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Lecture Notes ‒ Lattice-Boltzmann Method ‒ Jos Derksen ‒ PGR Course UAberdeen 2018 
 
5. Multiphase flow & the lattice-Boltzmann method 
 
5.1 Introduction 
The lattice-Boltzmann method finds significant application in multiphase flow. It has been 
used for simulating gas bubbles or liquid drops moving through a continuous phase liquid 
(emulsions), for solid particles dispersed in a gas or a liquid (suspensions), and for liquid 
drops in a gas − as in sprays. Simulation of multiphase flow – with the lattice-Boltzmann 
method or with any other numerical scheme – can be done at various levels of detail.  
 
In interface-resolved methods, the interfaces between the phases (solid-fluid interfaces in 
suspensions, fluid-fluid interfaces with interfacial tension in emulsions) are captured 
explicitly in the simulation (see Figure 5.1). In particle-unresolved simulations, the 
“particles” (that – next to solid particles – can also be drops or bubbles) are typically smaller 
than the lattice spacing and are thus not explicitly resolved (see Figure 5.2). However, the 
effect of the particles on the continuous fluid phase – and vice versa – needs to be accounted 
for as accurately as possible.    
 

 
Figure 5.1 Interface-resolved: d>∆∆∆∆. 
 

 
Figure 5.2 Particle-unresolved: d<∆∆∆∆. 
 
In the current lecture notes we will be discussing two types of multiphase flow simulations 
involving the lattice-Boltzmann method. In the first type, these are interface-resolved 
simulations of a system of two immiscible fluids with interfacial tension. For this we will be 
exploring the diffuse interface free energy lattice-Boltzmann method. In the second type, these 
are particle-unresolved simulations of solid-fluid systems that require a procedure for solving 
the volume-averaged Navier-Stokes equation by means of the LB method. 
 
As an aside: particle-resolved simulations of suspension (solid-fluid systems) can be done 
with the lattice-Boltzmann method as well. One option for this is the immersed boundary 
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method as discussed in LN04. Extending the 2D example of a cylinder immersed in a fluid to 
3D will give you the opportunity to simulate – in principle – arbitrarily shaped particles 
moving through fluid by representing the particle by a set of closely spaced marker points on 
its surface. 
 
5.2 Free energy lattice-Boltzmann method 
We are dealing with a system of two immiscible fluids, one being the continuous phase, the 
other the dispersed phase that is in the form of droplets (e.g. oil droplets in water with water 
the continuous phase and oil the dispersed phase). The two fluids in general have different 
viscosities (symbols  and ν νc d ) and densities (  and ρ ρc d ). The interface between the liquids 

is associated with an interfacial tension (symbol γ ). Interfacial tension has SI unit N/m which 
is the same as J/m2. It can thus be associated with the energy per interfacial surface area; in 
terms of the Young-Laplace equation it can be associated with a pressure difference over a 
curved surface ( γ∆ ∝p R  with R the radius of curvature).  
 
The free energy lattice-Boltzmann method is a diffuse interface method. It works by solving a 
single Navier-Stokes equation and a single continuity equation. The density and viscosity in 
these equations varies in space and time. Density and viscosity are equal to  and ρ νc c  in the 

continuous phase fluid, to  and ρ νd d  in the dispersed phase fluid and change sharply but 

continuously in the interface between the two fluids. The interface thus has finite thickness − 
i.e. it is diffuse. The method uses an order parameter (symbol φ ) to keep track of which fluid 
is where (order parameter is a bit misleading terminology as the order parameter is a 
continuous function in space and time ( ),φ x t ). In one of the two fluids (say the continuous 

fluid)  1φ=− , in the other 1φ= , and φ  transits between these two values over the interface. 
In this way the local density and viscosity are directly related to the order parameter; e.g. for 
the viscosity ( ) ( )1 1

2 21 1ν ν φ ν φ= − + +c d .      

