that is, we do not simulate a disso-
lution process.

The scalar transport simulations usually start with a fully
developed flow and ¢ =0 everywhere in the liquid. At time
zero we start solving Eq. 1, including its ¢ =1 boundary
condition, and we keep solving the flow equations. Starting
from ¢ =0, solid-to-liquid transfer is monitored by keeping
track of

riiz—FJ%dA )
on
A

with A the surface of the sphere, n the normal to the surface
pointing into the liquid, and m the scalar flux. Usually, the
scalar flux is parameterized by a transfer coefficient k:
m=kSAc. In this case, the overall concentration difference is
Ac = 1, and the surface area is S = 4na®>. We then have k=
/(4ma?) and Sh = 24 =" with Sh the Sherwood number.

Our interest in liquid systems implies that Schmidt num-
bers Sc > 1, and strong concentration gradients are to be
expected near the particle surface. As these gradients eventu-
ally determine the scalar transfer process (see Eq. 2), proper
spatial resolution of the scalar field close to the surface is
essential for good Sherwood number predictions.

Coupled overlapping domains

Given that Sc > 1, the cubic grid with a resolution of
typically A =a/8 that serves well in resolving the flow
dynamics,lg’19 will not be able to sufficiently resolve the sca-
lar field. At the same time, we recognize that scalar resolu-
tion challenges are largely confined to a region close to the
sphere. We therefore propose to solve the scalar transport
equation (Eq. 1) on two coupled overlapping domains
(COD). This is illustrated in Figure 1. The outer domain has
the same cubic grid as the LB solver. The inner domain is a
spherical shell with inner radius a and thickness 0. It has
been discretized by a grid along the spherical coordinates
(r,0,9): a<r<a+o, 0<0<m, and 0 < ¢ <27 with 0
running from pole to pole and 0= /2 on the equator. For
simplicity, radial and angular steps (Ar, A0, Ap) are uni-
form. Also for simplicity, it was decided not to discretize the
shell with a “cubed sphere approach.”20 An advantage of the
latter would be avoiding the anisotropy that is inherent to
spherical grids with meridians clustering near the poles. It
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Figure 1. Impression of COD.

A spherical shell with a grid in spherical coordinates
interacts with an outer uniform cubic grid. [Color figure
can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

will be demonstrated later in the article, however, that—with
sufficient angular resolution—the scalar transfer results are
insensitive to the way the spherical grid is oriented relative
to the outer grid.

On the outer domain, Eq. 1 is solved by an explicit finite
volume (FV) scheme with total variation diminishing (TVD)
discretization with the superbee flux limiter for the convec-
tive fluxes.”’> The latter suppresses numerical diffusion.
This way of dealing with scalar transport in a flow field gen-
erated by the LB method has been utilized in many of our
previous articles, the first one being Ref. 24.

An FV scheme is also used for solving Eq. 1 on the spher-
ical grid in the shell around the sphere. In this scheme, time
stepping has been done in a mixed implicit/explicit way: the
focusing of grid lines near the poles makes that for stability
reasons we need to treat the ¢ derivatives implicitly. With
the explicit treatment of the r and 0 derivatives, we avoid
solving large linear systems of equations and instead deal
with solving multiple tridiagonal systems each time step. For
the convective fluxes, central differences have been applied
in the angular directions; the same TVD scheme as noted

7

Figure 2. Benchmark configuration for the flow past a
sphere in a rectangular domain.

The origins of the Cartesian and spherical coordinate
system coincide with the center of the sphere.
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Figure 3. Evolution of the scalar transfer process for
creeping flow past a sphere.
Sherwood number as a function of dimensionless time
for a range of Peclet numbers. [Color figure can be
viewed in the online issue, which is available at wileyon-
linelibrary.com.]

above has been used in the radial direction. In this study,
concentration is imposed at the solid surfaces (Dirichlet
boundary conditions). If desired, the numerical approach
allows in a straightforward manner for gradient (Neumann)
or mixed conditions. Unless very steep gradients are imposed
through a Neumann condition, the presently used Dirichlet
condition is the most challenging in terms of spatial
resolution.

The spherical grid is attached to the sphere, and Eq. 1 is
solved in a reference frame moving (translating and rotating)
with the sphere. The spherical grid itself has a fixed orienta-
tion with the line connecting the poles aligned with one of
the Cartesian coordinate directions. The relative velocity
field in the shell is denoted by v(r, 0, ¢; 1), the velocities in
the outer domain with the cubic grid in a fixed frame of ref-
erence by u(x, y, z; t).

