#### Five lectures & five sets of lecture notes

- Kinetic theory
  - Distribution functions\*
  - Boltzmann equation\*
  - Transport equations
- Lattice-Boltzmann (LB) method
  - Discrete space, time & velocity
  - An LB algorithm
  - Chapman-Enskog analysis\*
- Practical aspects of the LB method
  - Dimensional analysis
  - Boundary conditions
  - Coding

- Forces, collision operators
- Multiphase flow
  - Free energy LBM & interfaces\*
  - Volume-averaged Navier-Stokes equation



#### Distribution function

mass of molecules at location  $\mathbf{x}$  at moment t traveling with velocity  $\boldsymbol{\xi}$ 

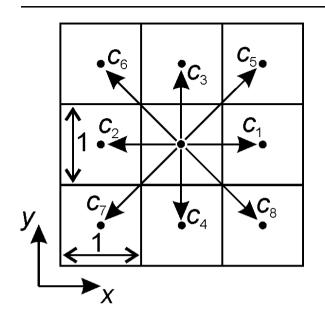
$$f(\mathbf{x}, \boldsymbol{\xi}, t)$$

& its discrete counterpart

$$f_i\left(\mathbf{X},t\right)$$
 with a velocity set  $\mathbf{c_i} = \left(c_{ix},c_{iy},c_{iz}\right)$ 

integrations become summations: 
$$\rho = \sum_i f_i$$
  $\rho \mathbf{u} = \sum_i \mathbf{c_i} f_i$ 





## D2Q9

$$\Delta t = 1$$
$$\Delta x = 1$$

 $\Delta t = 1$  streaming: form lattice  $\Delta x = 1$  site to lattice site

collisions 
$$f_i^*(\mathbf{x},t) = f_i(\mathbf{x},t) + \Omega(\mathbf{x},t)$$
 post-collision pre-collision collision operator

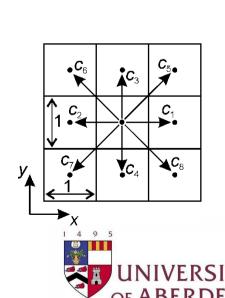
streaming 
$$f_i(\mathbf{x} + \mathbf{c_i}, t+1) = f_i^*(\mathbf{x}, t)$$



#### **BGK**

$$\Omega_{i}\left(\mathbf{x},t\right) = \Omega_{i}\left(f\right) = -\frac{1}{\tau}\left(f_{i} - f_{i}^{eq}\right)$$

## need a discrete version of the equilibrium distribution function



$$f_i^{eq} = w_i \rho \left| 1 + \frac{u_\alpha c_{i\alpha}}{c_s^2} + \frac{\left(u_\alpha c_{i\alpha}\right)^2}{2c_s^4} - \frac{u_\alpha u_\alpha}{2c_s^2} \right|$$

#### **D2Q9**

$$w_0 = 4/9$$
  $w_{1-4} = 1/9$   $w_{5-8} = 1/36$   $c_s^2 = 1/3$ 

### LBE to "Navier-Stokes"

$$f_i\left(\mathbf{x} + \mathbf{c_i}, t + 1\right) = f_i\left(\mathbf{x}, t\right) - \frac{1}{\tau} \left(f_i\left(\mathbf{x}, t\right) - f_i^{eq}\left(\mathbf{x}, t\right)\right)$$

#### Chapman-Enskog analysis

$$\frac{\partial}{\partial t} (\rho u_{\beta}) + \frac{\partial}{\partial x_{\alpha}} (\rho u_{\alpha} u_{\beta}) = -\frac{\partial p}{\partial x_{\beta}} + \nu \frac{\partial}{\partial x_{\alpha}} \left[ \rho \left[ \frac{\partial u_{\alpha}}{\partial x_{\beta}} + \frac{\partial u_{\beta}}{\partial x_{\alpha}} \right] \right]$$
with  $p = c_{s}^{2} \rho$   $\nu = c_{s}^{2} \left( \tau - \frac{1}{2} \right)$ 

if  $\rho$  were constant, this would be incompressible Navier-Stokes ....but  $\rho$  is not constant

