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Lecture Notes ‒ Lattice-Boltzmann Method ‒ Jos Derksen ‒ PGR Course UAberdeen 2018 
 
0. General introduction to the course 
The lattice-Boltzmann method (LBM) is an interesting way of doing simulations of fluid flow 
and related transport processes and a useful addition to more mainstream computational fluid 
dynamics (CFD) methods based on finite volumes, finite differences or finite elements. There 
are many reasons for using LBM, and many reasons for not using it, mainly dependent on the 
applications you are interested in. An understanding of the LBM will help you in deciding if 
your application could benefit from it and – if so – will hopefully get you a quick start. 
 
The course will be divided in five two-hour lectures. For each lecture I will compile a set of 
Lecture Notes. The current notes (LN01) deal with kinetic theory which forms the basis of the 
LBM. LN02 explain the LBM in quite some detail. LN03 discuss practical aspects such as 
boundary conditions, how to translate real (physical) flow systems in an LBM simulation, and 
what an actual LBM code could look like.  LN04 and LN05 discuss a number of more 
specialized topics: collision operators, body forces, immersed boundary method, 
implementations for multiphase flow and for turbulence.  
 
After I completed a first draft of all five sets of Lecture Notes I realized that the first two sets 
are quite theoretical / mathematical. Please bear with me in the first two lectures if your main 
interest is applying the LBM, the last three lectures will be much more applied. 
 
These course notes are partly based on the book “The lattice Boltzmann method – principles 
and practice” by Krüger et al (Springer, ISBN 978-3-319-44647-9). I decided not to provide 
literature references in the lecture notes. Eighty percent can be found back in the above book 
(albeit sometimes in different notation); feel free to consult me for the remaining twenty 
percent.  
 
1. Kinetic theory 
 
1.1 Introduction 
Matter consists of molecules. In a gas they fly around thereby colliding with one another. In a 
classical molecular dynamics description of a gas we follow individual molecules by solving 
their Newtonian equations of motion that include interaction forces between the molecules.  
Simulating this on a computer is called Molecular Dynamics (MD). In a continuum approach 
the discrete (molecular) nature of matter is abandoned to make place for a description in terms 
of functions describing properties (pressure, density, velocity, temperature) that continuously 
depend on (three-dimensional) location in space and time. Kinetic theory is a description in 
between molecular and continuous; a mesoscopic description.  
 
1.2 Distribution function 
Starting point of kinetic theory is the notion of a distribution function. Since distribution 
functions are also fundamental to the lattice-Boltzmann method it is worthwhile to go over 
some of the concepts and results from kinetic theory. To keep things relatively simple, we will 
consider a dilute, monoatomic gas with the molecules having no internal degrees of freedom 
(such as vibration or rotation) and the molecules colliding elastically. 
 
The distribution function is denoted as ( ), ,x ξf t  with x  space vector, ξ  velocity vector, and t 

time.  It can be seen as a generalization of the density ( ),ρ x t , now also taking into account 



2 
 

velocity. It is the density of molecules in physical space as well as in velocity space. The SI 

units of the distribution function are [ ]
( )33

1 1
kg

m m s
= ⋅ ⋅f . Density, momentum and energy 

follow from integrations over velocity space: 
 

 ( ) ( ) 3, , ,ρ ξ= ∫∫∫x x ξt f t d  (1.1) 

 ( ) ( ) ( ) 3, , , ,ρ ξ= ∫∫∫x u x ξ x ξt t f t d  (1.2) 

 ( ) ( ) ( )2 31
2, , , ,ρ ξ= ∫∫∫x x ξ x ξt E t f t d  (1.3) 

 
As we will see, it is useful to make a distinction between random thermal motion (with 
velocity ( ),v x t ) and bulk motion of molecules (with velocity ( ),u x t  as identified in Eq. 1.2): 

( ) ( ) ( ), , ,≡ −v x ξ x u xt t t . The energy associated to ( ),v x t  is  

 

 ( ) ( ) ( )2 31
2, , , ,ρ ξ= ∫∫∫x x v x ξt e t f t d  (1.4) 

 
is called internal energy. We note that only translational kinetic energy is considered in the 
above expressions. This is due to us dealing with monoatomic gases that do not have 
rotational or vibrational degrees of freedom. 
 