The two (cubic and spherical) grids communicate through
interpolation of velocity as well as concentration fields. The
velocity field on the spherical grid is imposed by the LB
solution u. For reasons to be discussed below, the shell
thickness 0 is comparable to the cubic grid spacing A (typi-
cally 6/A =~ 1 to 3). The radial spacing in the spherical grid
is much smaller than A (of the order of Ar = 0.1A) so that
(at least in radial direction) we need to interpolate from a
coarse u field to a fine v field. This is done as follows: for
each discrete 0, ¢® angular location, the velocity relative
to the sphere at three radial positions is determined: At
r=a, v=0 by definition; at r=a + /2 and r=a+ 9, v is
determined through linear interpolation from the known
velocities u on the cubic grid, and the known velocity (linear
and angular) of the sphere vp, €,. These velocity support
points at three radial locations are connected through a
(unique) quadratic function of r that is used to determine the
velocities at each discrete radial location v(r(i),GU),go(k);t)
on the spherical grid. Because the three velocity support
points are a distance of order A apart, we do not over or
under interpolate the LB velocity field u to the spherical
grid. The spherical velocity field has a staggered arrange-
ment, that is, velocities are located at the faces of cells so as
to simplify the FV implementation. The velocity fields on
cubic and spherical grid are to a very good approximation
incompressible. Some of the choices made in the above
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Figure 4. Steady state Sherwood number as a function of Peclet number for creeping flow past a sphere.

The drawn curve (same in all four panels) is from Ref. 6. A: Effect of resolution A with Stokes’ solution for the flow, plus refer-
ence data (FM).?” B: Effect of shell thickness & with Stokes’ solution for the flow. C: Results with Stokes’ solution on both grids
(“full”) and Stokes’ solution on the cubic grid and an interpolated (second-order and third-order) flow field on the spherical shell
grid. D: Results with LB flow solution with periodic boundary conditions, effects of domain width W. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

procedure (e.g., quadratic interpolation and the locations of
the support points) have been checked through sensitivity
tests.

In the time stepping process, the concentration field on the
cubic grid serves as a boundary condition for the concentra-
tion field on the spherical grid, and vice versa: at the start of
each time step, the concentration field at the edge of the
spherical shell (i.e., at r =a + J) is determined through lin-
ear interpolation from the concentration solution on the cubic
grid at the old time level. Then, the concentration field in
the spherical shell is updated which can be done because we
have known concentrations at its radial edges r=a (c=1)
and r = a + ¢ (interpolated). For spherical grids with fine Ar,
this shell update may consist of multiple subtime-steps for
reasons of stability (i.e., to keep Ar < %%’2). After the shell
concentration update, nodes on the cubic grid that are cov-
ered by the shell get assigned a new concentration value that
is linearly interpolated from the new time level solution on
the spherical grid. These nodes of the cubic grid are not
touched anymore in the cubic grid concentration update that
now follows. In fact, the cubic grid nodes covered by the
shell near the outer edges of the shell serve as boundary val-
ues for the concentration update on the cubic grid. This
cubic grid update completes one scalar time step on the
spherical as well as on the cubic grid.

It should be noted that the sphere is allowed to move rela-
tive to the cubic grid. The shell is attached to the sphere,
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and the concentrations on nodes inside the shell (including
those that reside on the cubic grid) are governed by the con-
centration field on the spherical grid. This implies that our
COD approach does not require a “refill” procedure (such as
e.g., used in LB context®) for cubic grid nodes that get
uncovered by the moving sphere. Cubic grid nodes that get
uncovered by the shell already have a (physically sound)
concentration attached to them based on the former concen-
tration field in the shell.

An important choice to be made is for the shell thickness 6.
It has to be larger than the cubic grid spacing A so as to have
at least one layer of cubic grid points around the sphere that
fall in the shell and thus can serve as boundary conditions for a
cubic concentration field update. The shell also should not be
unnecessarily thick. It has no function beyond resolving the
concentration boundary layer and making it much thicker would
be computationally inefficient. In addition in future work, we
want to go beyond a single sphere and plan to study scalar
transfer in dense solid-liquid suspensions. We then unavoidably
will be dealing with overlapping shells. This likely will require
some level of modeling (as opposed to directly solving the
transport equations) with regards to mixing of concentrations in
overlapping shells. To simplify such modeling and minimize
the impact of the modeling steps, thin shells, and thus small
shell overlap volumes are to be preferred.

In this work, the default shell thickness is set at 0 = 1.5A
and the sensitivity to this choice is investigated.
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Figure 5. Flow past a sphere at Re =22.3.

Left: velocity vectors on the cubic grid in the xz plane through the center of the sphere (note that this panel shows only part of the
overall flow domain). Right: velocity field in the spherical shell at r=a+§/2; the color contours indicate radial velocity; the vectors
are the velocity parallel to the sphere surface. The reference velocity (uy) is the average x-velocity in the fluid volume. [Color fig-
ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Benchmarks

To verify and validate our simulation procedure, and to
check sensitivities to numerical parameters, scalar transfer
due to the flow past a single, rigid sphere is considered. We
distinguish between two different situations: creeping flow
and steady laminar flow at finite Reynolds numbers, with Re
= U2a/v and U a relevant velocity scale. The availability of
Stokes’ solution for creeping flow past a sphere’ allows us
to assess the performance of the scalar solver independent of
the (LB) flow solver. For some of the finite Reynolds num-
ber cases, we compare scalar transfer rates at static spheres
with those at spheres moving relative to the cubic grid.