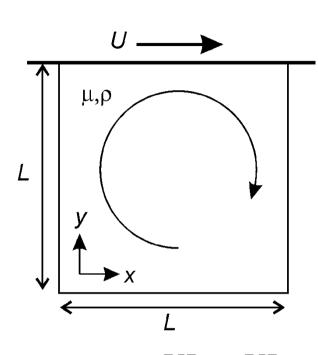


## (in)compressibility

$$\rho \approx \text{constant if Ma} = |\mathbf{u}|/c_s \ll 1$$

keep flow velocities *in lattice units* well below speed of sound in *lattice units* 





## "Scaling"

two square lid-driven cavity flow systems (e.g. a physical one and an LB one) are the same\* if they have the same Re

\*the same in dimensionless variables  $\tilde{x} = x/L$ ,  $\tilde{y} = y/L$ ,  $\tilde{t} = tU/L$ ,  $\tilde{\mathbf{u}} = \mathbf{u}/U$   $\tilde{\mathbf{u}}(\tilde{x}, \tilde{y}, \tilde{t})$ 

#### designing an LB simulation

- choose *U* based on compressibility constraint
- choose L based on required resolution
- determine v to match Re



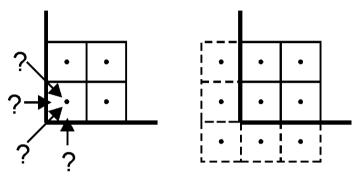
## Coding

put some thought in your program e.g. streaming

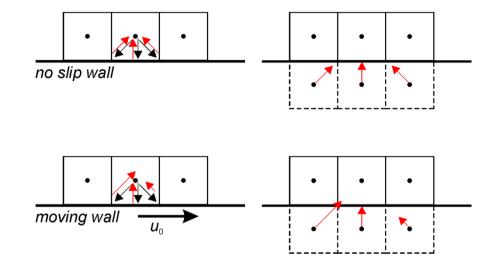
```
for j=1:ny
f_i(\mathbf{x}+\mathbf{c_i},t+1)=f_i^*(\mathbf{x},t)
                                                              for i=1:nx
                                                                f(2,i,i) = f(2,i+1,i)
                                                                f(4,i,j)=f(4,i,j+1)
for j=1:ny
                                                                f(7,i,j)=f(7,i+1,j+1)
  for i=1:nx
                                                                f(8,i,i)=f(8,i-1,i+1)
    f(0,i,j) = fstar(0,i,j)
                                                              end
    f(1,i,j) = fstar(1,i-1,j)
                                                            end
    f(2,i,j) = fstar(2,i+1,j)
                                                            for j=ny:-1:1
    f(3,i,j) = fstar(3,i,j-1)
                                                              for i=nx:-1:1
    f(4,i,j) = fstar(4,i,j+1)
                                                                f(1,i,j) = f(1,i-1,j)
    f(5,i,j) = fstar(5,i-1,j-1)
                                                                f(3,i,j)=f(3,i,j-1)
    f(6,i,j) = fstar(6,i+1,j-1)
                                                                f(5,i,j)=f(5,i-1,j-1)
    f(7,i,j) = fstar(7,i+1,j+1)
                                                                f(6,i,j)=f(6,i+1,j-1)
    f(8,i,j) = fstar(8,i-1,j+1)
                                                              end
  end
                                                                    needs one large array
                                                            end
end
          needs two large arrays
```

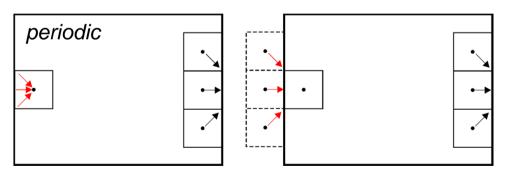


## **Boundary conditions**



- a ghost cell framework
- fill ghost cells with the appropriate f\*
- then stream towards all "real" cells





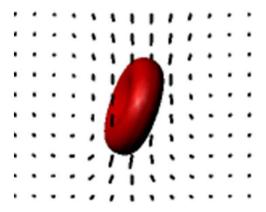
all Cartesian-based - flat surfaces or staircases



