Five lectures & five sets of lecture notes

 Kinetic theory  Forces, collision operators
 Distribution functions*
« Boltzmann equation*  Multiphase flow
* Transport equations - Free energy LBM & interfaces*
* Lattice-Boltzmann (LB) method « Volume-averaged Navier-Stokes
» Discrete space, time & velocity equation

 An LB algorithm

 Chapman-Enskog analysis*
 Practical aspects of the LB method

 Dimensional analysis

* Boundary conditions

« Coding

* mathematically demanding




Distribution function

mass of molecules at location x at moment t
traveling with velocity ¢

(X&)

& Its discrete counterpart

fi (X,t) with a velocity set C; = (C C,,GC )

X7 My !

integrations become D= Z fi ou = Z C ]"i
i i

summations:
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\ At =1 streaming: form lattice
Y- |G sSite to lattice site
I 1. .C4 ® AX : 1

X

collisions T (X, 1) = f, (X, 1) +2(x,t)

post-collision pre-collision  collision operator

streaming fi (X—I—Ci 1 —|—1) — fi* (X,t)
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Q, (x,t) =, ()

BGK

_£<fi _ fieq>

T

need a discrete version of the equilibrium
distribution function
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LBE to “Navier-Stokes”

f (X t+2) = f, (xt) == (£, (x.t) — £ (x.0)

-

Chapman-Enskog analysis
(T 1)
0 0 0 0 ou Ou

(puﬁ)' (puauﬁ)z— P, o | 278

— | UV P |
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Q , 5 a | b @ ]
. 2
with pP=c¢Cp v=ci(r—3)

If pwere constant, this would be incompressible Navier-Stokes
....but pis not constant
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(in)compressibility
p ~ constant if Madu|/c, <

keep flow velocities in lattice units well below speed of sound In
lattice units
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“Scaling”

two square lid-driven cavity flow systems
(e.g. a physical one and an LB one) are the
same* if they have the same Re

*the same in dimensionless variables

x=x/L,y=y/L,{=tU/L,0=u/U
a(%,y,t)

designing an LB simulation

e choose U based on compressibility constraint
» choose L based on required resolution

e determine v to match Re




Coding

put some thought in your program e.g. streaming

. for j=1:ny
fi (X—|—Ci,t—|—1): fi (X,t) for i=1:nx
£(2,1,3)=F(2,1i+1,7)
for j=1:ny £(4,1i,7)=£(4,1,3+1)
for i=1:nx £(7,1,3)=£(7,1+1,3+1)
£(0,1,3)=fstar(0,1i,7) £(8,1,3)=£(8,1-1,7+1)
f(1,i,j)=fstar(1,i-1,7) end
£f(2,1i,j)=Ffstar(2,i+1,73) end
£(3,1,3)=fstar(3,1i,3-1) for j=ny:-1:1
f(4,1,))=~fstar(4,1i,j+1) for i=nx:-1:1
f(5,i,j)=fstar(5,i-1,3-1) f(1,1i,3)=£(1,1-1,7)
f(6,1i,j)=fstar(6,i+1,3-1) £(3,1,3)=£(3,1,]-1)
f(7,1,9)=fstar(7,i+1,5+1) £(5,1,3)=£(5,1-1,3-1)
f(8,i,j)=fstar(8,i-1,5+1) f(6,1,3)=£(6,1i+1,3-1)
end end
end needs two large arrays end needs one large array
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Boundary conditions

1=~ . . . . . .
N : Py
- LT no slip wall P I YL
: . ! P | |
? 5 :L___i__._i_.__i
a ghost cell framework . éﬁ\'\. . S
o fill ghost cells with the moving wall — 5 A RN
appropriate f* O R
e then stream towards all
“real” cells periodic oo
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Immersed boundary conditions

want to do off-grid boundaries
iImmersed boundary method

can be implemented through forcing the fluid to a desired velocity at
a desired (of lattice) location and so achieve no-slip
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Incorporating forces in LBGK

8u0€Jr J 8ua__8p+ 9, 8ua+8u5 L E
ot ok, T ox, ox| | ox,  ox || ©
options:

1. go via the collision operator no forces {%c, = 0 with forces_€)c, =F,

2. include a new term in the LBE equation f = f +Q, +S

1 C (Clozclﬁ o Csz(sozﬁ)uﬁ
=1-—|w |5+ F
. [ 27] ' ¢? c. °

this is pretty complicated, e.g. note the double

summation convention

Clozclﬁuﬁ Fa — C|xC|xux |:x —|_ C|yC|xux |:y + C|xC|yuy |:x + C|yC|yuy |:y




Incorporating forces in LBGK — 2

this needs a “force correction” for momentum; density does not need a
correction

pua:ZfiCa+%Fa p:Zf|

this all can be derived through Chapman-Enskog analysis




Immersed boundary method — in words

represent an off-grid surface
through marker points N ® 5 3

Interpolate velocity to the marker 1.

points

determine the difference between n
interpolated velocity and the

desired velocity at the marker spacing marker points < 1
point

calculate a force at the marker linear interpolation works well

point that opposes the velocity
difference

distribute the force over the
surrounding lattice nodes
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Immersed boundary method —in eq’s

Wj:zi:|<rij>ui — > o _i
old / \ .jQ

F =aF —6(Wj—vj) l e

Fo=1(r;)F J

| lattice point

F marker point forc
] marker point

u. lattice velocity

w; interpolated velocity at marker pol 6 empirical constani
v, desired velocity at marker point

F. lattice point force

another issue is the order in which we
go over the marker points
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An application: particle-resolved
simulations

a small excursion into three dimensions
suppose the marker points
lie on a spherical surface

a%oF is the force acting on the fluid to impose no-slip at the particle surface

Z F:_ Ff_}

allo P

similarly Ty, =->F x(r - Rp) \"\‘- o

alle
0
particles have internal fluid \\\

v, desired velocity at marker pol

vV, =u, +Qp><(xj —xcp)
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Dealing with internal fluid
; for rigid particle dynamics
u
PV, d_tp = 9S§tdS—|— gV (pp — ,0)
f: body force on fluid (internal +

dup external due to immersed
JfdV = —¢tdS+ pV, e boundary method
v S t t traction on solid particle

du
_ P _ _
(,Op p)Vp dt deV tov (,Op ,0) in a reference frame

aligned with the principal

do axes of th_e particle
I dtp =M, —l—copx(l(y)p) S1 coordinate transform
d
(pp —p)l ((;p — ppSl\J/‘lr — Rp]xde —I—(pp —p)(opx(l(op)
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Simulation versus experiment

some dynamics
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An application: particle-resolved
simulations

sediment
transport
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An application: particle-resolved

pically: 1 mm simulations
glass beads in o _ o
water 8 liquid-solid fluidization
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periodic boundary conditions
cross section through 3D domain
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Inlet / outlet

3/3x=0
inlet |

LX

0/0y=0
outlet . N
4 |
at the inlet: impose uniform velocity through IBM o, N
every time step: calculate the mass influx* Pl . ......
apply a uniform force (in y-direction) that makes the 4 o

mass outflux equal to the influx**

* ¢m,in — f ,OUXdy

inlet

Fﬁﬁe?y - Fo(:tl)et,y ta <¢m,out o ¢m,in>

>0 control algorithm @ empirical

zero gradient 3/0x=0




Inlet / outlet — an application

cyclones for gas-solid separation

CLEANED GAS
OUTLET

pressure field

GAS
IIIII

; % (horizontal cross section)
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Revisit the collision operator
BGK

1
Q,(f)=—=(f— =)
Issues with BGK '

o stability (at low viscosity)
- accuracy, e.g. U,U,u. = O(u3)

no a priori reason why all distribution functions would relax at
the same rate, i.e. with the same time constant




Multiple Relaxation Time operator

let different velocity moments of the distribution
function relax at different rates

velocity moments are linear combinations of f,'s

m=M.:f
trans
f=(fy f,... fg)
My My - Mg
M — m, M, --- Mg aconstant
- - . . coefficient
matrix
_mao Mg, - m88_