Sc=1000

t=14al<u> t=28al<u>

o

The reference data we use can be found in the seminal
book by Clift, et al.® Their Figure 3.10 shows (amongst
more) the Sherwood number as a function of the Peclet num-
ber Pe = U2a/T for creeping flow. The correlation

1\1Y3
Sh=1+ {1—1— (_)} pel4lge —0.08
Pe

(rewritten from Eq. 5-25 in Ref. 6) is used for comparison
with finite Reynolds number results. It has been reported6
that Eq. 3 is within 3% accuracy for 1 <Re <400 and
0.25 < Sc < 100.

3

side view, steady

t=42al<u>
C HEEmss

]
o -
w

Figure 6. Scalar transfer for the flow past a sphere at Re =22.3.

Scalar concentration in the xz-plane through the center of the sphere on the cubic grid for different Sc (top to bottom) and time
(left to right). Far right: side view of the concentration on the outer surface of the shell (r=a + d) after steady state is reached.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 7. Time series of the total amount of scalar (m)
on the cubic grid outside the shell and of the
Sherwood number for flow past a sphere at
Re =22.3 and Sc = 100.
The green line indicates the slope of portion of the m
time series. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Creeping flow past a sphere

A fixed sphere of radius a is placed in a rectangular
domain of size LXW XW, see Figure 2. The figure defines a
Cartesian and a spherical coordinate system that both have
their origin in the sphere center. Overall flow is in the posi-
tive x-direction. The default domain size is L/a=8 and
W/a = 4; the center of the sphere is a distance L/4 from the
inlet plane and in the middle of the domain in y and z direc-
tion. In the domain, the liquid velocity according to Stokes’
solution for creeping flow around the sphere with free stream
velocity U is imposed

3r
Za)’

’
2a3
. " 3r
v0=Usm0<1— B E) . V=0

3
v,=Ucos 9<1+ —
4

Equation 4 is discretized on the cubic grid with spacing
A =a/8 that covers the entire domain, and on a spherical
grid in a shell around the sphere with thickness ¢ = 1.5A.
Spacings in the spherical grid are Ar=4§/16 and
AO=A@=m/20. This velocity field and these grids are used
for solving the scalar transport equation (Eq. 1). Concentra-
tion boundary conditions are c =1 at r = a, % =0 at the inlet
and outlet planes, and periodic conditions along the other
boundaries. Initially ¢ =0 everywhere in the liquid. The dif-
fusivity is set such as to achieve five Peclet numbers:
Pe =32, 97, 320, 970, and 3200, respectively.

Resolution requirements in radial direction can be esti-
mated as follows. A time scale for the flow past the sphere
is a/U. During this time, the scalar diffuses over a distance

relative to the sphere radius of typically ~ nla/u =\/%. The

radial grid should be well able to resolve this diffusion layer:
% < \/Pl:. For the highest Peclet number of 32,000, \/7/Pe
~ 0.03 whereas Ar/a =~ 0.006.
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Starting from the initial condition, the simulations keep
track of the Sherwood number as a function of time. It is
determined by numerically performing the differentiation
and integration in Eq. 2. Results for the five Peclet numbers
are given in Figure 3. Initially, scalar transfer is very strong
due to fresh fluid getting in contact with the sphere surface.
In the course of time, a scalar boundary layer establishes
itself around the sphere and a steady state sets in after a
time of the order of 10 a/U. In accordance to a criterion
introduced earlier,26 the Sherwood time series are assumed
to have reached steady state if the change in Sh during the
last 20% of the computational time was less than 1%. These
steady state Sherwood numbers are compared with the
results given in Clift, et al.® see Figure 4A. For further refer-
ence, Figure 4A also contains data from Feng and Michae-
lides.?” Good agreement with a slight underestimation (up to
9%) of Sherwood numbers at higher Pe is observed. The
underestimation is not a result of an insufficiently fine grid
in radial direction. A refinement by a factor of 2 (Ar=0/32)
results in virtually the same steady state Sherwood numbers
(differences less than 0.2%, not shown in Figure 4). A finer
cubic grid with A=a/12 improves the agreement with the
reference data to deviations of up to 6% (see Figure 4A). In
Figure 4B, the impact of the choice of the shell thickness is
detailed, with the thinner shell of 6=1.125A performing not
as well as the default and thicker shell.

