
1

Lecture Notes ‒ Lattice-Boltzmann Method ‒ Jos Derksen ‒ PGR Course UAberdeen 2018

4. Forces & collision operators

4.1 Introduction
In this set of lecture notes I would like to discuss a few – largely unrelated – topics that have
practical relevance (e.g. for your research).

Exerting local forces on a lattice-Boltzmann fluid requires some special care that we will
discuss. This topic is important for many reasons. One is implementing the forces arising
from solid particles in an unresolved particles fluid-solids simulation (see LN 5), another is
implementing an immersed boundary method to deal with off-lattice no-slip walls.

So far we have been working with the BGK (single relaxation time) collision operator in
relation to the equilibrium distribution function. More advanced collision operators are
available that have advantages over the BGK operator. We will be discussing the multiple
relaxation time (MRT) operator, the way to implement it, and it’s possible advantages.

4.2 Incorporating body forces in the lattice-Boltzmann method
The incompressible Navier-Stokes equation as presented in LN01 (Eq. 1.19, repeated here as
Eq. 4.1) contained an external force αF

 βα α α
β α

β α β β α

ρ ρ µ
  ∂∂ ∂ ∂∂ ∂  + =− + + +  ∂ ∂ ∂ ∂ ∂ ∂   

uu u up
u F

t x x x x x
 (4.1)

It is important to realize that αF is a body force, i.e. a force per unit volume. If αF would

represent gravity it would have the form αρg . In the analysis of the lattice-Boltzmann method

in LN02 we did not include a body force. Also when discussing the practical aspects in LN03
we did not discuss this topic. We will discuss including body forces here.

There are two main approaches for incorporating a body force. One is via adapting the
collision operator. This makes perfect sense since force is a source of momentum and
therefore the constraint on the collision operator that it conserves momentum (0αΩ =∑ i i

i
c)

should be amended. Another is via including force as a source term in the lattice-Boltzmann
equation. For no specific reason we go in these lecture notes with the second approach.
Previously (LN02, Eq. 2.10) we wrote * = +Ωi i if f with if the pre-collision distribution

function, and *
if the post-collision distribution function. This expression we now supplement

with a source term iS

 * = +Ω +i i i if f S (4.2)

The source term iS relates to the body force αF in the following manner

2

()2

2 4

1
1

2
α β αβ βα

α

δ

τ

 −    = − +       

i i si
i i

s s

c c c uc
S w F

c c
 (4.3)

with the – by now well known – notation for the velocity set (see Eqs. 2.5 & 2.6). Note that
Eq. 4.3 applies the summation convention over the two repeated Greek indices ,α β .
Equation 4.3 is the result of yet another Chapman-Enskog analysis involving the Navier-
Stokes equation that includes a force term. Also as a result of the Chapman-Enskog analysis it
has become clear that the velocity requires a force correction:

 1
2α α αρ = +∑ i

i
u f c F (4.4)

The density is still calculated according to the familiar expression

 ρ=∑ i
i

f (4.5)

For completeness, we also give the expression for the deviatoric viscous stress that – as you
remember – was due to deviations of the distribution function from the equilibrium
distribution function

 () ()1
2

1 1
1 1

2 2αβ α β α β β ασ
τ τ

     = − − − − +∑       
eq

i i i i
i

f f c c F u F u (4.6)

We can summarize the above by going through a lattice-Boltzmann time step, supposing that
the force αF is known: (1) Calculate density and velocity by Eqs. 4.4 & 4.5; (2) determine the

equilibrium distribution (that involves ρ and αu only); (3) determine Ωi and iS , the latter

with Eq. 4.3; (4) perform the collision, Eq. 4.2; (5) stream.

Immersed boundary method
An important application of forcing fluid flow is the immersed boundary method (IBM). In
this method, we attempt to achieve a certain flow velocity and a certain location in the flow
domain by exerting a force on the fluid in the direct vicinity of that location. The “certain
location” does not have to be a lattice node. This is the most attractive part of the IBM: it – in
principle – removes the “squareness” of the flow domain and allows for curved boundaries
without the need to approximate them as stair steps. IBM is an active area of research, not
only in relation to the LB method but also in relation to other numerical schemes for fluid
mechanics. I will be discussing here the way I have implemented the IBM in the LB method,
which only is one of many ways. The discussion will involve two dimensions only; extension
to 3D is not problematic.