From BGK to MRT

f(x+c,t+1)—f (xt)=—w|f (xt)— £ (xt)| withw= {7
In vector fam
f(x+c,t+D)— f (x,t)=—w|f(x,t)— F(xt)
f(X+c,t+D)—f (x,t)=—M Muw|f(xt)— 3 (x 1)
f(x+c,t+1)—f(x,t)=—M ‘1w[|\/|f (x,t)— Mf eq(x,t)]
f(x+c,t+1)—f (x,t)=—M ‘%u[m(x,t)—meq(x,t)]
defineS=wl
f(x+c,t+1)—f(x,t)=—M ‘1S[m(x,t)—meq(x t)}
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From BGK to MRT — 2
f(x+c,t+1)—f(xt)=—M ‘1S[m(x,t)—meq(x,t)]

now we can assign different relaxation rates to different velocity

moments
w, 0 - O]
0 w, - O




Velocity moments — D2Q9

“Gram-Schmidt procedure”

P O R, P P R RFP NP

1 1
2 2
1 1
-1-1
-1-1
1 —1 -
1 1 —
O O
1 —1-—

e S N\ =

1 1 1 1 1
-1 -1 -1 -1
-2 -2 -2 -2
1 -1 0 O
-2 2 0 O
o 0 1 -1
O 0 -2 2
1 -1 1 -1
O 0 O O
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Relaxation rates

S=diag( 04w, . 0w , 0wy w, v, )

density and momentum have zero
relaxation rates

we get closer to the Navier-Stokes eq.

2(pu )+i(pu uy)=— % 9
ot\ 7 ox Ve Ox, OX,

1 1
p=cZp u—pcsz[—% ubpcsz[w

"=p
1:e™ :,0—3,0<ux —I—uj)

2:e% =9pu’ — 30(u2+uy2)+p

31 = pu,
4:0 = 3pu’ — pu,
5:jjq:,ouy

8:py = puxuy
ou, ~ Ou, ou
+(py — 5 16 s
ox, Ox, (1o =310, OX,
1 “free” parameters
2|3

we =w, =1




An LB — MRT algorithm

start with a set df 's on a lattice

1.determingp =31, pu=3_¢ T,

2. determinen®™ (needs density & velocity)
3.determinen =M - f

4. perform he collisionf " (x,t) = —M ‘1S[m (x,t)—m®™ (x,t)]
5. take care of bandary conditions

6.streamf (x+c t+ 3= f (x )




Turbulence

why (not) perform turbulence simulations with the
lattice-Boltzmann method

why not: why ast:
e uniform & cubic grid « if only for fun*
no local grid refinement « geometric flexibility
« small time steps moving boundaries (IBM)

no point in doing RANS with LBM  “easy” to do large-eddy simulations
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Large-eddy simulations of turbulence

Y

-

the trouble with (numerical simulations of)
a ?/ 0 - turbulence:
&%W =0 resolutions of the fine length (and time) scales
EON_ <\§QC‘

&

) Kolmogorov length scale

|
AT

-/
\ \J nTK x Re¥* - if Re= 16 — ne ~ 3 10°L
unresolved eddies o a5 . L 5 3 .
resolved eddies Ary 231070~ 3.10f N~ (3’104> ~ 310

mitigate this issue through a subgrid-scale model & perform LES

Veay = (CA) /2S,,S,, withS,, =1 ou,

u, 5
_|_
ox,  OX,
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LES (in LBM)*

— 1

_ ou_ ou, start with a set df 's on a lattice
af 2 - + .
OX;  OX, 1. determingp =31, pu=3_¢ T,
is readily available in LBM _ | - _
(at least in LBGK) 2.determind ™ (needs density &locity)
ou o, 2a. detemines,;, Ve » T =3 Veggy + V) +3
ox,  ox, 3. perform the collision
1 * _ _i __fed
S .G (f,— 1) f7(x,t)=f (x.t) - [ f, (x,t)— f (x,t)]

5.take care of boundary conditions
6.streant,” (x+c¢, t+ 1= f (x})

note the overbars

* note that turbulence is inherently three-dimensional
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