To test the interpolation of the velocity field to the spheri-
cal grid (as outlined above), simulations are also performed
in which the Stokes solution is only applied to the outer,
cubic grid, and the velocity field on the spherical grid is
interpolated with a quadratic function (the default), and also
(for assessing sensitivity) with a third-order polynomial (on
four radial support points). The differences in terms of

50
Sh 80  Re=22.3 &
40+ _0O_ Re=42
_0__Re=15
30} S
// il
20 B D/’//
D/// in
10+ e Rt
0 1
10 10° sc 10°

Figure 8. Sherwood number as a function of Schmidt
number for flow past a sphere at three Reyn-
olds numbers as indicated.

Line: correlation (Eq. 3) where the transition from solid
to dashed indicates that Eq. 3 is accurate up to Sc = 100.
Open symbols are simulation results with default
numerical and geometrical settings. The two closed sym-
bols are benchmark data from Ref. 28 at Re =20.
[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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Figure 9. Dependencies of the Sh-Sc relationship at Re = 22.3 for various numerical and geometrical variables.

A: Effect of shell thickness dand spherical grid orientation relative to flow direction. B: Effect of spherical grid resolution; fine-r
has twice as small Ar as default; fine 0¢ twice as small A6 and Ag. C: Effects of system size dimension W. D: Effects of the resolu-
tion of the cubic grid. E: Combined effect of cubic grid refinement and increased domain size.

Sherwood numbers in Figure 4C between “full Stokes”
(Stokes on outer and inner grid), and second-order and third-
order velocity interpolation are marginal, providing confi-
dence in the velocity interpolation procedure.

As a next step, instead of using Stokes’ solution for veloc-
ity, a LB solution at low Reynolds number (Re =0.05), and
quadratic velocity interpolation to the spherical grid are used
to solve the scalar transport equation. For obtaining the LB

1208 DOI 10.1002/aic

Published on behalf of the AIChE

solution, fully periodic conditions and a domain with dimen-
sions L/a =18 and W/a =4 are applied. Therefore, the flow
boundary conditions are different from the (at infinity)
boundary conditions leading to the Stokes solution; the for-
mer conditions essentially mimic a regular, 3-D array of
spheres through which liquid is forced. These LB flow
results lead to a clear overestimation of the Sherwood num-
ber, see Figure 4D. The finite domain size in conjunction
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Figure 10. Comparison between a fixed and a moving sphere.

Left: time series of total amount of scalar in the fluid and Sh at Re = 22.3 and Sc = 100. Solid curves: fixed sphere (same data as
Figure 7); dashed curves: moving sphere. Right: steady state Sherwood numbers as a function of Sc for Re =7.6 and 22.3. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

with the periodicity of the flow boundary conditions are
largely the reason for this overestimation; an increase of the
width W of the domain strongly reduces the deviation from
the reference data, see again Figure 4D.

Scalar transport for flow past a sphere at finite Re

A configuration as in Figure 2 was also used to study flow
and scalar transport at finite Reynolds numbers. The flow is
driven by a uniform body force on the fluid in the x-direc-
tion, which was controlled in such a way as to achieve a
desired Reynolds number that now is based on the volume-
averaged velocity in x-direction: Re=(u,)2a/v. By default
the domain size is L/a =16 and W/a = 8; the resolution of
the cubic grid is A = a/8. The case with Re =22.3 is used as
a reference case, that is, its sensitivity for numerical choices
is studied, specifically in terms of the Sherwood number.

Impressions of the LB solution for the flow at the refer-
ence Reynolds number are given in Figure 5. The fore-aft
asymmetry is clear from the xz cross section. At this Reyn-
olds number, there is no recirculating wake; recirculation for
a sphere placed in uniform flow typically sets in at
Re > 37.° The velocity field on the cubic grid was interpo-
lated to a grid in a spherical shell with thickness 6=1.5A,
and Ar=06/16 and AO=A¢@=n/20. Figure 5 also shows the
velocity field in the spherical shell. The acceleration and
then deceleration of liquid moving past the sphere is clearly
observed through the vectors in the (0, ¢)-view. The con-
tours in the (0, ¢)-view show that radial velocities are nega-
tive (transport toward the sphere surface) for 0 > 0.6n and
positive for smaller angles . The velocity contours show
some scatter with a four-fold symmetry which is due to the
interpolation from the cubic grid on the spherical shell. The
scatter in this plot is enhanced by showing the contours with
the resolution of the angular grid, hence the block-like struc-
ture of the contour plot.

The scalar transport equation (Eq. 1) is solved with this
velocity field for five values of the Schmidt number: 10, 30,
100, 300, and 1000. As for the creeping flow benchmark, the
concentration on the sphere is set to ¢ = 1; % =0 at the inlet
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and outlet planes; periodic conditions apply along the other
outer boundaries.

