Lecture Notes- Lattice-Boltzmann Method Jos Derkser PGR Course UAberdeen 2018

3. Practical aspects of lattice-Boltzmann simulations

3.1 Introduction
After having gone through a theoretical analysitheflattice-Boltzmann method we now will
discuss what needs to be done to actually do scameputational) fluid dynamics with it.

3.2 Compressibility and the Mach number

From the analyses presented in LNO2 it has becteae that the speed of sound of a lattice-
Boltzmann fluid is finite which implies that we adealing with a compressible fluid. The
Chapman-Enskog analysis showed that with the LBMamesolving the Navier-Stokes
equation for a compressible fluid if the bulk visitg is two-thirds of the (shear) viscosity
(Eq. 2.28). This — in general — is not the casés ®sue, however, is of not much concern if
we are planning to work on (near) incompressilde/ fproblems since the bulk viscosity is of

, . ou . , .
no importance |fa—” ~ 0. Incompressible flow meanda = 0; near incompressible flow
X
g
meansMa < 1 with

Ma = |u|/c, (3.1)

the Mach number (and — as introduced befone the bulk velocity and, the speed of

sound). For incompressible floey — oo . Sincec, =/1/3 (in lattice units) it means that we
need to make sure th|za|l|<<1 in lattice units. As we will see in the next senti- which is

about how to deal with lattice units when solvieglrflow systems stated in Sl units — the
constraint on the bulk spe@q < 1 effectively is a constraint on the time step.

3.3 From Sl unitsto lattice units

For translating a real, physical flow problem iataB simulation we take the example of
incompressible lid-driven cavity flow. The two-dimsonal geometry is shown in Figure 3.1:
we have a square space filled with liquid watenéity p =10° kg/m® (constant density,
incompressible flow), dynamic viscosify=10° Pds). Of the four solid walls, the top wall is
moving in the positive-direction with velocityJ. On all solid walls we want to impose a no-
slip boundary conditions (liquid adjacent to a wsalicks to that wall). As a result of the
motion of the top wall, the water close to the wegdl will be dragged along with the top wall
in the positivex-direction until it hits the right wall where it be deflected in the downward
direction. This creates a circulating flow in thevity with the circulation in the clockwise
direction. The cavity has a side length0.02 m (2 cm), and the top wall moves with a
velocity U=0.01 m/s (1 cm/s). We want to simulate the flowthia cavity starting up from
zero velocity and evolving to a steady state we want to solve the bulk velocity in the

cavity as a function of, y, andt: u(x, y, t) with the lattice-Boltzmann method.

U—>

1,p

y

v » X

<
<

v

Figure3.1

This flow problem is stated in Sl units. We needrémslate it into lattice units and need to
make decisions regarding time step and latticestsl. For this we translate the flow system
in dimensionless form by scaling with the inputightesU andL where we indicate
dimensionless variables with ~:

x=xLy=y Lt=tULa=u/U (3.2)

Dimensional analysis of the flow problem itself aisathat the Reynolds number is the all-
determining parameter:

Re— Yt UL (3.3)
U v
10°x 0.0% 0.02

Based on the parameters givee= = 20(. Reynolds similarity now

03
implies that if we are able to perform an LB sintida at Re=200 with lid velocity in lattice
unitsU ; and cavity size in lattice units ;, and with the outcome of that simulation denoted
asu (X, y,t) (in lattice units) then the dimensionless LB resyl, =u,/U ; is the LB

prediction for the actual dimensionless velocigldit = u/U (as defined in Eq. 3.2) so that
the LB prediction for the Sl velocity field & ; xU =u zxU/U ; with U the lid velocity in

Sl units. Perhaps this is obvious but — just to estkre — | thought it is worthwhile to spell
this out.

