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Lecture Notes ‒ Lattice-Boltzmann Method ‒ Jos Derksen ‒ PGR Course UAberdeen 2018 
 
4. Forces & collision operators 
 
4.1 Introduction 
In this set of lecture notes I would like to discuss a few – largely unrelated – topics that have 
practical relevance (e.g. for your research).  
 
Exerting local forces on a lattice-Boltzmann fluid requires some special care that we will 
discuss. This topic is important for many reasons. One is implementing the forces arising 
from solid particles in an unresolved particles fluid-solids simulation (see LN 5), another is 
implementing an immersed boundary method to deal with off-lattice no-slip walls. 
 
So far we have been working with the BGK (single relaxation time)  collision operator in 
relation to the equilibrium distribution function. More advanced collision operators are 
available that have advantages over the BGK operator. We will be discussing the multiple 
relaxation time (MRT) operator, the way to implement it, and it’s possible advantages. 
 
4.2 Incorporating body forces in the lattice-Boltzmann method 
The incompressible Navier-Stokes equation as presented in LN01 (Eq. 1.19, repeated here as 
Eq. 4.1) contained an external force αF  
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It is important to realize that αF  is a body force, i.e. a force per unit volume. If αF  would 

represent gravity it would have the form αρg . In the analysis of the lattice-Boltzmann method 

in LN02 we did not include a body force. Also when discussing the practical aspects in LN03 
we did not discuss this topic. We will discuss including body forces here. 
 
There are two main approaches for incorporating a body force. One is via adapting the 
collision operator. This makes perfect sense since force is a source of momentum and 
therefore the constraint on the collision operator that it conserves momentum ( 0αΩ =∑ i i

i
c ) 

should be amended. Another is via including force as a source term in the lattice-Boltzmann 
equation. For no specific reason we go in these lecture notes with the second approach. 
Previously (LN02, Eq. 2.10) we wrote * = +Ωi i if f  with if  the pre-collision distribution 

function, and *
if  the post-collision distribution function. This expression we now  supplement 

with a source term iS  

 
 * = +Ω +i i i if f S  (4.2) 

 
The source term iS  relates to the body force αF  in the following manner 

 



2 
 

 
( )2

2 4

1
1

2
α β αβ βα

α

δ

τ

 −    = − +       

i i si
i i

s s

c c c uc
S w F

c c
 (4.3) 

 
with the – by now well known – notation for the velocity set (see Eqs. 2.5 & 2.6). Note that 
Eq. 4.3 applies  the summation convention over the two repeated Greek indices ,α β . 
Equation 4.3 is the result of yet another Chapman-Enskog analysis involving the Navier-
Stokes equation that includes a force term. Also as a result of the Chapman-Enskog analysis it 
has become clear that the velocity requires a force correction: 
 

 1
2α α αρ = +∑ i

i
u f c F  (4.4) 

 
The density is still calculated according to the familiar expression 
 

 ρ=∑ i
i

f  (4.5) 

 
For completeness, we also give the expression for the deviatoric viscous stress that – as you 
remember – was due to deviations of the distribution function from the equilibrium 
distribution function 
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We can summarize the above by going through a lattice-Boltzmann time step, supposing that 
the force αF  is known: (1) Calculate density and velocity by Eqs. 4.4 & 4.5; (2) determine the 

equilibrium distribution (that involves ρ  and αu  only); (3) determine Ωi  and iS , the latter 

with Eq. 4.3; (4) perform the collision, Eq. 4.2; (5) stream. 
 
Immersed boundary method 
An important application of forcing fluid flow is the immersed boundary method (IBM). In 
this method, we attempt to achieve a certain flow velocity and a certain location in the flow 
domain by exerting a force on the fluid in the direct vicinity of that location. The “certain 
location” does not have to be a lattice node. This is the most attractive part of the IBM: it – in 
principle – removes the “squareness” of the flow domain and allows for curved boundaries 
without the need to approximate them as stair steps. IBM is an active area of research, not 
only in relation to the LB method but also in relation to other numerical schemes for fluid 
mechanics. I will be discussing here the way I have implemented the IBM in the LB method, 
which only is one of many ways. The discussion will involve two dimensions only; extension 
to 3D is not problematic. 
 
