Lattice-Boltzmann method a short course for Engineering PGR students

Jos Derksen

jderksen@abdn.ac.uk office: Fraser Noble 352

Five lectures & five sets of lecture notes

- Kinetic theory
 - Distribution functions*
 - Boltzmann equation*
 - Transport equations
- Lattice-Boltzmann (LB) method
 - Discrete space, time & velocity
 - An LB algorithm
 - Chapman-Enskog analysis*
- Practical aspects of the LB method
 - Dimensional analysis
 - Boundary conditions
 - Coding

- Forces, collision operators, turbulence
- Multiphase flow
 - Free energy LBM & interfaces*
 - Volume-averaged Navier-Stokes equation

Microscopic Mesoscopic Macroscopic

molecular dynamics

Lattice-Boltzmann method: molecular dynamics with *molecules on a regular lattice*

LBM is a toy system that solves the Navier-Stokes equations

we will see how that works mathematically

& how to translate the concept in computer code

LB: many (types of) applications

LB: Ludwig Boltzmann (1844 – 1906)

$$f^{eq}\left(\mathbf{x}, \left|\mathbf{v}\right|, t\right) = \rho \left(\frac{1}{2\pi RT}\right)^{3/2} e^{-\left|\mathbf{v}\right|^{2}/(2RT)}$$

Maxwell – Boltzmann distribution