## Immersed boundary conditions

want to do off-grid boundaries immersed boundary method

can be implemented through forcing the fluid to a desired velocity at a desired (of lattice) location and so achieve **no-slip** 



first need to know how to incorporate forces in LBM



## Incorporating forces in LBGK

$$\rho \frac{\partial u_{\alpha}}{\partial t} + \rho u_{\beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}} = -\frac{\partial p}{\partial x_{\alpha}} + \frac{\partial}{\partial x_{\beta}} \left[ \mu \left( \frac{\partial u_{\alpha}}{\partial x_{\beta}} + \frac{\partial u_{\beta}}{\partial x_{\alpha}} \right) \right] + \mathbf{F}_{\alpha}$$

options:

- 1. go via the collision operator no forces:  $\sum_i \Omega_i c_{i\alpha} = 0$  with forces:  $\sum_i \Omega_i c_{i\alpha} = F_{\alpha}$
- 2. include a new term in the LBE equation  $f_i^* = f_i + \Omega_i + S_i$

$$S_{i} = \left(1 - \frac{1}{2\tau}\right) w_{i} \left(\frac{c_{i\alpha}}{c_{s}^{2}} + \frac{\left(c_{i\alpha}c_{i\beta} - c_{s}^{2}\delta_{\alpha\beta}\right)u_{\beta}}{c_{s}^{4}}\right) F_{\alpha}$$

this is pretty complicated, e.g. note the double summation convention

$$\mathbf{c}_{i\alpha}\mathbf{c}_{i\beta}\mathbf{u}_{\beta}\mathbf{F}_{\alpha} = c_{ix}c_{ix}\mathbf{u}_{x}F_{x} + c_{iy}c_{ix}\mathbf{u}_{x}F_{y} + c_{ix}c_{iy}\mathbf{u}_{y}F_{x} + c_{iy}c_{iy}\mathbf{u}_{y}F_{y}$$



## Incorporating forces in LBGK – 2

this needs a "force correction" for momentum; density does not need a correction

$$\rho u_{\alpha} = \sum_{i} f_{i} c_{\alpha} + \frac{1}{2} F_{\alpha}$$
  $\rho = \sum_{i} f_{i}$ 

this all can be derived through Chapman-Enskog analysis



## Immersed boundary method – in words

represent an off-grid surface through marker points

interpolate velocity to the marker points

determine the difference between interpolated velocity and the desired velocity at the marker point

calculate a force at the marker point that opposes the velocity difference

distribute the force over the surrounding lattice nodes



spacing marker points < 1

linear interpolation works well

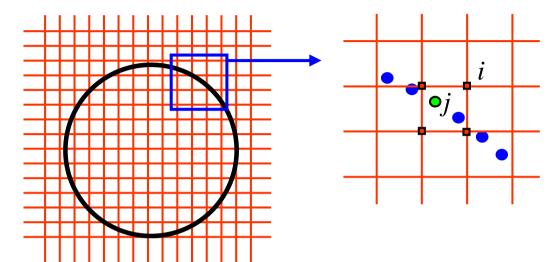


## Immersed boundary method – in eq's

$$\mathbf{w_j} = \sum_{i} I(\mathbf{r_{ij}}) \mathbf{u_i}$$

$$\mathbf{F_{j}} = \alpha \mathbf{F_{j}^{old}} - \beta \left( \mathbf{w_{j}} - \mathbf{v_{j}} \right)$$

$$\mathbf{F_i} = I(\mathbf{r_{ij}})\mathbf{F_j}$$



*i* lattice point

j marker point

u<sub>i</sub> lattice velocity

w<sub>i</sub> interpolated velocity at marker point

 $\mathbf{v_j}$  desired velocity at marker point

**F**<sub>i</sub> marker point force

 $\mathbf{F}_{i}$  lattice point force

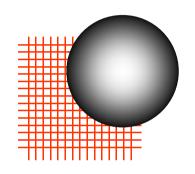
#### $\alpha \beta$ empirical constants

another issue is the order in which we go over the marker points



# An application: particle-resolved simulations

#### a small excursion into three dimensions



suppose the marker points lie on a spherical surface

 $\sum_{all \bullet} \mathbf{F}$  is the force acting on the fluid to impose no-slip at the particle surface

