Lecture Notes- Lattice-Boltzmann Method Jos Derkser PGR Course UAberdeen 2018

4. Forces & collision operators

4.1 Introduction
In this set of lecture notes | would like to dissasfew — largely unrelated — topics that have
practical relevance (e.g. for your research).

Exerting local forces on a lattice-Boltzmann flugtjuires some special care that we will
discuss. This topic is important for many reas@rse is implementing the forces arising
from solid particles in an unresolved particlesdtsolids simulation (see LN 5), another is
implementing an immersed boundary method to detl off-lattice no-slip walls.

So far we have been working with the BGK (singlexation time) collision operator in
relation to the equilibrium distribution functioklore advanced collision operators are
available that have advantages over the BGK openate will be discussing the multiple
relaxation time (MRT) operator, the way to implermignand it's possible advantages.

4.2 Incorporating body forces in the lattice-Boltzmann method
The incompressible Navier-Stokes equation as pteden LNO1 (Eq. 1.19, repeated here as

Eq. 4.1) contained an external forEe
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It is important to realize th&f, is abody force, i.e. a force per unit volume. F, would
represent gravity it would have the forg, . In the analysis of the lattice-Boltzmann method

in LNO2 we did not include a body force. Also wiaiacussing the practical aspects in LNO3
we did not discuss this topic. We will discuss uttthg body forces here.

There are two main approaches for incorporatingdylforce. One is via adapting the
collision operator. This makes perfect sense dioi@® is a source of momentum and

therefore the constraint on the collision oper#tat it conserves momenturi(2,c,, =0)
i

should be amended. Another is via including fore@ aource term in the lattice-Boltzmann
equation. For no specific reason we go in thededeaotes with the second approach.

Previously (LNO2, Eq. 2.10) we wrotE = f +. with f, the pre-collision distribution
function, andf the post-collision distribution function. This eegsion we now supplement
with a source tern§g

= f+Q+5 (4.2)

The source tern§ relates to the body forcg, in the following manner
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with the — by now well known — notation for the eeity set (see Egs. 2.5 & 2.6). Note that
Eq. 4.3 applies the summation convention ovetwlrerepeated Greek indices (3.

Equation 4.3 is the result of yet another Chapmiaskkg analysis involving the Navier-
Stokes equation that includes a force term. Alsa @esult of the Chapman-Enskog analysis it
has become clear that the velocity requirés ee correction:

The density is still calculated according to thenifear expression
p=>f (4.5)

For completeness, we also give the expressiomédeviatoric viscous stress that — as you
remember — was due to deviations of the distriloufiimction from the equilibrium
distribution function
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We can summarize the above by going through @éaBoltzmann time step, supposing that
the forceF, is known: (1) Calculate density and velocity bysE4.4 & 4.5; (2) determine the

equilibrium distribution (that involvep andu, only); (3) determing?, and S, the latter
with Eq. 4.3; (4) perform the collision, Eq. 4.8) 6tream.

Immer sed boundary method

An important application of forcing fluid flow i1 immersed boundary method (IBM). In
this method, we attempt to achieve a certain fl@elosity and a certain location in the flow
domain by exerting a force on the fluid in the direicinity of that location. The “certain
location” does not have to be a lattice node. Ththe most attractive part of the IBM: it — in
principle — removes the “squareness” of the floundm and allows for curved boundaries
without the need to approximate them as stair st&d4 is an active area of research, not
only in relation to the LB method but also in reatto other numerical schemes for fluid
mechanics. | will be discussing here the way | hayademented the IBM in the LB method,
which only is one of many ways. The discussion wMolve two dimensions only; extension
to 3D is not problematic.