 
Governing equations 
The governing equations of this fluid-fluid system are written in the following form 
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Next to (fluid) mechanics, this set of equations contains the thermodynamics related to fluid-
fluid interfaces. Equation 5.1 is the familiar continuity equation; Eq. 5.2 is the Navier-Stokes 
equation (without forcing) with a new pressure term αβ

thP  which is called the thermodynamic 

pressure tensor. Equation 5.3 is a transport equation in the order parameter φ . The term on 
the right-hand side contains a constant M called mobility; the function µ  is the chemical 
potential that depends on φ  according to  
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with 0<A  and κ  two constants. In (chemical) thermodynamics, the chemical potential is the 

derivative of free energy: µ
φ

=
DF

D
 . This assists interpretation of Eq. 5.4. It implies that F has 

two minima, at 1φ=±  that are responsible for the phase separation between the two fluids. 
In addition, there is an energy penalty for having a curved interface (see the last term of Eq. 
5.4) so that the parameter κ  relates to interfacial tension.  
 
Also the thermodynamic pressure tensor includes interfacial tension effects:   
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We recognize the very first term as the ideal gas contribution. The rest of the terms have to do 
with multiphase (immiscible fluids) and interface effects. 
 
Lattice-Boltzmann based numerical procedure 
The thermodynamics contained in the set of equations 5.1 – 5.5 is known as Cahn-Hilliard 
thermodynamics. The set of equations can be numerically solved with a lattice-Boltzmann 
scheme (as well as with any other method for solving partial differential equations) along the 
following lines. Start by defining two distribution functions if  and ig  where if  takes care of 

the hydrodynamics, and ig  of the order parameter. For now, the distributions evolve 

according to a BGK collision operator with relaxation times  and τ τf g  respectively  
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Free-energy LBM has also been performed with the multiple relaxation time (MRT) collision 
operator with results favourable over BGK collisions at the expense of increased complexity. 
For the latter reason we – for now – stick to the lattice-BGK procedure. 
 
Some macroscopic properties are 
 
 ρ=∑ i

i
f  ρ =∑ iu c i

i
f  φ=∑ i

i
g  (5.8) 

 
The expressions for the equilibrium distributions are very complicated; we include them here 
to show how the LBM time stepping procedure would work and to show which parameters 
are involved in the time stepping process.  
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A number of new symbols show up in Eqs. 5.9 and 5.10. The bulk pressure bp  in Eq. 5.9 is 

part of the diagonal terms in the thermodynamic pressure tensor (Eq. 5.5)  
 

 ( )2 2 431
2 4ρ φ φ= + −b sp c A  (5.11) 

 
The weighing factors αβiw  in Eq. 5.9 depend on the velocity set that is used. For the D2Q9 set 

we have been using mostly 
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(note that 0

αβw  are not needed given Eq. 5.9). In Eq. 5.10 a new parameter Γ  appears. This is 

a tuneable numerical parameter and will be discussed below. 
 
Starting from known distribution functions if  and ig  on a lattice, a time step would proceed 

as follows: determine ρ , u and φ  through Eq. 5.8. This provides us with the ingredients to 

determine the equilibrium distribution functions eq
if  and eq

ig  through Eqs. 5.9 and 5.10. 

Tricky issues are the spatial gradients of  φ  that require finite difference approximations, the 
chemical potential µ  that is a function of φ  as well as its gradients (Eq. 5.4), and the bulk 

pressure that depends on ρ  and  φ . Once  eq
if  and eq

ig  have been determined, we can 

perform a collision and determine the post-collision distributions *
if  and *

ig , and then we 

stream: ( ) ( )*, 1 ,+ + =ix c xi if t f t  and ( ) ( )*, 1 ,+ + =ix c xi ig t g t .   

 
Choice of parameters 
The list of parameters in the above is extensive; some are physical and some are numerical, 
some are both. Choosing and tuning these parameters proofs to be a delicate process. As 
explained in LN03, the translation between physical units and lattice units goes via 
dimensionless numbers. For flows with interfaces these are, next to the Reynolds number, the 
capillary number Ca ρν γ= U  with U a characteristic velocity and/or the Weber number 

2We ρ γ= U d  with d a characteristic length scale such as a drop diameter. The capillary 
number equates viscous forces with interface-related forces; the Weber number inertial forces 
with interface forces. 
 