Suppose we immerse a cylinder (a circle in 2D) in a fluid. The cylinder does not have to be
fixed, it is given a known linear velocity pv and a known angular velocity pω (note that in

2D the angular velocity has only one component so that – strictly speaking – we do not need
to write it as a vector). The centre location of the cylinder we call px . The cylinder is

represented by points (marker points) on its surface, see Figure 4.1. The spacing between
these points is an important choice to be made. As a rule of thumb, the spacing is taken as
somewhat less than the lattice spacing ∆ (e.g. 0.7∆). We now focus on one of the marker

3

points that has location ()jx t (j is the counter of marker points, since the cylinder is

translating and rotating the location depends on time). The marker points is always
surrounded by four lattice points (see Figure 4.1). On these lattice points the fluid velocity is
known, let’s call it iu (i is the counter of lattice points; we use a single counter here for

simplicity). We can interpolate this fluid velocity to location ()jx t . Given that we only

involve four surrounding lattice points, this is a linear interpolation. This again is a choice;
higher order interpolations are possible and would need to involve more lattice points. The
interpolation process is written as

 ()=∑j ij iw r u
i

I (4.7)

The sum is over the four surrounding lattice points, ()ijrI are interpolation coefficients that

depend on the location jx relative to the lattice points ix : = −ij j ir x x . Since we want to

impose a no-slip condition at the surface of the cylinder, the fluid velocity at jx should be

equal to the surface velocity of the cylinder at jx which is ()= + × −j p p j pv v ω x x . In

general, the interpolated liquid velocity jw at point jx does not match jv . In order to force

jw to closely match jv , we exert a force on the fluid that acts against the velocity difference

−j jw v . This is done in the form of a relaxation process:

 ()α β= − −old

j j j jF F w v (4.8)

Relaxation means that we involve the force from the previous time step old

jF in calculating the

new force jF . The relaxation process involves two constants that I – in all honesty – needed to

find by trial and error. In practice 0.95, 1.8α β= = . One should now realize that the force jF

acts on a marker point, not on a lattice point. In a subsequent operation, jF is distributed over

the four lattice points that surround jx . For consistency, this force distribution step uses the

same coefficients as the interpolation step

 ()=i ij jF r FI (4.9)

with iF the force on lattice node i. This then is the force that we can use in the lattice-

Boltzmann scheme discussed above.

4

Figure 4.1 Immersed boundary method: cylinder on a square grid. Green and blue dots: marker points.
Interpolation to the green dot from the four surrounding (red) lattice nodes.

It is useful to note that this procedure, in addition to imposing no-slip on immersed surfaces,
also provides us with the force exerted on the immersed surface. The immersed boundary
force we calculate according to the procedure above is the force exerted by the surface on the
fluid. Since action equals minus reaction, the force on the surface is the opposite of the
immersed boundary force. Adding up and inverting the immersed boundary forces for all
marker points thus gives us the total force on the immersed surface; in the example of the
cylinder this would be the hydrodynamic force exerted on the cylinder.

4.3 The multiple relaxation time (MRT) collision operator
For various reasons, the BGK collision operator, which is based on a single relaxation time,
has limited stability and accuracy. This is specifically apparent for large velocity magnitudes
(Mach numbers not being very small) and/or low viscosities, i.e. relaxation times only slightly
larger than 0.5. One of the consequences is that it is hard to achieve high Reynolds numbers
without building very large grids of lattice nodes. One issue that limits the accuracy of LB-

BGK simulations at relatively high fluid speeds is the term containing ()3α β γ =u u u O u that

appeared in the Chapman-Enskog analysis (see LN02, Eq. 2.28).

In analysing the BGK collision operator, it has been recognized that it is a rather crude idea to
apply the same relaxation time to all distribution functions. Generalizations of the BGK
operator are therefore based on the idea of involving more than one relaxation time. To make
this physically meaningful, relaxation times are assigned to velocity moments of the
distribution function, instead of to distribution functions themselves. Examples of velocity
moments of the distribution function are the density as the zeroth moment and momentum as
the first moment: ρ=∑ i

i
f and ρ =∑ iu c i

i
f respectively.