The scalar transfer from the solid surface to the liquid is
highly sensitive to the Schmidt number, as demonstrated in
Figure 6 that shows concentration fields at different moments
in time and on the two grids. The zero-gradient conditions
for scalar transport on the upstream and downstream bound-
ary allow for the existence of a steady concentration field
where the rate at which the scalar enters the liquid through
diffusion at the sphere’s surface is balanced by the removal
through the exit plane. Well before this overall steady con-
centration state is reached, however, the transfer rate at the
sphere’s surface has become virtually steady, see Figure 7
that shows time series of the Sherwood number as deter-
mined through Eq. 2, and the total scalar mass m on the
cubic grid, outside the shell. After a time period of
t =~ 10a/{u,), m increases linearly, so that m is constant in
time. At 7= 30a/(u,), m levels off. From then on scalar is
present at the exit boundary and leaves the domain. Next to
via Eq. 2, the Sherwood number can thus be determined
through the slope s in Figure 7. With the scaling of the axes
as used in Figure 7 Sh= ;- Pe; for s = 0.11 and Pe = 2.23-10°
this results in Sh=19.5. The average Sherwood number
based on Eq. 2 in the time period 15a/{u,) <t < 25a/{u)
(i.e., the “most linear” part of the m vs. ¢ curve) is Sh = 18.7,
that is, 4% lower. This is an indication for the level of con-
sistency of the communication (through linear interpolation)
between the two coupled, overlapping grids because one
Sherwood estimate (via Eq. 2) is determined on the inner
grid and the other (via the m-slope) on the outer grid.

In Figure 8, an overview of results for the Sherwood num-
ber as a function of Reynolds and Schmidt number is pre-
sented and compared to the correlation in Eq. 3. These
results are obtained with the default domain size and resolu-
tions on the two grids as defined above. For reference, Fig-
ure 8 also contains two data points from the literature® at
Re =20. Up to Sc =100, the deviations between simulations
and correlation are within 8%, beyond Sc = 100 the devia-
tions significantly increase, to an overestimation by 18% at
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field (top, Sc = 100) and velocity field for the turbulent case with a/nx =10.7.

The moment of the vector field is the same as for the middle concentration panel (t=46tk). The resolution of the cubic grid is
twice as high (in each dimension) as the density of the velocity vectors. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Sc =1000 and Re =22.3 where it should be noted that the
correlation (Eq. 3) is recommended only for use up to
Sc =100 [6].

For the highest Reynolds number in Figure 8, that has the
strongest deviations, geometrical and grid effects are checked.
Results of these exercises are presented in Figure 9. The char-
acteristics of the spherical shell and its grid are of minor influ-
ence on Sh. Changing the shell thickness J causes small
changes in the Sherwood number, the more remarkable one
being a decrease of Sh at Sc =30 upon reduction of J, see
Figure 9A. As an aside, Figure 9A also shows the effect of
change in orientation of the spherical grid relative to the flow.
By default the line connecting the poles of the spherical grid
is aligned with the x (is flow) direction. The consequences for
changing this to the z-direction (and further default condi-
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tions) are minor. The same can be said for refining the spheri-
cal grid, see Figure 9B. In terms of the radial grid this is
understood based on the earlier noted demand for resolution:
with the highest Pe=ScRe=2.23 - 10*, \/n/Pe ~ 0.012 > Ar
/a = 0.006 with the latter the (default) radial resolution.

The overall size of the rectangular flow domain and the
resolution of the cubic grid are major factors in the devia-
tions between simulations and correlation, see Figures 9C,
D. In Figure 9C, the domain size is varied in the lateral
directions (W/a in the range 6—18, with § the default). An
increase in W reduces the Sherwood number which can be
understood by the periodic flow conditions. In narrow
domains, the liquid has to squeeze through closely spaced
spheres in a periodic arrangement which enhances scalar
transfer. Because the enhancement is flow-related, it is
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Figure 12. Side views of instantaneous realizations of

scalar concentration in the spherical shell
at r=a+6/2 (left) and r=a+é for three
Schmidt numbers.
Turbulent conditions with a/yg =10.7. All six panels
are at the same instant in time. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]

stronger for higher Sc for which flow (as compared to diffu-
sion) is more important for scalar transfer.

A subtle point in this discussion is the definition of the
Reynolds number Re=(u,)2a/v with (u,) the volume-
averaged x-velocity. In wider domains, the relative influence
of the low velocity region near the sphere on the average
velocity is smaller so that a Reynolds number based on a
free-stream velocity would decrease for flows in wider
domains having the same average velocity. To quantify this
effect, Reynolds numbers based on an x-velocity in a point
far away from the sphere (we took that point in the corner
of the domain, all eight corners are the same given the peri-
odic conditions) are determined as estimates for free-stream
Reynolds numbers. These Reynolds number are within 1%
for all cases in Figure 9C, which—given Eq. 3—cannot
account for the variability of some 20% in the Sherwood
number with domain width for Sc = 1000.