As an example, let us consider a system of two immiscible liquids having (roughly) the same 
density ρ ρ ρ≈ =c d , kinematic viscosities  and ν νc d , and interfacial tension γ , all are in 

lattice units (i.e. we already went through the dimensional analysis process of translating SI to 
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lattice units). The relaxation time τ f  of the if  distribution determines the kinematic viscosity 

according to 
2 1

6

τ
ν

−
=

f . It should be realized, however, that viscosity and therefore τ f  are 

not constant. Instead they are part of the solution process since viscosity depends on the order 
parameter according to ( ) ( )1 1

2 21 1ν ν φ ν φ= − + +c d .  

 
The interfacial tension depends on the parameters A and κ  as they show up in Cahn-Hilliard 
thermodynamics:  
 

 2
3 2γ κ= A  (5.13) 

 
An important physical/numerical choice to be made is the thickness of the interface (symbol 
ξ ). The way it relates to Cahn-Hilliard coefficients is 
 

 2ξ κ= A  (5.14) 

 
If  and κ A  are in lattice units, ξ  is the interface thickness in lattice units, i.e. it is the number 

of lattice spacings over which the order parameter changes from 1 to −1 and vice versa. The 
interface thickness is – of course – also a physical property. In liquid-liquid systems it is of 
the order of a few nanometer. From a numerical point of view, however, the interface needs to 
be resolved such that ξ  is 2 – 3 lattice units. This implies that if we want to simulate a real, 
physical interface, the lattice spacing needs to be of the order of 1 nm, and a droplet with a 
size of  1 µm would require a thousand lattice nodes over its diameter. This is unpractical for 
most applications. For this reason, ξ  is mostly chosen as a numerical parameter, based on 
stability and computational affordability of simulations. Once we have made our choice for γ  
and ξ , the parameters A  and κ  are fixed. 
 
There are three more parameters to consider in a free-energy LBM simulation: M  (Eq. 5.3), 
τg  (Eq. 5.7) and Γ  (Eq. 5.10). These are not independent:    

 

 ( )12τ=Γ −gM  (5.15) 

 
It is common practice to set 1τ =g  which means that each time step ig  will relax to 

equilibrium. This leaves Γ  as a free parameter for which literature suggests values in the 
range 110 10−Γ= −  in lattice units. For an interpretation in non-dimensional terms, a 

numerical Peclet number is defined as Pe
ξ

=
U

MA
. The Peclet number is the ratio between 

convection and diffusion. It contains Γ  via M. Long story short: there is no solid theory that 
guides choosing the M , τg , Γ  combination and people use reference data (e.g. experimental 

data on droplet breakup) for tuning purposes and then apply the same set of parameters to 
make predictions for cases for which no reference data are available.  
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One last word of advice relates to the way in which spatial derivatives of φ  are determined. 

In Eqs. 5.5 and 5.9 terms such as 
2

2
,

γ α

φ φ∂ ∂

∂ ∂x x
 appear. The choice of stencil for estimating these 

derivatives from finite difference approximations also is a delicate one.  
 
5.3 Volume-averaged Navier-Stokes equation for solid-fluid systems  
Quite a change of topic here: We are now dealing with a Newtonian fluid (gas or liquid) 
loaded with solid particles. For the sake of simplicity, all particles are spherical and all have 
the same diameter d. We want to perform a numerical simulation of this system but cannot 
afford to use a grid with a spacing much smaller than d. This means that we cannot explicitly 
impose a no-slip condition at the surface of the particles and thus cannot resolve the flow 
around each particle. Instead we have a grid on which we intend to solve the fluid flow with a 
spacing ∆> d  as in Figure 5.2, or ∆≈ d . This grid acts as a filter: it erases / smears out / 
averages the details that are finer than the grid spacing. 
 
Therefore instead of being suitable for solving the Navier-Stokes equation, the grid is suitable 
for solving the volume-averaged Navier-Stokes equation.  
 