A quick way of finding an expression for pressure goes via the ideal gas law and the 
equipartition theorem. The latter relates internal energy per translational degree of freedom 
with temperature: 1

2=dofe RT for each degree of freedom. With three degrees of freedom this 

gets 3
2ρ ρ=e RT. The usual way of writing the ideal gas law in fluid dynamics is ρ=p RT  

so that 
 

 ( )2 32 1
3 3 , ,ρ ρ ξ= = = ∫∫∫ v x ξp RT e f t d  (1.5) 

 
It is useful to check units at this stage. When we write ρ=p RT  then R is not the (universal) 

molar based gas constant ( )8.31 J mol K= ⋅molarR ; instead, = molarR R m with m the molar 

mass of the gas. Molar mass has units kg/mol so that R has units ( ) ( )2 2J kg K m s K⋅ = ⋅  

which should be given 3
2=e RT and e having units 2 2m s  (the latter from the way e is 

defined in Eq. 1.4). 
 
 
1.3 Equilibrium distribution function 
If a gas is left alone for sufficiently long time and molecules have undergone many collisions 
thereby exchanging momentum one can imagine that the distribution of velocities of the 
molecules reaches an equilibrium. This equilibrium is expected to be isotropic in velocity 
space. We assume – without lack of generality – the  average velocity u equal to zero so that 
( ) ( ), ,≡v x ξ xt t . Isotropy in velocity space then means that only the velocity magnitude (not 

the direction) matters for the equilibrium distribution function: ( ), ,x veqf t . An important 

result of statistical mechanics is that the equilibrium distribution has the following form: 
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 ( ) ( )2
3 2

21
, ,

2
ρ
π

− =   
vx v RTeqf t e

RT
 (1.6) 

 
Equation 1.6 goes by the name Maxwell-Boltzmann distribution. It shows, as an example, that 
increasing temperature will get you a wider distribution function. 
 
1.4 Evolution of distribution function 
If we take the total derivative of the distribution function with respect to time we get 
 

 β β

β β

ξ

ξ

∂ ∂ ∂
= + +
∂ ∂ ∂

dx ddf f dt f f

dt t dt x dt dt
 (1.7) 

 
Where we use index notation for the location (βx ) and velocity ( βξ ) vector components and 

the summation convention: sum over repeated Greek indices (for example 

β

β

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂

dxf f dx f dy f dz

x dt x dt y dt z dt
). In Eq. 1.7, 1=

dt

dt
, β

βξ=
dx

dt
, βξd

dt
 is an acceleration 

per unit volume and therefore β βξ

ρ
=

d F

dt
. Collisions are a reason for change of the 

distribution function since they re-distribute momentum. Combining these notions leads to the 
Boltzmann equation 
 

 ( )β

β

β β

ξ
ρ ξ

∂ ∂ ∂
+ + =Ω

∂ ∂ ∂

Ff f f
f

t x
 (1.8) 

 
where ( )Ω f  is the collision operator. It depends on the distribution function, i.e. on the way 

mass is distributed over physical and velocity space. The Boltzmann equations (Eq. 1.8) can 
be interpreted as an advection equation with forces and collisions as source terms. In a 
molecular collision, mass is not lost so that a property of the collision operator is  
  

 ( ) 3 0ξΩ =∫∫∫ f d  (1.9) 

 
If we also assume that total momentum and total energy is conserved in collisions this 
implies.  
 

 ( ) 3ξΩ =∫∫∫ ξ 0f d  (1.10) 

 ( )2 3 0ξΩ =∫∫∫ ξ f d  (1.11) 

 
A lot of physics goes into the collision operator as it involves a wide spectrum of collision 
scenarios and intermolecular forces. To avoid (too much)  complexity, simple heuristic 
approaches have been proposed that prove remarkably useful. Respect for conservation laws 
and the notion that collisions will eventually drive a system to equilibrium have led to the 
Bhatnagar, Gross & Krook (BGK) collision operator: 
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 ( ) ( )1

τ
Ω =− − eqf f f  (1.12) 

 
The time constant τ  determines how fast we relax to equilibrium; e.g. for a force-free, 

homogeneous system ( ) ( ) ( ) ( ), , 0 τ− = + = −  ξ ξ ξ ξeq eq tf t f f t f e . As expected and as we 

will see when discussing the lattice-Boltzmann method, τ  determines the transport 
coefficients, most importantly – for fluid mechanics – the viscosity. Thinking of a heat 
transfer example, if we have a volume of gas with non-uniform temperature and leave it 
alone, temperature differences will even out and eventually the temperature will become 
uniform. In a physical sense, the time scales on which this happens will depend on the thermal 
diffusion coefficient (symbol a) and the size of the system. In a BGK sense they will be 
determined by the relaxation time τ . Hence the connection between τ  and a. 
 
