Lecture Notes- Lattice-Boltzmann Method Jos Derkser PGR Course UAberdeen 2018

5. Multiphase flow & the lattice-Boltzmann method

5.1 Introduction

The lattice-Boltzmann method finds significant aggtion in multiphase flow. It has been
used for simulating gas bubbles or liquid drops mg¥hrough a continuous phase liquid
(emulsions), for solid particles dispersed in a@aa liquid (suspensions), and for liquid
drops in a gas as in sprays. Simulation of multiphase flow — vitik lattice-Boltzmann
method or with any other numerical scheme — catidme at various levels of detalil.

In interface-resolved methods, the interfaces between the phases (halidinterfaces in
suspensions, fluid-fluid interfaces with interfddension in emulsions) are captured
explicitly in the simulation (see Figure 5.1).darticle-unresolved simulations, the

“particles” (that — next to solid particles — cdscabe drops or bubbles) are typically smaller
than the lattice spacing and are thus not explicesolved (see Figure 5.2). However, the
effect of the particles on the continuous fluid ¢da and vice versa — needs to be accounted
for as accurately as possible.

Figure5.1 Interface-resolved: d>A.

Figure 5.2 Particle-unresolved: d<A.

In the current lecture notes we will be discussumg types of multiphase flow simulations
involving the lattice-Boltzmann method. In the fitgpe, these are interface-resolved
simulations of a system of two immiscible fluidshvinterfacial tension. For this we will be
exploring thediffuse interface free energy | attice-Boltzmann method. In the second type, these
are particle-unresolved simulations of solid-flsigstems that require a procedure for solving
the volume-averaged Navier-Sokes equation by means of the LB method.

As an aside: particle-resolved simulations of saosyma (solid-fluid systems) can be done
with the lattice-Boltzmann method as well. One optior this is the immersed boundary
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method as discussed in LNO4. Extending the 2D elawima cylinder immersed in a fluid to
3D will give you the opportunity to simulate — innxiple — arbitrarily shaped particles
moving through fluid by representing the particleabset of closely spaced marker points on
its surface.

5.2 Free energy lattice-Boltzmann method

We are dealing with a system of two immiscibledkjione being the continuous phase, the
other the dispersed phase that is in the formabldts (e.g. oil droplets in water with water
the continuous phase and oil the dispersed phalse)two fluids in general have different

viscosities (symbols, andv,) and densities4, andp,). The interface between the liquids
is associated with an interfacial tension (symbgl Interfacial tension has SI unit N/m which

is the same as Jfmit can thus be associated with the energy perfatial surface area; in
terms of the Young-Laplace equation it can be aatstwith a pressure difference over a

curved surfacefp o< v/R with R the radius of curvature).

Thefree energy lattice-Boltzmann method is aliffuse interface method. It works by solving a
single Navier-Stokes equation and a single cortgrequation. The density and viscosity in
these equations varies in space and time. Densityigcosity are equal tp, andv, in the
continuous phase fluid, tp, andv, in the dispersed phase fluid and change sharly bu
continuously in the interface between the two #uitihe interface thus has finite thickness
i.e. it isdiffuse. The method uses an order parameter (symbdb keep track of which fluid
is where (ordeparameter is a bit misleading terminology as the order patmis a
continuous function in space and tim(ax,t)). In one of the two fluids (say the continuous
fluid) ¢ =—1, in the otherp =1, and¢ transits between these two values over the irderfa
In this way the local density and viscosity areedily related to the order parameter; e.g. for
the viscosityr =v 1(1—¢)+ v, 1(1+¢).

Governing equations
The governing equations of this fluid-fluid systane written in the following form
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Next to (fluid) mechanics, this set of equationstams the thermodynamics related to fluid-
fluid interfaces. Equation 5.1 is the familiar donity equation; Eq. 5.2 is the Navier-Stokes

equation (without forcing) with a new pressure td?jb which is called the thermodynamic
pressure tensor. Equation 5.3 is a transport exuatithe order parameter. The term on
the right-hand side contains a constdntalled mobility; the function. is the chemical
potential that depends am according to
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with A< 0 andx two constants. In (chemical) thermodynamics, thengical potential is the

derivative of free energyu = B—Z . This assists interpretation of Eq. 5.4. It ireplthaf has

two minima, atp = +1 that are responsible for the phase separationdagtithe two fluids.

In addition, there is an energy penalty for havangurved interface (see the last term of Eq.
5.4) so that the parameterrelates to interfacial tension.

Also the thermodynamic pressure tensor includesfential tension effects:
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We recognize the very first term as the ideal gadrdoution. The rest of the terms have to do
with multiphase (immiscible fluids) and interfadéeets.