Resolution of the cubic grid also has its effect on the
Sherwood number. In Figure 9D, a comparison between a=8§
A, 12A, and 16A is presented where all further dimensions
relative to a were kept constant. For Sc = 1000 the Sher-
wood numbers are Sh=43.7, 40.4, and 39.7, respectively,
and thus tend to converge. According to Eq. 3, the Sherwood
number should be Sh =35.9. Finally, the combined effect of
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domain size and cubic-grid resolution is assessed in Figure
9E where deviations between simulation and correlation are
less than 5% over the full range of Schmidt numbers.

So far the sphere is at a fixed location with liquid flow
past it. The numerical procedure is designed, however, to
allow for a sphere moving relative to the cubic grid. For this
reason, we designed simulations where a single sphere was
settling steadily in a fully periodic domain at Re =22.3 and
7.6 with Re=|v,,—(u,)|2a/v and v,, the x-component of the
velocity of the sphere. Different from the static-sphere cases
above, the scalar boundary conditions now need to be fully
(3-D) periodic. To delay the moment scalar from the wake
reaches the front of the sphere, the domain is made longer
than for the static sphere, L/a =40. The rest of the aspect
ratios are the same as for the default static sphere. The
results of the moving-sphere cases are summarized in Figure
10. The evolution of m and Sh is directly compared to its
fixed-sphere counterpart in Figure 10A. The longer domain
and periodic scalar conditions for the moving sphere make
that the m-curve does not level off within the time window
of the figure; its slope, however, is very close to that of the
static sphere. Careful observation shows some fluctuations in
the m-curve of the moving sphere which are due to the
motion of the sphere plus shell over the cubic grid. The
Sherwood numbers for moving and static sphere are very
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Figure 13. Top: times series of the Sherwood number
under turbulent conditions (at a/yx = 10.7)
for three Schmidt numbers.

Bottom: particle Reynolds numbers based on the slip
velocity [vp—(u)| with the volume averaged liquid
velocity (u) taken over a cubic volume D’ centered
around the particle. Default numerical settings. [Color
figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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lines are for indication only.

close, as a function of time (Figure 10A), as well as in
steady state as a function of Sc (Figure 10B).

Scalar transfer in turbulent flow

Homogeneous isotropic turbulence (HIT) in a cubic (side
length L), fully periodic domain is generated by means of lin-
ear forcing.14 The volume-averaged velocity is zero at any
moment in time. In addition to L, input variables are the kine-
matic viscosity of the liquid v, and the power input per unit
mass ¢. Under fully developed, steady conditions, ¢ is equal to
the energy dissipation rate and a Kolmogorov length scale can
be defined as ng=(v?/ 8)1/ ‘' Ina developed turbulent field, a
solid spherical particle with radius a and density p, is
released. The particle is free to move (translate and rotate)
under the influence of hydrodynamic forces. The particle does
not feel gravity. Our aim is to quantify scalar transfer from
particle to liquid. For this we follow the same procedure as
earlier in this article: a scalar concentration ¢ =1 is imposed
at the surface of the particle (and periodic conditions at all
edges of the cubic domain), the concentration field in the lig-
uid is solved, and the Sherwood number is obtained based on
integration of m according to Eq. 2. Given the continuously
changing hydrodynamic environment of the sphere, the Sher-
wood number will fluctuate in time. In this article, we are
mostly interested in its time-average value Sh. Dimensional
analysis teaches that Sh=f(a/ng, Sc,p,/p).

In this article, the density ratio is fixed: p,/p=4. The
Schmidt numbers we are considering are the same as for the
benchmark of the flow past a sphere at finite Re: Sc = 10,
30, 100, 300, and 1000. We accommodate for these five
Schmidt numbers by solving five concentration fields in con-
junction with each solid—liquid flow simulation. Next to
computational effectiveness, this has the advantage of being
able to compare scalar fields with different diffusivities in
exactly the same flow. The ratio a/ng has been varied
between 5.35 and 10.7, that is, a/ng > 1. It implies that the
smallest turbulent structures are smaller than the particle so
that its direct hydrodynamic environment is inhomogeneous
(as opposed to a/ng < 1 for which the sphere would see a
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time-varying but homogeneous deformation field). Numerical
sensitivities have been checked for a/nx = 10.7, that is, the
highest value and thus the most demanding in terms of reso-
lution, as this case has the finest flow structures relative to
the particle size. In terms of the cubic grid spacing, the Kol-
mogorov scale then is 7, =0.74A and thus A < 7y, which is
the typical criterion for sufficiently resolved DNS of
turbulence.?’*"

The realization that Sh=f (a/nx,Sc, p,/p) has the advant-
age that the right-hand side only contains (known) input var-
iables. Its disadvantage is that it does not relate well with
the usual Sherwood correlations that are of the form
Sh=f(Re, Sc), for example, Eq. 3 (with Pe = ReSc) and also
the widely used Ranz-Marshall correlation
Sh=2+0.6Re'/2Sc /33! Correlations of the latter form are
for spheres experiencing an average, unidirectional flow for
which a Reynolds number can be determined unambigu-
ously. In the current situation (a sphere in HIT with no aver-
age, overall flow), the choice for Re is not obvious. It should
be a Reynolds number based on the relative velocity
between fluid and particle, that is, a slip velocity. A seem-
ingly arbitrary choice to be made, however, is the size of the
environment around the sphere to average the fluid velocity
over to determine a slip velocity.