$$\sum_{a||\mathbf{o}} \mathbf{F} = -\mathbf{F}_{\mathbf{f} \to \mathbf{p}}$$

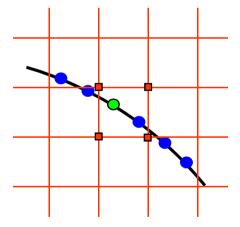
similarly 
$$T_{f\rightarrow p} = -\sum_{a||p} F \times (r - R_p)$$

particles have internal fluid

v<sub>i</sub> desired velocity at marker point

$$\mathbf{v_j} = \mathbf{u_p} + \mathbf{\Omega_p} \times (\mathbf{x_j} - \mathbf{x_{cp}})$$





## Dealing with internal fluid

for rigid particle dynamics

$$\rho_p V_p \frac{d\mathbf{u_p}}{dt} = \oint_S \mathbf{t} dS + \mathbf{g} V \left( \rho_p - \rho \right)$$

$$\int_{V} \mathbf{f} dV = -\oint_{S} \mathbf{t} dS + \rho V_{p} \frac{d\mathbf{u_{p}}}{dt}$$

$$\left(\rho_{p}-\rho\right)V_{p}\frac{d\mathbf{u_{p}}}{dt}=-\int_{V}\mathbf{f}dV+\mathbf{g}V\left(\rho_{p}-\rho\right)$$

$$\mathbf{I} \frac{d\mathbf{\omega_p}}{dt} = \mathbf{M_h} + \mathbf{\omega_p} \times \left(\mathbf{I}\mathbf{\omega_p}\right)$$

$$(\rho_p - \rho)\mathbf{I}\frac{d\mathbf{\omega_p}}{dt} = \rho_p \mathbf{S}^{-1} \int_{V} [\mathbf{r} - \mathbf{R_p}] \times \mathbf{f} dV + (\rho_p - \rho)\mathbf{\omega_p} \times (\mathbf{I}\mathbf{\omega_p})$$

f: body force on fluid (internal + external due to immersed boundary method

t traction on solid particle

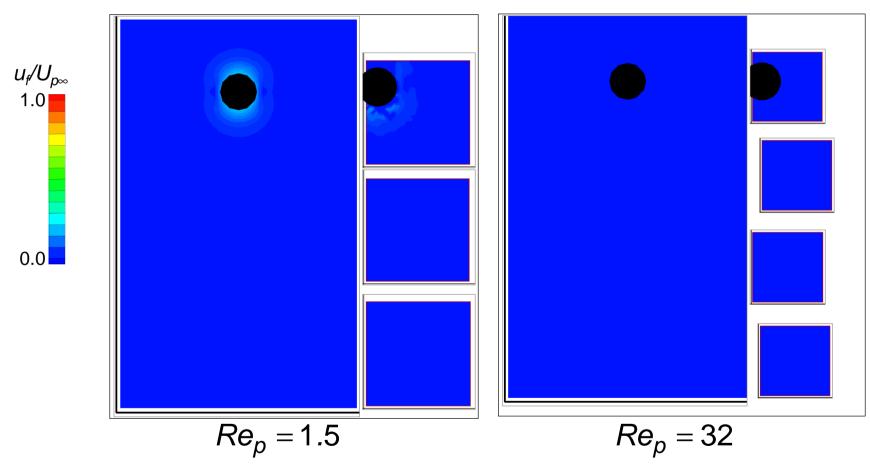
in a reference frame aligned with the principal axes of the particle