Lattice-Boltzmann based numerical procedure

The thermodynamics contained in the set of equattoh — 5.5 is known as Cahn-Hilliard
thermodynamics. The set of equations can be nualgrgolved with a lattice-Boltzmann
scheme (as well as with any other method for sglpartial differential equations) along the
following lines. Start by defining two distributidanctions f, and g, where f, takes care of

the hydrodynamics, and, of the order parameter. For now, the distributienslve

according to a BGK collision operator with relaxatitimesr, andr, respectively

f (x40t D)~ f (x.t)= —Ti[fi (x)— £ (x ) (5.6)
g (X+c,t+1)—g (x,t)= —Ti[gi (x.t)— g (x.t)] (5.7)

g
Free-energy LBM has also been performed with thitijphel relaxation time (MRT) collision

operator with results favourable over BGK collisat the expense of increased complexity.
For the latter reason we — for now — stick to #téde-BGK procedure.

Some macroscopic properties are
p=21 pu=Xcf ¢=3g (5.8)

The expressions for the equilibrium distributions @ery complicated; we include them here
to show how the LBM time stepping procedure woutitkvand to show which parameters
are involved in the time stepping process.
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A number of new symbols show up in Egs. 5.9 an@.5The bulk pressurg, in Eqg. 5.9 is
part of the diagonal terms in the thermodynamicgues tensor (Eq. 5.5)

P =Cop+ A(36° 30 (5.11)

The weighing factorsy*’ in Eq. 5.9 depend on the velocity set that is uBed the D2Q9 set
we have been using mostly
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(note thatw,” are not needed given Eq. 5.9). In Eq. 5.10 a renarpeterl’ appears. This is
a tuneable numerical parameter and will be disclbstow.

Starting from known distribution function and g, on a lattice, a time step would proceed
as follows: determine, uand ¢ through Eq. 5.8. This provides us with the ingeats to
determine the equilibrium distribution functiorf$* and g™ through Egs. 5.9 and 5.10.
Tricky issues are the spatial gradients@fthat require finite difference approximations, the
chemical potentiaj: that is a function ot as well as its gradients (Eq. 5.4), and the bulk
pressure that depends pnand ¢ . Once f* and g® have been determined, we can
perform a collision and determine the post-collisiistributions f” and g;, and then we

stream: f, (x+c,,t+1)= f" (x,t) and g, (x+¢,,t+1)=g; (X.t).

Choice of parameters

The list of parameters in the above is extensiggiesare physical and some are numerical,
some are both. Choosing and tuning these paranpetests to be a delicate process. As
explained in LNO3, the translation between physigals and lattice units goes via
dimensionless numbers. For flows with interfaces¢hare, next to the Reynolds number, the
capillary numberCa= prU /v with U a characteristic velocity and/or the Weber number

We= pU2d/~ with d a characteristic length scale such as a drop dénEhe capillary

number equates viscous forces with interface-rélteces; the Weber number inertial forces
with interface forces.

As an example, let us consider a system of two suimle liquids having (roughly) the same
density p, = p, = p , kinematic viscosities, andv,, and interfacial tensiory, all are in

lattice units (i.e. we already went through the elisional analysis process of translating Sl to
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lattice units). The relaxation time, of the f, distribution determines the kinematic viscosity

) 2T
according tov =

. It should be realized, however, that viscosityt Hrereforer, are

not constant. Instead they are part of the solytrocess since viscosity depends on the order
parameter according to= v, %(1— qb) + vy —§(1+ qb) .

The interfacial tension depends on the paramétersd ~ as they show up in Cahn-Hilliard
thermodynamics:

v=2J2kA (5.13)

An important physical/numerical choice to be malthe thickness of the interface (symbol
¢). The way it relates to Cahn-Hilliard coefficiengs

£ =J2x/A (5.14)

If x andA are in lattice units¢ is the interface thickness in lattice units, ités the number

of lattice spacings over which the order parametanges from 1 tel and vice versa. The
interface thickness is — of course — also a phiypi@perty. In liquid-liquid systems it is of

the order of a few nanometer. From a numericaltpafiniew, however, the interface needs to
be resolved such that is 2 — 3 lattice units. This implies that if wentdéo simulate a real,

physical interface, the lattice spacing needs tofliee order of 1 nm, and a droplet with a
size of 1 um would require a thousand lattice samleer its diameter. This is unpractical for
most applications. For this reasan,js mostly chosen as a numerical parameter, based o

stability and computational affordability of simtitans. Once we have made our choice4or
and ¢, the parameteré and« are fixed.

There are three more parameters to consider eeaginergy LBM simulationM (Eq. 5.3),
7, (EQ. 5.7) and” (Eq. 5.10). These are not independent:

M =TI(r,—3) (5.15)
It is common practice to sef, =1 which means that each time stgpwill relax to
equilibrium. This leave$® as a free parameter for which literature suggestses in the
rangel'=10"' — 10 in lattice units. For an interpretation in non-dinsional terms, a

U¢

numerical Peclet number is defined%s:m. The Peclet number is the ratio between

convection and diffusion. It contaifds via M. Long story short: there is no solid theory that
guides choosing tht1 , 7., I' combination and people use reference data (epgriexental

data on droplet breakup) for tuning purposes aad Hpply the same set of parameters to
make predictions for cases for which no refererata dre available.



One last word of advice relates to the way in whsphtial derivatives o are determined.