Suppose we immerse a cylinder (a circle in 2D) in a fluid. The cylinder does not have to  be 
fixed, it is given a known linear velocity pv  and a known angular velocity pω  (note that in 

2D the angular velocity has only one component so that – strictly speaking – we do not need 
to write it as a vector). The centre location of the cylinder we call px . The cylinder is 

represented by points (marker points) on its surface, see Figure 4.1. The spacing between 
these points is an important choice to be made. As a rule of thumb, the spacing is taken as 
somewhat less than the lattice spacing ∆  (e.g. 0.7∆ ). We now focus on one of the marker 
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points that has location ( )jx t  (j is the counter of marker points, since the cylinder is 

translating and rotating the location depends on time). The marker points is always 
surrounded by four lattice points (see Figure 4.1). On these lattice points the fluid velocity is 
known, let’s call it iu  (i is the counter of lattice points; we use a single counter here for 

simplicity). We can interpolate this fluid velocity to location ( )jx t . Given that we only 

involve four surrounding lattice points, this is a linear interpolation. This again is a choice; 
higher order interpolations are possible and would need to involve more lattice points. The 
interpolation process is written as  
 

 ( )=∑j ij iw r u
i

I  (4.7) 

 

The sum is over the four surrounding lattice points, ( )ijrI  are interpolation coefficients that 

depend on the location jx  relative to the lattice points ix : = −ij j ir x x . Since we want to 

impose a no-slip condition at the surface of the cylinder, the fluid velocity at jx  should be 

equal to the surface velocity of the cylinder at jx  which is ( )= + × −j p p j pv v ω x x . In 

general, the interpolated liquid velocity jw  at point jx  does not match jv . In order to force 

jw  to closely match jv , we exert a force on the fluid that acts against the velocity difference 

−j jw v . This is done in the form of a relaxation process: 

 
 ( )α β= − −old

j j j jF F w v  (4.8) 

 
Relaxation means that we involve the force from the previous time step old

jF  in calculating the 

new force jF . The relaxation process involves two constants that I – in all honesty – needed to 

find by trial and error. In practice 0.95, 1.8α β= = . One should now realize that the force jF  

acts on a marker point, not on a lattice point. In a subsequent operation, jF  is distributed over 

the four lattice points that surround jx . For consistency, this force distribution step uses the 

same coefficients as the interpolation step 
 

 ( )=i ij jF r FI  (4.9) 

 
with iF  the force on lattice node i. This then is the force that we can use in the lattice-

Boltzmann scheme discussed above. 
 

 



4 
 

 
Figure 4.1 Immersed boundary method: cylinder on a square grid. Green and blue dots: marker points. 
Interpolation to the green dot from the four surrounding (red) lattice nodes.  
 
It is useful to note that this procedure, in addition to imposing no-slip on immersed surfaces, 
also provides us with the force exerted on the immersed surface. The immersed boundary 
force we calculate according to the procedure above is the force exerted by the surface on the 
fluid. Since action equals minus reaction, the force on the surface is the opposite of the 
immersed boundary force. Adding up and inverting the immersed boundary forces for all 
marker points thus gives us the total force on the immersed surface; in the example of the 
cylinder this would be the hydrodynamic force exerted on the cylinder. 
 
4.3 The multiple relaxation time (MRT) collision operator 
For various reasons, the BGK collision operator, which is based on a single relaxation time, 
has limited stability and accuracy. This is specifically apparent for large velocity magnitudes 
(Mach numbers not being very small) and/or low viscosities, i.e. relaxation times only slightly 
larger than 0.5. One of the consequences is that it is hard to achieve high Reynolds numbers 
without building very large grids of lattice nodes. One issue that limits the accuracy of LB-

BGK simulations at relatively high fluid speeds is the term containing ( )3α β γ =u u u O u  that 

appeared in the Chapman-Enskog analysis (see LN02, Eq. 2.28).  
 