Suppose we immerse a cylinder (a circle in 2D) fluia. The cylinder does not have to be
fixed, it is given a known linear velocity, and a known angular velocity, (note that in

2D the angular velocity has only one componenhsab-t strictly speaking — we do not need
to write it as a vector). The centre location @& tylinder we callx,. The cylinder is

represented by pointsérker points) on its surface, see Figure 4.1. The spacing letwe
these points is an important choice to be madea Asge of thumb, the spacing is taken as
somewhat less than the lattice spacihde.g.0.7A). We now focus on one of the marker
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points that has locatio, (t) (j is the counter of marker points, since the cyliride

translating and rotating the location depends ime}i The marker points is always
surrounded by four lattice points (see Figure 40k).these lattice points the fluid velocity is
known, let’s call itu, (i is the counter of lattice points; we use a siglenter here for

simplicity). We can interpolate this fluid velocity locationx; (t) Given that we only

involve four surrounding lattice points, this iireear interpolation. This again is a choice;
higher order interpolations are possible and waongleld to involve more lattice points. The
interpolation process is written as

w; =31 (r )u (4.7)

The sum is over the four surrounding lattice poim(sij) are interpolation coefficients that
depend on the locatiox; relative to the lattice points, : r; = X; —X; . Since we want to
impose a no-slip condition at the surface of thendgr, the fluid velocity ak; should be
equal to the surface velocity of the cylindexatwhich isv, = v, + o, ><(xj —xp). In
general, the interpolated liquid velocity, at pointx; does not matclv;. In order to force
w; to closely matchv,, we exert a force on the fluid that acts againstvelocity difference
w; —V,. This is done in the form of a relaxation process:

F =aF—3(w, - v,) (4.8)

Relaxation means that we involve the force fromptevious time stef-"

in calculating the
new forceF, . The relaxation process involves two constantsithan all honesty — needed to
find by trial and error. In practica = 0.95,3 = 1.&. One should now realize that the forfge
acts on a marker point, not on a lattice point Bubsequent operatioR, is distributed over
the four lattice points that surround. For consistency, this force distribution stepsue

same coefficients as the interpolation step
F =] (rij>|:. (4.9)

with F, the force on lattice nodeThis then is the force that we can use in theckat
Boltzmann scheme discussed above.
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Figure 4.1 Immersed boundary method: cylinder on a square grid. Green and blue dots: marker points.
Inter polation to the green dot from the four surrounding (red) lattice nodes.

It is useful to note that this procedure, in additio imposing no-slip on immersed surfaces,
also provides us with the force exerted on the insegksurface. The immersed boundary
force we calculate according to the procedure alimtee force exerted by the surface on the
fluid. Since action equals minus reaction, thedava the surface is the opposite of the
immersed boundary force. Adding up and invertirggithmersed boundary forces for all
marker points thus gives us the total force onrimaersed surface; in the example of the
cylinder this would be the hydrodynamic force egdron the cylinder.

4.3 The multiple relaxation time (MRT) collision operator

For various reasons, the BGK collision operatoriciwis based on a single relaxation time,
has limited stability and accuracy. This is speailly apparent for large velocity magnitudes
(Mach numbers not being very small) and/or low egtes, i.e. relaxation times only slightly
larger than 0.5. One of the consequences is tigmhdrd to achieve high Reynolds numbers
without building very large grids of lattice nod€mne issue that limits the accuracy of LB-

BGK simulations at relatively high fluid speedshe term containingi u,u, = O(us) that
appeared in the Chapman-Enskog analysis (see LEND2.28).

In analysing the BGK collision operator, it has heecognized that it is a rather crude idea to
apply the same relaxation time to all distributfanctions. Generalizations of the BGK
operator are therefore based on the idea of inmglmore than one relaxation time. To make
this physically meaningful, relaxation times arsigsed tovel ocity moments of the

distribution function, instead of to distributioarictions themselves. Examples of velocity
moments of the distribution function are the dgnag the zeroth moment and momentum as

the first momentp =3 f; and pu=3"c f; respectively.