From the above we now thus are tasked with perfograilid-driven cavity LB simulation at
Re=200 and we need to choose our simulation paesisadthe first choice is fdd ;. Since

we want to simulate an incompressible flow, the Maamber Ma needs to be sufficiently
small. Since we expect that the maximum fluid spedtie cavity is equal to the speed of the
lid, the Mach number will not exceed, ; /c, . We chooseJ ,=0.1. WithU ;=0.1,

U s/c,=0.17 which is sufficiently small. The second cleoig for L ;. The spatial resolution
of the simulation is governed dy; sincelL ; is the number of lattice nodesxmandy

direction. We now need some fluid dynamics intuitadout the flow in a cavity at Re=200.
This is going to be a laminar flow with not muchédiscale detail; we expect a single
recirculation loop that fills the largest part bétcavity. We expect that this recirculation loop
is going to be well-resolved on a>ZD mesh so that we chookg, =20. In order to achieve

Re=200, the kinematic viscosity in lattice unitastnmeeds to be :%:0.0l. This
e

can be realized by a collision operator with axaten time of (see Eq. 2.9)
T7=3v+45=0.53.

In summary:U ;=0.1 motivated by limiting compressibility, , =20 motivated by spatial
resolution,v,; =0.01 for achieving the aimed for Reynolds numidend run the simulation

in lattice units, the time step is — by definittem\t =1. The velocity of the lid and the size of
the cavity, however, determine a more physicallamegful interpretation of the time step.
With U, ;=0.1, the lid moves over 0.1 lattice unit per tistep and it thus takes

L.s/U s =200 time steps for the lid to move once over thétgaThe Courant number of
this simulation isC = U ; At/Ax=0.1. This is much smaller than the typically usatiies

of C ~ 0.8in explicit time stepping finite difference or fteivolume solvers. The small
Courant number and thus effectively the small tetep are the result of the low Mach
number requirement associated to the LB method.

The scaling analysis for lid-driven cavity flowrslatively easy since we were given a
velocity scale in the form of the lid spegdIf we were to be asked to simulate the flow
between two flat, vertical parallel plates as altesf gravity (see Figure 3.2) our input
parameters are the distance between the pl&teth@ properties of the fluid (kinematic
viscosity v and the density), and gravitational acceleratign Dimensional analysis shows

that this flow is governed by the dimensionlessugr®®g/v? (density does not show up

since the two balancing effects of gravity and eissforces are both proportional to the
density: pg and pv) so that in an LB simulation we must match thimehsionless number.
Some notion of the hydrodynamics of this systenh mvdke us decide on what to choose for
D in lattice units (if we expect laminar flol=10 should be OK). We then still have two free
parameterss andg in lattice units to decide upon. We need to doesanpriori analysis to
estimate the expected flow velocities (which irsthasic flow example is very simple) to
come up with a» and g combination (in lattice units) such that we matwohd dimensionless
group and have flow speeds that are sufficientlyilo order to meet the compressibility
constraints.

\LQ

Figure 3.2

3.4 Boundary conditions

The lid-driven cavity example clearly shows theerof — and the need for — defining
boundary conditions. Boundary conditions in LB siations are a topic of active research
and come in a large variety of forms and implemtota. Here we discuss a few of the more
basic and most used ones.

First, however, we look at one — in my mind coneani- way to implement boundary
conditions. In the streaming step (Eq. 2.%1)x+c,,t+1)= f (x,t), post-collision

distribution functionsf,” are transferred to neighbouring lattice sitestitatsites next to

boundaries need to receivié 's from all directions, also from directions thaeémingly)

come from outside the flow domain. This is illustichin Figure 3.3 (left panel) that focuses
on the lower-left corner of the flow domain, elge fower-left corner of the lid-driven cavity.
One way to implement boundary conditions is todbailayer of “ghost” cells at the other
side of the boundary (the dashed cells in the pgimel of Figure 3.3) and populate these
ghost cells withf’s that represent the boundary condition. An LBetistep would then

consist of (1) collide; (2) populate ghost cel®); $tream towards all celissidethe flow
domain.