2
In Egs. 5.5 and 5.9 terms such-ga%,gi appear. The choice of stencil for estimating these
X: 0%

«

derivatives from finite difference approximatiorisais a delicate one.

5.3 Volume-averaged Navier-Stokes equation for solid-fluid systems

Quite a change of topic here: We are now dealirig &iNewtonian fluid (gas or liquid)
loaded with solid particles. For the sake of simipli all particles are spherical and all have
the same diametek We want to perform a numerical simulation of thystem but cannot
afford to use a grid with a spacing much smallanth This means that we cannot explicitly
impose a no-slip condition at the surface of theiglas and thus cannot resolve the flow
around each particle. Instead we have a grid ochwive intend to solve the fluid flow with a
spacingA >d as in Figure 5.2, oA ~ d . This grid acts as a filter: it erases / smeard out
averages the details that are finer than the gadiag.

Therefore instead of being suitable for solving Maier-Stokes equation, the grid is suitable
for solving thevolume-averaged Navier-Stokes equation.

Volume-averaged Navier-Sokes equation
The volume-averaged mass balance (continuity equadiad the volume-averaged
momentum balance (in the form of the Cauchy eqodfig. 1.16) read

opgf 0
_—t— u =0 5.16
o (o#u,) (5.16)
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The symbol¢f is the local continuous phase (fluid) volume fiaet The local solids volume
fraction is¢/ = ¢ . In terms of Figure 5.2, it is the volume fractjoer cell occupied by
solids and fluid. The forcing terrk,, in Eq. 5.17 is the force per unit volume exertedhzy
particles on the fluid. The fluid velocity, is the volume-averagedterstitial fluid velocity,
i.e. the velocity averaged over that part of thieiree only occupied by fluid.

In order to understand how to solve Eqgs. 5.16 ahd with the lattice-Boltzmann method,
they are rewritten in the following form

a_p+i(pua):—£ %-{_ua% (518)
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If we would set the right-hand side of Eqgs. 5.18 ari® to zero, they form a set of equations
that can be solved with any single-phase LB methoel Navier-Stokes equation has a

forcing term Fs{l,/(ﬁc but we know how to deal with that). Extending thregke-phase LB
method withsource terms representing the right-hand sides allows us theedeqgs. 5.18 and
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5.19. A source term in the momentum balance isdy barce so that the term on the right-
hand side of Eq. 5.19 is an additional forcing term

Fr=—t
s

O¢° O¢°
u uu,V 5.20
« at + a3 8)(3 } ( )

s

A source term in the mass balance (continuity eqapats mass source. One option for this to
be incorporated is via the collision operator stat >, = S’ with
i

oo _ﬂ%wa %} (5.21)

The mass source term. It can be distributed ovevelezity directions using the weighing
factorsw of the velocity setS” =w,S”.

Determination of the source terms requires knowdeafg/ and its spatial and temporal
derivatives (as well as g andu, that are directly available from the distributimction
f.). This knowledge is available if we know whereth# solid particles are. We then

determine how much solids volume is present in eatisee Figure 5.1). This requires a
mapping operation: Lagrangian (solid particles) informatizeeds to be mapped on the

Eulerian grid. Once we know how the solids volunaetion ¢f is distributed, we know how

¢f =1-¢ is distributed. The way we perform the mapping apen, and the way keep

track of the solid particles in the flow field arery interesting topics but beyond the scope of
these lecture notes.

5.4 An overall summary & some closing remarks

Starting from the molecular concept of matter, kmtheory and the notion of distribution
functions in physical and velocity space a discsgtem was postulated. It has three levels
of discretization: space, time and velocity. Thiscdete system — the lattice-Boltzmann
equation (Eq. 2.3) — was hypothesized to reprebseniavier-Stokes equations. This was
substantiated through a Chapman-Enskog analysisnairereason for including this
analysis in the lecture notes was mainly to proyiole with the assumptions underlying the
analysis, not so much with the mathematical dethils — in my mind — perfectly legitimate
to work with the LB equation without a complete arstanding of its theoretical
underpinning.

Working with the LB method has many practical issteedeal with, coding, boundary
conditions and scaling / dimensional analysisldb @& important to understand some of the
(severe) limitations of the method: time step caists due to compressibility effects, and the
use of uniform square or cubic grids. Local grifinement — not discussed in these notes — is
an option in LB but is definitely more complicatén in mainstream CFD.

Extensions make the LB method attractive in manyiegijons: the immersed boundary
method makes it “easy” to deal with complex georoatfeatures and moving boundaries,
the direct availability of the viscous stressethim solution is useful when doing large-eddy
simulations of turbulence. Multiphase flow als@rsimportant application. A diffuse
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interface method (free-energy LB method) was disedsn quite some detail. A main issue
here is the choice of parameters. This mainly issime of Cahn-Hilliard thermodynamics,
not so much of (LB) numerics.

| hope these notes and the lectures have been.usalilbe more than happy to discuss
further about your specific applications and sabefLB method can be of any use.

Aberdeen, UK, August 2018.