The reference simulation has a=8A, a spherical shell with
thickness 0=1.5A and a grid with Ar=6/64 and
AO=A@p=m/40. The cubic domain has side length L/a=16
and the turbulence is such that a/ng =10.7. This spherical
grid is much finer than in the benchmarks as we expect
more complex flow around the sphere. The domain size rela-
tive to the Kolmogorov length scale is L/ng = 170. In ear-
lier work,'>*? we have shown that this dynamic range of
scales is sufficiently wide to develop representative turbu-
lence with a spectrum with a clear inertial and dissipative
range.

Impressions of the reference simulation are given in Fig-
ure 11. It shows scalar concentration (note the logarithmic
scale) in a cross sections through the entire domain and
through the center of the sphere at three moments for
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Sc =100. It also shows a velocity vector field in the same
cross section. Clearly, the sphere transfers scalar into the lig-
uid that is subsequently caught by the vortical structures in
the turbulent field around the sphere. From the vector plot, it
can be assessed that eddies smaller than the sphere exist, in
accordance with the notion a/ng > 1.

In Figure 12, instantaneous realizations of the concentra-
tion in the spherical shell are shown. These inhomogeneous
concentration fields indicate that release of scalar varies
strongly over the sphere’s surface and in fluctuating patterns,
very different from the coherent and steady fields shown for
one of the benchmarks in Figure 6. Strong radial gradients
can be inferred from comparing the fields at the two radial
locations (halfway the shell thickness, and at the outer sur-
face of the shell). An increase of the Schmidt number makes
the concentration structures narrower. It also can be seen
that for Sc = 1000 numerical wiggles start appearing indicat-
ing that we are close to resolution limits for this high (but
practically relevant) value of the Schmidt number.

AIChE Journal March 2014 Vol. 60, No. 3

Published on behalf of the AIChE

The time evolution of the overall (i.e., integrated over the
surface of the sphere) scalar transfer process is presented in
Figure 13 (upper panel) as time series of the Sherwood num-
ber (determined via application of Eq. 2) for the reference
cases and three of the five Schmidt numbers. After a very
short transient—that spans over of the order of 10 Kolmo-
gorov time scales—at initial stages when the sphere encoun-
ters fresh (¢ =0) liquid, the Sherwood numbers become
dynamically steady with a pronounced dependency on the
Schmidt number. Fluctuation levels are of the order of 30%
of the time-average Sherwood values. The mutual coherence
of the Sherwood time series for the three different Schmidt
numbers is the result of the same flow dynamics felt by the
different scalars.

For later analysis and interpretation, Reynolds numbers
based on slip velocity are tracked with sample results in the
lower panel of Figure 13. As noted before, there is no unam-
biguous way to determine the liquid velocity term in the slip
velocity for the cases here that have no average flow. The
two curves in the lower panel of Figure 13 relate to the size
of the hydrodynamic environment around the sphere over
which the liquid velocity was averaged. The curve with
D = 16a comprises the full domain for averaging. The high
frequency scatter in the curve with D = 4a is not a numerical
instability; instead it is due to the stepwise change of the
nodes involved in the averaging as the sphere moves over
the cubic grid. There is no direct coherence between the sig-
nals in the upper and lower panel of Figure 13 which means
that an instantaneous Reynolds number does not directly
determine the instantaneous Sherwood number. This also is
not to be expected given the small scale details—much
smaller than D = 4a, let alone D = 16a—near the sphere that
determine mass transfer. The average Reynolds number of
the smaller environment is some 30% lower than of the
larger environment.

Further analysis is done in terms of time-averaged quanti-
ties and will focus on assessment of grid resolution, the
effects of the strength of the turbulence (measure a/ng) on
the scalar transfer process, and on comparison with scalar
transfer correlations.®'

The two panels of Figure 14 show to what extent Sh
depends on the grids. The impact of the grid in radial direc-
tion in the spherical shell is marginal as can be seen in the
left panel. The left panel also shows the limited effect of the
orientation of the spherical grid. If it is rotated over 90°
(from x-orientation to z-orientation) while the sphere is
exposed to exactly the same flow, average Sherwood num-
bers change by less than 0.3%. The resolution of the cubic
grid (right panel of Figure 14) has a more significant and
systematic influence on Sh. From the coarsest to the finest
grid, the average Sherwood number reduces by some 2.5%.
The data as plotted on the logarithmic scales of Figure 14
hint at an approximate Sc'/? dependency of Sh.