S<sup>-1</sup> coordinate transform



## Simulation versus experiment

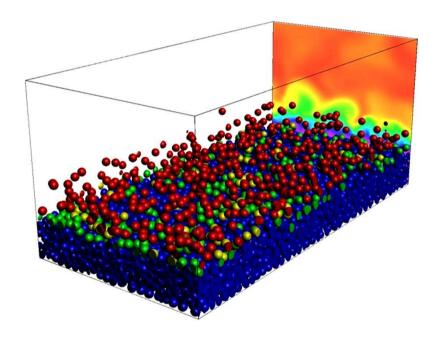
#### some dynamics





# An application: particle-resolved simulations

sediment transport

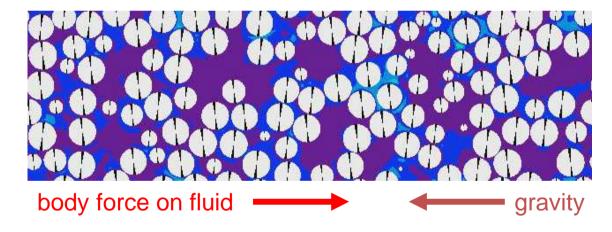




## An application: particle-resolved simulations

typically: 1 mm glass beads in water liquid flow

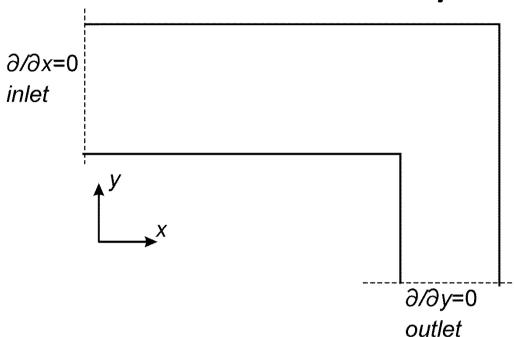
liquid-solid fluidization



periodic boundary conditions cross section through 3D domain



## Inlet / outlet



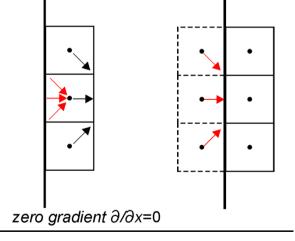
$$*\phi_{m,in} = \int_{inlet} \rho u_x dy$$

$$**\phi_{m,out} = -\int_{outlet} \rho u_{y} dx$$

$$F_{ ext{outlet,y}}^{(k+1)} = F_{ ext{outlet,y}}^{(k)} + lpha \left( \phi_{ ext{m,out}} - \phi_{ ext{m,in}} 
ight)$$

 $\alpha > 0$  control algorithm  $\alpha$  empirical

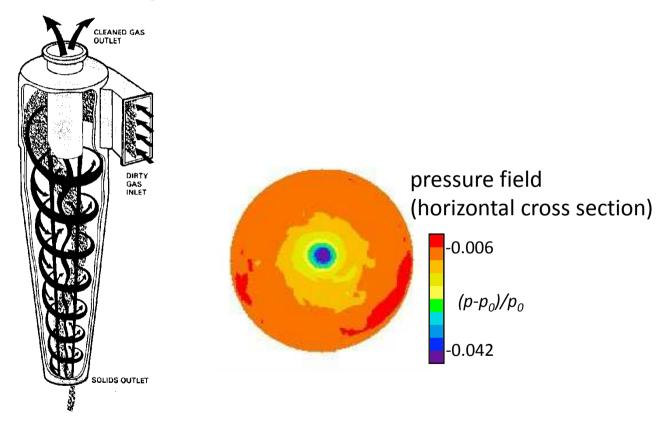
at the inlet: impose uniform velocity through IBM every time step: calculate the mass influx\* apply a uniform force (in *y*-direction) that makes the mass outflux equal to the influx\*\*

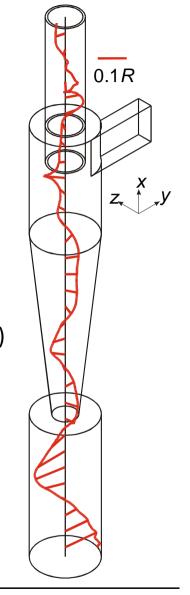




## Inlet / outlet – an application

cyclones for gas-solid separation







## Revisit the collision operator

#### **BGK**

$$\Omega_i(f) = -\frac{1}{\tau} (f_i - f_i^{eq})$$

issues with BGK

- stability (at low viscosity)
- ullet accuracy, e.g.  $u_{lpha}u_{eta}u_{\gamma}=O\left(u^{3}
  ight)$

no a priori reason why all distribution functions would relax at the same rate, i.e. with the same time constant