==
? - L] : * L] L]
?% . : . . .

|_: I o 1 41
? 5 L R N
Figure 3.3

No-slip boundary condition at fixed wall
Fluid sticks at solid walls. Therefore, if the wiallnot moving, the velocity at the wall is zero.
A static no-slip wall can be achieved by applyingoaince-back boundary condition: tli€s

that want to leave the flow domain are bounced-lveo&n they hit the solid wall. We show
this in Figure 3.4 (left panel): the black arrowmihce on the wall and are reverted and
become the red arrows. The right panel of FigudesBows how this is implemented by
means of ghost cells. Figure 3.4 illustrates aated half-way bounce back scenario, where
the actual boundary location is half a cell sizaadvom the lattice nodes (i.e. the cell

centres) that are populated wifii's. There are also implementations — not discubsed —
where nodes are located on the no-slip boundary.

no slip wall

Figure3.4

No-slip boundary condition at moving wall

A wall moving parallel to itself (as the top wall ihe lid-driven cavity) requires an extension
of the bounce-back condition. Consider the situaitioFigure 3.5. The motion of the wall in
the positivex-direction will add momentum to the particle thebounced off the wall in the

4

positivex-direction, and it will reduce the momentum of gegticle that is reflected in the
negativex-direction. This is illustrated by the longer regttor that points to up-right, and the
shorter red vector that points up-left. This precesn be described as

fs(X,t+2)= f; (x,1)+ 2p(x t)uw,/ € f(X t+ J= fo(x)= 2(x 1) uwy/ ¢ (3.4)

where we used the numbering of velocities as eagiien in Figure 2.1, repeated for your
convenience in Figure 3.6.

%
moving wall ——3>

i ! i |
u, e :K. |
1 ! 1 !
[S I J
Figure3.5
.CG ic3 CS.
A
C C
1%
v
c C
y 07 YC4 08
<1 >
) X
Figure 3.6

We note that change of momentum can only achieyeldhange in mass. As we can see in
Eqg. 3.4, the net change in mass is equal to zeoe sv, = w, =1/36.

Periodic boundary conditions

Periodic conditions imply that what leaves the dionwen one side, re-enters on the other side.
This is illustrated in Figure 3.7. The masses regméed by the red arrows on the left of the
domain (in the left panel of Figure 3.7) come frtima right side of the domain. The right
panel of Figure 3.7 shows how this can be impleetnsing ghost cells: we copy the far
right layer of cellsnsidethe flow domain to the ghost cells on the itsidethe flow

domain.

.\ i“:—\-‘ .\
—::}- o—Pp] E___._j . —Pp
ST 7

Figure3.7

Free-slip non-penetrating boundary
A free-slip (i.e. zero shear stress) wall can beeaed by specular reflection (i.e. a mirror-
like reflection) of f,’s on the boundary, see Figure 3.8. The right pah#iis figure is the

same as the right panel of Figure 3.4 (no-slip}elNbowever, that the red arrows come from
a different location: they are the reflected bladlows of the left panel.

[® [] [] L]

M

/

Figure 3.8

Zero-gradient boundary — an open boundary

See the example in Figure 3.9: by copying thelbtaoows of the left panel to the ghost cells
left of the boundary (as indicated in the right @amve mimic a no-variation ir-direction
condition, which is a zero-gradient condition.

.\ i-__:} []
}- > i o o

zero gradient 8/0x=0

Figure 3.9

Inlet boundary

In principle, theno-slip boundary condition at moving wak discussed above (see Figure
3.5) can also be applied if the velocity of the hdary has a component normal to the
boundary. In that sense it can be used to impesdoaity or a velocity profile at the inlet of a
flow system. | write “in principle” since | do nblave experience with using this way of
defining an inlet. What | usually do is applyindoace on the fluid at an inlet to impose an
inlet velocity, in combination with a zero-gradidrdundary (see above).