Volume-averaged Navier-Stokes equation 
The volume-averaged mass balance (continuity equation) and the volume-averaged 
momentum balance (in the form of the Cauchy equation Eq. 1.16) read 
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The symbol cφ  is the local continuous phase (fluid) volume fraction. The local solids volume 

fraction is 1d cφ φ= − . In terms of Figure 5.2, it is the volume fraction per cell occupied by 

solids and fluid. The forcing term αsF  in Eq. 5.17 is the force per unit volume exerted by the 

particles on the fluid. The fluid velocity uα  is the volume-averaged interstitial fluid velocity, 

i.e. the velocity averaged over that part of the volume only occupied by fluid. 
 
In order to understand how to solve Eqs. 5.16 and 5.17 with the lattice-Boltzmann method, 
they are rewritten in the following form 
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If we would set the right-hand side of Eqs. 5.18 and 5.19 to zero, they form a set of equations 
that can be solved with any single-phase LB method (the Navier-Stokes equation has a 
forcing term α φ

c
sF  but we know how to deal with that). Extending the single-phase LB 

method with source terms representing the right-hand sides allows us the solve Eqs. 5.18 and 
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5.19. A source term in the momentum balance is a body force so that the term on the right-
hand side of Eq. 5.19 is an additional forcing term 
 

 φ
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A source term in the mass balance (continuity equation) is mass source. One option for this to 
be incorporated is via the collision operator such that φΩ =∑ i

i
S  with  
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The mass source term. It can be distributed over the velocity directions using the weighing 
factors iw  of the velocity set: i iS w Sφ φ= .  

 
Determination of the source terms requires knowledge of cφ  and its spatial and temporal 

derivatives (as well as of ρ  and uα  that are directly available from the distribution function 

if ). This knowledge is available if we know where all the solid particles are. We then 

determine how much solids volume is present in each cell (see Figure 5.1). This requires a 
mapping operation: Lagrangian (solid particles) information needs to be mapped on the 
Eulerian grid. Once we know how the solids volume fraction dφ  is distributed, we know how 

1c dφ φ= −  is distributed. The way we perform the mapping operation, and the way keep  
track of the solid particles in the flow field are very interesting topics but beyond the scope of 
these lecture notes. 
 
5.4 An overall summary & some closing remarks 
Starting from the molecular concept of matter, kinetic theory and the notion of distribution 
functions in physical and velocity space a discrete system was postulated. It has three levels 
of discretization: space, time and velocity. This discrete system – the lattice-Boltzmann 
equation (Eq. 2.3) – was hypothesized to represent the Navier-Stokes equations. This was 
substantiated through a Chapman-Enskog analysis. The main reason for including this 
analysis in the lecture notes was mainly to provide you with the assumptions underlying the 
analysis, not so much with the mathematical details. It is – in my mind – perfectly legitimate 
to work with the LB equation without a complete understanding of its theoretical 
underpinning. 
 
Working with the LB method has many practical issues to deal with, coding, boundary 
conditions and scaling / dimensional analysis. It also is important to understand some of the 
(severe) limitations of the method: time step constraints due to compressibility effects, and the 
use of uniform square or cubic grids. Local grid refinement – not discussed in these notes – is 
an option in LB but is definitely more complicated than in mainstream CFD.  
 
Extensions make the LB method attractive in many applications: the immersed boundary 
method makes it “easy” to deal with complex geometrical features and moving boundaries, 
the direct availability of the viscous stresses in the solution is useful when doing large-eddy 
simulations of turbulence. Multiphase flow also is an important application. A diffuse 
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interface method (free-energy LB method) was discussed in quite some detail. A main issue 
here is the choice of parameters. This mainly is an issue of Cahn-Hilliard thermodynamics, 
not so much of (LB) numerics. 
 
I hope these notes and the lectures have been useful. Will be more than happy to discuss 
further about your specific applications and see if the LB method can be of any use. 
 
Aberdeen, UK, August 2018. 
 
 
 
 
 