## Multiple Relaxation Time operator

let different *velocity moments* of the distribution function relax at different rates

velocity moments are linear combinations of  $f_i$  's

$$\mathbf{m} = \mathbf{M} \cdot f$$
 $f = \left(f_0, f_1 \dots f_8\right)^{trans}$ 
 $\mathbf{M} = \begin{bmatrix} m_{00} & m_{01} & \cdots & m_{08} \\ m_{10} & m_{11} & \cdots & m_{18} \\ \vdots & & \ddots & \vdots \\ m_{80} & m_{81} & \cdots & m_{88} \end{bmatrix}$  a constant coefficient matrix



#### From BGK to MRT

$$f_{i}\left(\mathbf{x}+\mathbf{c_{i}},t+1\right)-f_{i}\left(\mathbf{x},t\right)=-\omega\left[f_{i}\left(\mathbf{x},t\right)-f_{i}^{eq}\left(\mathbf{x},t\right)\right] \text{ with } \omega=1/\tau$$

$$in \text{ vector form}$$

$$f\left(\mathbf{x}+\mathbf{c_{i}},t+1\right)-f\left(\mathbf{x},t\right)=-\omega\left[f\left(\mathbf{x},t\right)-f^{eq}\left(\mathbf{x},t\right)\right]$$

$$f\left(\mathbf{x}+\mathbf{c_{i}},t+1\right)-f\left(\mathbf{x},t\right)=-\mathbf{M}^{-1}\mathbf{M}\omega\left[f\left(\mathbf{x},t\right)-f^{eq}\left(\mathbf{x},t\right)\right]$$

$$f\left(\mathbf{x}+\mathbf{c_{i}},t+1\right)-f\left(\mathbf{x},t\right)=-\mathbf{M}^{-1}\omega\left[\mathbf{M}f\left(\mathbf{x},t\right)-\mathbf{M}f^{eq}\left(\mathbf{x},t\right)\right]$$

$$f\left(\mathbf{x}+\mathbf{c_{i}},t+1\right)-f\left(\mathbf{x},t\right)=-\mathbf{M}^{-1}\omega\left[\mathbf{m}\left(\mathbf{x},t\right)-\mathbf{m}^{eq}\left(\mathbf{x},t\right)\right]$$

$$define \mathbf{S}=\omega\mathbf{I}$$

 $f\left(\mathbf{x}+\mathbf{c_i},t+1\right)-f\left(\mathbf{x},t\right)=-\mathbf{M}^{-1}\mathbf{S}\left|\mathbf{m}\left(\mathbf{x},t\right)-\mathbf{m}^{eq}\left(\mathbf{x},t\right)\right|$ 



### From BGK to MRT — 2

$$f\left(\mathbf{x}+\mathbf{c_i},t+1\right)-f\left(\mathbf{x},t\right)=-\mathbf{M}^{-1}\mathbf{S}\left[\mathbf{m}\left(\mathbf{x},t\right)-\mathbf{m}^{eq}\left(\mathbf{x},t\right)\right]$$

now we can assign different relaxation rates to different velocity moments

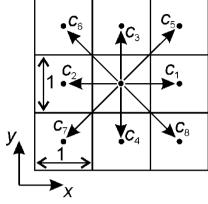
$$\mathbf{S} = egin{bmatrix} \omega_0 & 0 & \cdots & 0 \ 0 & \omega_1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \omega_8 \end{bmatrix}$$



## Velocity moments – D2Q9

"Gram-Schmidt procedure"

|                | 1         | 1  | 1  | 1  | 1  | 1 | 1  | 1  | 1  |
|----------------|-----------|----|----|----|----|---|----|----|----|
|                | <b>-4</b> | -1 | -1 | -1 | -1 | 2 | 2  | 2  | 2  |
|                | 4         | -2 | -2 | -2 | -2 | 1 | 1  | 1  | 1  |
|                | 0         | 1  | -1 | 0  | 0  | 1 | -1 | -1 | 1  |
| $\mathbf{M} =$ | 0         | -2 | 2  | 0  | 0  | 1 | -1 | -1 | 1  |
|                | 0         | 0  | 0  | 1  | -1 | 1 | 1  | -1 | -1 |
|                | 0         | 0  | 0  | -2 | 2  | 1 | -1 | 1  | -1 |
|                | 0         | 1  | -1 | 1  | -1 | 0 | 0  | 0  | 0  |
|                | 0         | 0  | 0  | 0  | 0  | 1 | 1  | -1 | -1 |