In analysing the BGK collision operator, it has been recognized that it is a rather crude idea to 
apply the same relaxation time to all distribution functions. Generalizations of the BGK 
operator are therefore based on the idea of involving more than one relaxation time. To make 
this physically meaningful, relaxation times are assigned to velocity moments of the 
distribution function, instead of to distribution functions themselves. Examples of velocity 
moments of the distribution function are the density as the zeroth moment and momentum as 
the first moment: ρ=∑ i

i
f  and ρ =∑ iu c i

i
f  respectively.  

 
Expressing velocity moments in terms of distribution functions is a linear operation and can 
be cast in a matrix-vector form: 
 

 = ⋅m M f  (4.10) 
 

with f  the vector containing distribution functions if  ( f  has nine components in case of a 

D2Q9 lattice), m  the vector containing the moments (has the same dimension as f ) and M  
a square matrix with constant coefficients. 
 
The book “The Lattice Boltzmann Method – Principles and Practice” (referred to in LN01) 
gives an excellent explanation,  that we closely follow here, of how the BGK operator is 
generalized to a multiple relaxation time (MRT) operator. We introduce a new parameter 

1ω τ=  with τ  the BGK relaxation time. The lattice-Boltzmann BGK equation reads 
 

 ( ) ( ) ( ) ( ), 1 , , ,ω  + + − =− −  ix c x x xeq
i i i if t f t f t f t  (4.11) 

 
In ( f ) vector form it thus reads 

( ) ( ) ( ) ( ), 1 , , ,ω  + + − =− −  ix c x x xeqt t t tf f f f  
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multiply the right-hand side by the identity matrix 1−=I M M  

( ) ( ) ( ) ( )1, 1 , , ,ω−  + + − =− −  ix c x M M x xeqt t t tf f f f   

realize ω  is a constant 

( ) ( ) ( ) ( )1, 1 , , ,ω−  + + − =− −  ix c x M M x M xeqt t t tf f f f  

with Eq. 4.10: 

( ) ( ) ( ) ( )1, 1 , , ,ω−  + + − =− −  ix c x M m x m xeqt t t tf f  

multiply yet again by the identity matrix 

( ) ( ) ( ) ( )1, 1 , , ,ω−  + + − =− −  ix c x M I m x m xeqt t t tf f  

define the diagonal matrix ω=S I  

( ) ( ) ( ) ( )1, 1 , , ,−  + + − =− −  ix c x M S m x m xeqt t t tf f  

The generalization that we make now is to replace ω=S I  by a diagonal matrix S  that has 
relaxation rates (i.e. inverse relaxation times) per moment on the diagonal (for a nine-velocity 
set) 
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We now need to figure out which velocity moments to select and how to determine their 
respective relaxation rates. 
 
For selecting the moments we go by the so-called Gram-Schmidt procedure that – for the 
D2Q9 velocity set as introduced in LN02 – results in the following transformation matrix 
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The Gram-Schmidt equilibrium moments are 
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The relaxation rates are contained in the diagonal matrix S:  
 

 ( )diag 0, , ,0, ,0, , ,ε ν νω ω ω ω ω ω=S e q q  (4.15) 

 
The conserved velocity moments (density and momentum) have zero relaxation rates. The 
rates  and νω ωe  determine bulk and shear viscosity 
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(note that – different from BGK – we now have the means to independently set bulk and shear 
viscosity). The rates  and εω ωq  are “free” parameters. For the D2Q9 velocity set 

=1 and 1εω ω =q  give good results. 

 
An algorithm performing LB simulations with an MRT collision operation would go as 
follows: Start from a pre-collision distribution  ( ),xif t   

(1) determine density and velocity in the usual way ρ=∑ i
i

f  and α αρ =∑ i
i

u f c  (assuming 

you do not have body forces);  
(2)  from density and velocity determine ( ),m xeq t  (Eq. 4.14); 

(3) from ( ),x tf  determine ( ),m x t  (Eq. 4.10); 

(4) determine the post collision distribution ( ) ( ) ( )* 1, , ,−  =− −  x M S m x m xeqt t tf  (this 

requires determining 1−M  which you only need to do once & which Matlab can do for you) 
(5) stream: ( ) ( )* , 1 ,+ + =ix c xi if t f t . 

 
 
  
 