Expressing velocity moments in terms of distribntfanctions is a linear operation and can
be cast in a matrix-vector form:

m=M-f (4.10)

with f the vector containing distribution functiorfs (f has nine components in case of a
D2Q9 lattice),m the vector containing the moments (has the samerdion asf ) andM
a square matrix with constant coefficients.

The book “The Lattice Boltzmann Method — Principéesl Practice” (referred to in LNO1)
gives an excellent explanation, that we closellpio here, of how the BGK operator is

generalized to a multiple relaxation time (MRT) mgier. We introduce a new parameter
w=1/7 with 7 the BGK relaxation time. The lattice-Boltzmann B@Huation reads

fi(X+c t+1)— f (1) =—w| f, (x.t)— £ (x b)) (4.11)

In ( f ) vector form it thus reads
f(x+c,t+1)— f (x,t)=—w|f (x.t)— F<(xt)
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multiply the right-hand side by the identity matiix= M M
f(x+c,t+1)—f (x,t)=—M "Mw|f (x,t)— F9(x )
realizew is a constant

f(x+c t+1)— f (x,t)=—M "w[Mf (x,t)=Mf = (x t)]
with Eqg. 4.10:

f(x+c,t+1)—f (x,t)=-M %u[m(x,t)—meq (x,t)]
multiply yet again by the identity matrix
f(x+c,t+1)—f (x,t)=—M "wl [m(x,t)—meq (x,t)]
define the diagonal matri® = wl

f(x+c,t+1)—f (x,t)=-M *S[m(x,t)—meq (x,t)]

The generalization that we make now is to repl8@eewl by a diagonal matrids that has

relaxation rates (i.e. inverse relaxation times)rpement on the diagonal (for a nine-velocity
set)

w, O 0
0 0

s=|, (4.12)
0 O Wy

We now need to figure out which velocity momentseagect and how to determine their
respective relaxation rates.

For selecting the moments we go by the so-calleth=8chmidt procedure that — for the
D2Q9 velocity set as introduced in LNO2 — resuttghie following transformation matrix

1 1 1 1 1 1 1 1 1
4 -1 -1 -1-12 2 2 2
4 -2 -2 -2 -21 1 1 1
o 1 -1 0 0 1-1-1 1
M=0 -2 2 0 0 1-1-1 1 (4.13)
O 0 0 1 —-11 1 —1-1
O 0 0 -2 2 1-1 1 -1
O 1 -1 1 -10 0 0 O
O 0 0 0 0 1 1 —1-1

The Gram-Schmidt equilibrium moments are

0:p=p Liet=p—Fp(ul+ul) 2:=%=u’— P(u+u’)+p
Bt =pu, 47 =3pui—pu, 5:ji=pu, 6= PuS—pu, (4.14)
7:pg =p(ui-ui) 8:pf=puu,



The relaxation rates are contained in the diagoradtix S:
S=diag( Ow, w. ,O0w, ,0p, v, w,) (4.15)

The conserved velocity moments (density and mormmenhave zero relaxation rates. The
ratesw, andw, determine bulk and shear viscosity

S ,,B:CSZ[i__;]_Z (4.16)

(note that — different from BGK — we now have theams to independently set bulk and shear
viscosity). The rates). andw, are “free” parameters. For the D2Q9 velocity set

w.=1 andw, = ’give good results.

An algorithm performing LB simulations with an MRBllision operation would go as
follows: Start from a pre-collision distributiorf; (x,t)

(1) determine density and velocity in the usual way 3° f, and pu, =>_ fic, (assuming
you do not have body forces); | |

(2) from density and velocity determime®™ (x,t) (Eq. 4.14);

(3) from f (x,t) determinem(x,t) (Eq. 4.10);

(4) determine the post collision distributidn (x,t) = —M *1S[m(x,t)— m® (x,t)] (this

requires determining/ ~* which you only need to do once & which Matlab danfor you)
(5) stream:f;” (x+c,,t+1)= f (x.t).