$$0: \rho^{eq} = \rho$$

$$1: e^{eq} = \rho - 3\rho (u_x^2 + u_y^2)$$

$$2: \varepsilon^{eq} = 9\rho u_x^2 - 3\rho (u_x^2 + u_y^2) + \rho$$

$$3: j_x^{eq} = \rho u_x$$

$$4: q_x^{eq} = 3\rho u_x^3 - \rho u_x$$

$$5: j_y^{eq} = \rho u_y$$

$$6: q_y^{eq} = 3\rho u_y^3 - \rho u_y$$

$$7: p_{xx}^{eq} = \rho (u_x^2 - u_y^2)$$

$$8: p_{xy}^{eq} = \rho u_x u_y$$



## Relaxation rates

$$\mathbf{S} = \mathrm{diag} \left( 0, \omega_e, \omega_\varepsilon, 0, \omega_q, 0, \omega_q, \omega_\nu, \omega_\nu \right)$$

density and momentum have zero relaxation rates

$$0: \rho^{eq} = \rho$$

$$1: e^{eq} = \rho - 3\rho \left(u_x^2 + u_y^2\right)$$

$$2: \varepsilon^{eq} = 9\rho u_x^2 - 3\rho \left(u_x^2 + u_y^2\right) + \rho$$

$$3: j_x^{eq} = \rho u_x$$

$$4: q_x^{eq} = 3\rho u_x^3 - \rho u_x$$

$$5: j_y^{eq} = \rho u_y$$

$$6: q_y^{eq} = 3\rho u_y^3 - \rho u_y$$

$$7: p_{xx}^{eq} = \rho \left(u_x^2 - u_y^2\right)$$

$$8: p_{xy}^{eq} = \rho u_x u_y$$

we get closer to the Navier-Stokes eq.

$$\frac{\partial}{\partial t} (\rho u_{\beta}) + \frac{\partial}{\partial x_{\alpha}} (\rho u_{\alpha} u_{\beta}) = -\frac{\partial p}{\partial x_{\beta}} + \frac{\partial}{\partial x_{\alpha}} \left( \mu \left[ \frac{\partial u_{\alpha}}{\partial x_{\beta}} + \frac{\partial u_{\beta}}{\partial x_{\alpha}} \right] + \left( \mu_{b} - \frac{2}{3} \mu \delta_{\alpha\beta} \right) \frac{\partial u_{\gamma}}{\partial x_{\gamma}} \right)$$

$$p = c_s^2 \rho \quad \mu = \rho c_s^2 \left(\frac{1}{\omega_\nu} - \frac{1}{2}\right) \quad \mu_b = \rho c_s^2 \left(\frac{1}{\omega_e} - \frac{1}{2}\right) - \frac{1}{3}\mu \qquad \text{``free'' parameters'} \quad \omega_e = \omega_q = 1$$



## An LB – MRT algorithm

start with a set of  $f_i$ 's on a lattice

1. determine 
$$\rho = \sum_{i} f_{i} \rho \mathbf{u} = \sum_{i} \mathbf{c}_{i} f_{i}$$

- 2. determine  $\mathbf{m}^{eq}$  (needs density & velocity)
- 3. determine  $\mathbf{m} = \mathbf{M} \cdot \mathbf{f}$
- 4. perform the collision  $f^*(\mathbf{x},t) = -\mathbf{M}^{-1}\mathbf{S}[\mathbf{m}(\mathbf{x},t) \mathbf{m}^{eq}(\mathbf{x},t)]$
- 5. take care of boundary conditions
- 6. stream  $f_i^* (\mathbf{x} + \mathbf{c_i}, t+1) = f_i (\mathbf{x}, t)$