Applying forces to impose boundary condition redaie immersed boundary methods.

Immersed boundaries

Immersed boundary methods are applied over a wdetrim of approaches to simulating
fluid flow, the LB method being no exception. Tlea is to locally exert forces on the flow
such that as a result of these forces the velatitertain locations in the flow takes on
desired values (e.g. zero velocity if we want tpase a static no-slip condition).

A significant advantage of the immersed boundarthonis the possibility to impose off-
grid conditions and/or moving boundaries. When wpglimmersed boundaries for off-grid
(e.g. curved) boundaries, one uses interpolati@stinate velocities at points that do not
coincide with lattice nodes. One uses extrapolatiodistribute the forces acting on the fluid
at points not coinciding with lattice nodes toitatnodes. For better appreciating the
workings of the immersed boundary method we fiestchto know how to apply forces to an
LB fluid. This topic will be discussed in LNO4 wieewe then also will revisit the immersed
boundary method.

3.5 Coding
The ingredients of an LB computer code are
(1) Definitions: set grid siz&xx ny, number of time steps, kinematic viscosityweighing

factorsw .

(2) Initialize f (x,t=0), e.g. by setting it equal to the equilibrium dtsttion function with
uniform p andu=0.

Start the time stepping loop; what comes now is done each time step

(3) Fill the ghost cells with boundary values Hf

(4) Stream

(5) Collide & return to (3) until the pre-set numloé time steps is completed
L eave the time stepping loop and write to file, plot,... etc.

A sample code in Matlab (lusby2.m named aftef gefr project student) for lid-driven
cavity flow has been distributed under the cousdigipants. It is a D2Q9 code with velocity
numbering as defined in LNO2.

Below are coding suggestions regarding some offrii@ ingredients of the LB algorithm.
The pieces of computer code are in Matlab withetheeption of the array (or vector if you
wish) indices. Matlab does not allow these to ballmthan 1. Since our velocity direction
numbering starts with= 0, | decided — for clarity — to keep this numberinghe code
fragments below.

Streaming
In streaming we execute Eq. 2.11 (repeated hel®al.5):

f(x+c,t+1)=f (x.t) (3.5)

After we have dealt with our boundary conditiona populating ghost cells (as explained in
the previous section) this can be implemented mpder code as a loop over all the active
(i.e. non-ghost) lattice nodes. One could be tethfievork with two arrays
f(0...8,1...nx,1...ny) for the left-hand side of Eq. 3.5 and

fstar(0...8,0...nx+1,0...ny+1) for the right-hand side and witix the number of active
lattice nodes ix-direction anchy the number of active nodesysdirection. Note that

fstar needs to include ghost cells, hence the extensiOn.nx+1,0...ny+1 wheref has
1...nx,1...ny. Then do something like this piecepsfeudocode (where | refer to the velocity
numbering in Figure 3.6).

for j=1:ny
for i=1:nx

f(0,i,j)=fstar(0,i,j)
f(1,i,j)=fstar(1,i-1,j)
f(2,i,j)=fstar(2,i+1,))
f(3,i,j)=fstar(3,i,j-1)
f(4,i,))=fstar(4,i,j+1)
f(5,i,j)=fstar(5,i-1,j-1)
f(6,i,j)=fstar(6,i+1,j-1)
f(7,i,j)=fstar(7,i+1,j+1)
f(8,i,j)=fstar(8,i-1,j+1)
end
end