Expressing velocity moments in terms of distribution functions is a linear operation and can
be cast in a matrix-vector form:

 = ⋅m M f (4.10)

with f the vector containing distribution functions if (f has nine components in case of a

D2Q9 lattice), m the vector containing the moments (has the same dimension as f) and M
a square matrix with constant coefficients.

The book “The Lattice Boltzmann Method – Principles and Practice” (referred to in LN01)
gives an excellent explanation, that we closely follow here, of how the BGK operator is
generalized to a multiple relaxation time (MRT) operator. We introduce a new parameter

1ω τ= with τ the BGK relaxation time. The lattice-Boltzmann BGK equation reads

 () () () (), 1 , , ,ω  + + − =− −  ix c x x xeq
i i i if t f t f t f t (4.11)

In (f) vector form it thus reads

() () () (), 1 , , ,ω  + + − =− −  ix c x x xeqt t t tf f f f

5

multiply the right-hand side by the identity matrix 1−=I M M

() () () ()1, 1 , , ,ω−  + + − =− −  ix c x M M x xeqt t t tf f f f

realize ω is a constant

() () () ()1, 1 , , ,ω−  + + − =− −  ix c x M M x M xeqt t t tf f f f

with Eq. 4.10:

() () () ()1, 1 , , ,ω−  + + − =− −  ix c x M m x m xeqt t t tf f

multiply yet again by the identity matrix

() () () ()1, 1 , , ,ω−  + + − =− −  ix c x M I m x m xeqt t t tf f

define the diagonal matrix ω=S I

() () () ()1, 1 , , ,−  + + − =− −  ix c x M S m x m xeqt t t tf f

The generalization that we make now is to replace ω=S I by a diagonal matrix S that has
relaxation rates (i.e. inverse relaxation times) per moment on the diagonal (for a nine-velocity
set)

0

1

8

0 0

0 0

0 0

ω

ω

ω

 
 
 
 =  
 
 
 

S

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (4.12)

We now need to figure out which velocity moments to select and how to determine their
respective relaxation rates.

For selecting the moments we go by the so-called Gram-Schmidt procedure that – for the
D2Q9 velocity set as introduced in LN02 – results in the following transformation matrix

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 1 0 0 1 1 1 1

0 2 2 0 0 1 1 1 1

0 0 0 1 1 1 1 1 1

0 0 0 2 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

 
 
 − − − − −
 
 − − − − 
 − − − 
 = − − − 
 

− − − 
 

− − − 
 

− − 
 
 − − 

M (4.13)

The Gram-Schmidt equilibrium moments are

() ()

()

2 2 2 2 2

3 3

2 2

0 : 1: 3 2 : 9 3

3: 4 : 3 5 : 6 : 3

7 : 8 :

ρ ρ ρ ρ ε ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ

= = − + = − + +

= = − = = −

= − =

eq eq eq
x y x x y

eq eq eq eq
x x x x x y y y y y

eq eq
xx x y xy x y

e u u u u u

j u q u u j u q u u

p u u p u u

 (4.14)

6

The relaxation rates are contained in the diagonal matrix S:

 ()diag 0, , ,0, ,0, , ,ε ν νω ω ω ω ω ω=S e q q (4.15)

The conserved velocity moments (density and momentum) have zero relaxation rates. The
rates and νω ωe determine bulk and shear viscosity

 2 21 1
2 2

1 1

3ν

ν
ν ν

ω ω

     = − = − −        
s B s

e

c c (4.16)

(note that – different from BGK – we now have the means to independently set bulk and shear
viscosity). The rates and εω ωq are “free” parameters. For the D2Q9 velocity set

=1 and 1εω ω =q give good results.

An algorithm performing LB simulations with an MRT collision operation would go as
follows: Start from a pre-collision distribution (),xif t

(1) determine density and velocity in the usual way ρ=∑ i
i

f and α αρ =∑ i
i

u f c (assuming

you do not have body forces);
(2) from density and velocity determine (),m xeq t (Eq. 4.14);

(3) from (),x tf determine (),m x t (Eq. 4.10);

(4) determine the post collision distribution () () ()* 1, , ,−  =− −  x M S m x m xeqt t tf (this

requires determining 1−M which you only need to do once & which Matlab can do for you)
(5) stream: () ()* , 1 ,+ + =ix c xi if t f t .