In subsequent simulations, the turbulence is weakened
compared to the reference case, that is, the energy dissipa-
tion rate ¢ is reduced. This increases the Kolmogorov length
scale and thus reduces a/ng (at constant particle radius a).
To sustain turbulence and to have the same ratio of largest
over smallest turbulent length scale in the simulations with
weaker turbulence, the ratio L/n is kept constant to 170.
Reducing a/ng therefore also means larger domains; the case
with a/ng = 10.7 has L=128A, the case with a/nx =5.35 has
L=256A. To keep the simulations affordable, the resolution
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of the cubic grid was kept at its lowest value: a=8A and we
realize—given the results in Figure 9D and particularly in
Figure 14 (right panel)—that we are overestimating Sh; Fig-
ure 14 suggests by some 2.5%.

As expected, the scalar transfer rates get smaller in weaker
turbulence, see Figure 15. The data suggest a proportionality
of Sh with a/nk. This has been further detailed in Figure 15
(lower panel) where we show that the simulation results can
be correlated according to Sh ~ fxiKSc 13, with the propor-
tionality constant o approximately equal to 1.

Finally, we investigate (in Figure 16) to what extent the
trends in Sh with flow conditions and Schmidt number are
captured by the traditional Sherwood correlations, viz. Eq. 3
and the Ranz-Marshall correlation. Compared to the correla-
tions, the simulation results predict systematically higher Sh
values. Ratios of simulation results and correlation results
get as large as two, which conversely means that the orders
of magnitude are the same. The Sh trends with Pe=ReSc
(the overbar meaning time averaging) and Sc are the same
as well. At constant Sc, however, Sh increases more steeply
with Pe in the simulations as compared to the correlations.

Summary and Conclusions

We have proposed a method for simulation of passive sca-
lar transfer from a solid spherical particle into the liquid the
particle is immersed in. The method is specifically designed
for moving (translating and rotating) particles where in the
simulations the particles are allowed to move relative to a
fixed grid that resolves the liquid flow. The specific chal-
lenge to overcome for solid-liquid systems is the usually
high Schmidt number of the liquid and the (therefore) steep
scalar gradients near the solid-liquid interface. Reverting to
a very fine grid in the entire flow domain such that these
gradients are properly resolved is hardly an option given the
computational cost such a simulation would require. Instead,
the proposed method uses COD with a spherical grid
attached to the solid-liquid interface, and a cubic outer grid.
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The spherical grid is made sufficiently fine in radial direction
to resolve the thin scalar film near the solid surface. The lig-
uid flow is solved on the cubic, outer grid by means of the
LB method. Velocity information is communicated from the
outer to the inner grid via interpolation. The outer grid also
interacts with the inner grid by means of scalar concentration
interpolation.

Benchmarks to test the procedure comprised of uniform
creeping flow past a sphere and flow past a sphere at finite
Reynolds numbers. These benchmarks show that trends of
the Sherwood number with Reynolds and Schmidt numbers
are captured correctly. Simulation results are more sensitive
to the resolution of the outer, cubic grid as they are to the
inner, spherical grid. The method has correct convergence
behavior, that is, higher levels of accuracy on finer grids.
The benchmark results do show some imperfections if we
look into the details of the interactions between the two grids
with cubic symmetries showing in the—in principle axisym-
metric—velocity and concentration fields on the spherical
grid. Overall, the grids interact in a consistent manner as
was demonstrated by estimating Sherwood numbers inde-
pendently from the inner and outer concentration solution.

The performance of the method does not deteriorate if the
sphere moves relative to the cubic grid. Almost identical sol-
utions were obtained for a fixed sphere and a sphere moving
steadily over the grid.

When the sphere is released in a turbulent field such that
its size is larger than the Kolmogorov length scale (a/
ng > 1), the concentration field shows strong temporal and
spatial fluctuations; the latter on length scales much smaller
than the size of the sphere; the former on time scales of the
order 10 Kolmogorov time scales. Time-average Sherwood
numbers approximately scale with Sc'/3 and a/n.

A main objective of future work is to extend the method
to (moderately) dense solid—liquid suspensions, that is, sys-
tems having more than one solid sphere. A major hurdle to
overcome is dealing with overlapping spherical shells of par-
ticles in each other’s vicinity. Directly solving convection
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diffusion equations for such multiple-sphere geometries on
grids adapted to sphere doublets (or triplets,...) does not
seem a computationally feasible option with hundreds of
spheres in one simulation. Instead, we think along lines of
devising mixing rules in overlapping cells of two different
shells. The fact that the method allows for thin shells indi-
cates that only small amounts of scalar would be involved in
such possibly speculative mixing rules. Other avenues for
future research will focus on improving the method’s accu-
racy and further suppressing imperfections by investigating
other interpolation schemes.
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