This is not a smart way to do streaming as it neguiwo large arrays (specifically in 3D and
for big computations these arrays can get huge}famgleats up lots of computer memory.
We can do, however, with one arrf@9...8,0...nx+1,0...ny+1) . At the start of the

streaming operation this array contaifis including its values in the ghost nodes. Then we
run the following

for j=1:ny
for i=1:nx
f(2,i,)=f(2,i+1,))
f(4,i,))=f(4,i,j+1)
f(7,i,)=f(7,i+1,j+1)
f(8,i,))=f(8,i-1,j+1)
end
end
for j=ny:-1:1
for i=nx:-1:1
f(1,i,)=f(1,i-1,))
(3,i,))=f(3,i,j-1)
f(5,i,))=f(5,i-1,j-1)
f(6,i,j))=f(6,i+1,j-1)
end
end

Note that in the second double loop we go in reverder (thel in thefor statements). The
trick here is to update fronfi” to f. in the same direction as you go through the Iesapthat

on the right side of the equal sign there actualgn f” and not an already updatéd In

one dimension this is relatively simple. In two émsions (as is the case here) one should
realize that the data is ordered as

(00): (28 Y[12 22-(m ool B 2o x

Filling in the ghost nodes
As an example of filling the ghost nodes with takevant f~ values, here is how it can be

done for the bottom wall of the cavity, which ig@slip wall. The first row of active nodes
above the bottom hasl. Therefore, the row of ghost nodes underneath thternowvall has
j=0 . The velocity directions entering through the bottare 3, 5, 6 (see Figure 3.6). The

opposite velocity directions are 4, 7, 8 respetyivehe associated, 's come from one layer
above, hence the1 on the right-hand side. As can be seen in Fig.tBetf," ’s of the

diagonal velocity directions need to be shiftethiex-direction, hence the1 andi-1 on the
right hand size for directions 5 and 6.

% bounce back at bottom

=0;

for i=1:nx
X(3,1,))=x(4,i,j+1);
X(5,1,))=x(7,i+1,j+1);
X(6,1,))=x(8,i-1,j+1);

end

Note that in the above we use (as in lusbyZ mmstead of .

Calculating the equilibrium distribution & collide
Here is a piece of code dealing with how to dodbiéision step (Eq. 2.10, LNO2).
We loop over all active nodes.
We do a few things to try and speed up the comijouts{where it should be noted that
everything that is calculated inside the loop isdated for each node and each time step so
that computational efficiency inside the loop paif.
write out the expression fatio instead of putting it in a loop
multiplication is cheaper than division, we do @masion to determine.o/rho and
then userho twice
determineusg=ux*ux+uy*uy and using it multiple times
similar forcdotu

for j=1:ny
for i=1:nx
rho=x(0,i,j)+x(1,i,))*+x(2,i,j)+x(3,i,j)+x(4,i,j)+X(5,1,))+X(6,i,))+
X(7,1,j)+x(8,i,));
rrho=1.0/rho;
ux=xX(1,i,))-X(3,i,))+x(5,i,))-Xx(6,i,))-Xx(7,i,)) +X(8,1,));
ux=ux*rrho;
uy=x(2,i,j)-x(4,i,j))+x(5,i,j) +x(6,1,j)-x(7,i,j) -X(8,1,));
uy=uy*rrho;
usg=ux*ux+uy*uy;
xeq(0)=m0*rho*(1.0-1.5*usq);
cdotu=ux;
xeq(1)=m1l*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
cdotu=uy;
xeq(2)=m1*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
cdotu=-ux;
xeq(3)=m1l*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
cdotu=-uy;
xeq(4)=m1*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
cdotu=ux+uy;
xeq(5)=m2*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
cdotu=-ux+uy;
xeq(6)=m2*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
cdotu=-ux-uy;
xeq(7)=m2*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
cdotu=ux-uy;
xeq(8)=m2*rho*(1.0+3.0*cdotu+4.5*cdotu*cdotu-1. 5*usq);
for I=0:8
x(L,i,j)=(2.0-rtau)*x(l,i,j)+rtau*xeq(l);
end
end
end

Open-source lattice-Boltzmann codes

If you do not feel like writing your own code, tleesire open-source code available online,

e.g.
http://www.openlb.net/
http://www.palabos.org/

10