### Turbulence

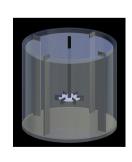
## why (not) perform turbulence simulations with the lattice-Boltzmann method

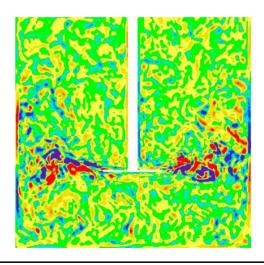
#### why not:

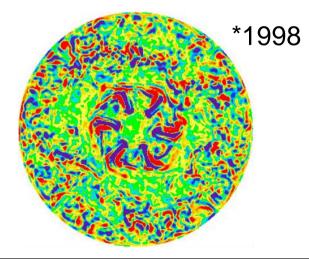
- uniform & cubic grid no local grid refinement
- small time steps
   no point in doing RANS with LBM

#### why not:

- if only for fun\*
- geometric flexibility moving boundaries (IBM)
- "easy" to do large-eddy simulations

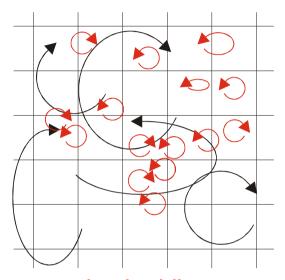








## Large-eddy simulations of turbulence



unresolved eddies resolved eddies

the trouble with (numerical simulations of) turbulence:

resolutions of the fine length (and time) scales

Kolmogorov length scale

$$\frac{\eta_K}{L}$$
 \propto Re<sup>-3/4</sup> \rightarrow if Re = 10<sup>6</sup> \rightarrow \eta\_K \propto 3 \cdot 10<sup>-5</sup> L

$$\Delta \approx \eta_K \approx 3 \cdot 10^{-5} L \approx \frac{L}{3 \cdot 10^4} \qquad N \approx (3 \cdot 10^4)^3 \approx 3 \cdot 10^{13}$$

mitigate this issue through a subgrid-scale model & perform LES

$$u_{eddy} = (c_S \Delta)^2 \sqrt{2 \overline{S}_{\alpha\beta} \overline{S}_{\alpha\beta}} \text{ with } \overline{S}_{\alpha\beta} = \frac{1}{2} \left( \frac{\partial \overline{u}_{\alpha}}{\partial x_{\beta}} + \frac{\partial \overline{u}_{\beta}}{\partial x_{\alpha}} \right)$$



## LES (in LBM)\*

$$\overline{S}_{\alpha\beta} = \frac{1}{2} \left( \frac{\partial \overline{u}_{\alpha}}{\partial x_{\beta}} + \frac{\partial \overline{u}_{\beta}}{\partial x_{\alpha}} \right)$$

is readily available in LBM (at least in LBGK)

$$egin{aligned} & rac{\partial u_{lpha}}{\partial x_{eta}} + rac{\partial u_{eta}}{\partial x_{lpha}} pprox \ & pprox rac{1}{
ho c_{s}^{2} au} \sum_{i} c_{ilpha} c_{ieta} \left( f_{i} - f_{i}^{eq} 
ight) \end{aligned}$$

note the overbars

start with a set of  $f_i$ 's on a lattice

- 1. determine  $\rho = \sum_{i} f_{i} \rho \mathbf{u} = \sum_{i} \mathbf{c}_{i} f_{i}$
- 2. determine  $f_i^{eq}$  (needs density & velocity)
- 2a. determine  $S_{\alpha\beta}$ ,  $\nu_{eddy}$ ,  $\tau=3(\nu_{eddy}+\nu)+\frac{1}{2}$
- 3. perform the collision

$$f_{i}^{*}\left(\mathbf{x},t\right) = f_{i}\left(\mathbf{x},t\right) - \frac{1}{\tau} \left[ f_{i}\left(\mathbf{x},t\right) - f_{i}^{eq}\left(\mathbf{x},t\right) \right]$$

- 5. take care of boundary conditions
- 6. stream  $f_i^* (\mathbf{x} + \mathbf{c_i}, t+1) = f_i (\mathbf{x}, t)$

<sup>\*</sup> note that turbulence is inherently three-dimensional