1.5 Transport equations 
It is time to relate the somewhat esoteric concept of distribution function with concepts more 
familiar to fluid dynamics. This we do by deriving transport equations from the Boltzmann 
equation (Eq. 1.8).  
 
In the first place, we integrate Eq. 1.8 over velocity space: 

( )3 3 3 3β

β

β β

ξ ξ ξ ξ ξ
ρ ξ

∂ ∂ ∂
+ + = Ω∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫

∂ ∂ ∂

F f
fd fd d f d

t x
. We quickly realize that (Eq. 

1.1) 3ξ ρ=∫∫∫ fd ; also (Eq. 1.2) 3
β βξ ξ ρ=∫∫∫ fd u ; and (Eq. 1.9) ( ) 3 0ξΩ =∫∫∫ f d . The 

term with the force ( 3β

β

ξ
ρ ξ

∂
∫∫∫
∂

F f
d ) is a little less straightforward. We argue that this term is 

equal to zero based on integration by parts. As a reminder, consider two functions h and g that 

have derivatives ′h  and ′g . Then 
∞

−∞
′ ′= −∫ ∫hg hg h g. Applying this 

31 1 0 0
β

ξ
ξ

∞

−∞

∂
⋅ = ⋅ − =∫∫∫
∂

f
d f . As a result, integration of the Boltzmann equation over 

velocity space gets us the continuity equation: 
 

 
( )

0
β

β

ρρ ∂∂
+ =

∂ ∂

u

t x
 (1.14) 

 
(one more time: we are here using the summation convention so that Eq. 1.14 actually reads 

( ) ( ) ( )
0

ρρ ρρ ∂∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
yx z

uu u

t x y z
) 

 
A momentum balance equation is obtained when we multiply the Boltzmann equation by αξ  

and then integrate over velocity space: 

( )3 3 3 3β

α α β α α

β β

ξ ξ ξ ξ ξ ξ ξ ξ ξ
ρ ξ

∂ ∂ ∂
+ + = Ω∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫

∂ ∂ ∂

F f
fd fd d f d

t x
. First term on the 

left-hand side: αρ∂
∂
u

t
; the integral in the second term we will call – for reasons that will 
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hopefully become clear later – the momentum flux tensor: 3
αβ α βξ ξ ξΠ ≡ ∫∫∫ fd  so that the 

second term gets αβ

β

∂Π

∂x
; the integral in the third term is 

3 3α
α α αβ

β β

ξ
ξ ξ ξ ξ ρδ
ξ ξ

∞

−∞

∂∂
= − =−∫∫∫ ∫∫∫

∂ ∂
f

d f fd  with αβδ  the Kronecker delta 

( 1 if = ; 0 if αβ αβδ α β δ α β= = ≠ ). The right-hand side is zero given Eq. 1.10 (momentum 

conservation in collisions). Eventually the momentum balance has the form 
 

 
( )αβα

α

β

ρ ∂ Π∂
+ =

∂ ∂
u

F
t x

 (1.15) 

(for the last time: Eq. 1.15 uses the summation convention; writing out the x-component of 

Eq. 1.15: 
( ) ( ) ( )ρ ∂ Π∂ Π ∂ Π∂

+ + + =
∂ ∂ ∂ ∂

xyxx xzx
x

u
F

t x y z
) 

 
In Section 1.2 we hinted at splitting the velocity of molecules in average and thermal 
velocities: ( ) ( ) ( ), , ,= +ξ x u x v xt t t , component wise: α α αξ = +u v . Then 

( )( ) 3 3 3 3 3
αβ α α β β α β α β β α α βξ ξ ξ ξ ξΠ = + + = + + +∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫u v u v fd u u fd u v fd u v fd v v fd

; 3
α β α βξ ρ=∫∫∫u u fd u u ; 3 0α β ξ=∫∫∫u v fd ; 3 0β α ξ=∫∫∫u v fd . The last term we define as the 

stress tensor: 3
α β αβξ σ=−∫∫∫ v v fd . Putting this all together results in what is known as the 

Cauchy momentum equation: 
  

 
( )α β αβα

α

β β

ρ σρ ∂ ∂∂
+ = +

∂ ∂ ∂

u uu
F

t x x
 (1.16) 

 
The stress tensor is usually written as the sum of viscous stress and pressure: 

αβ αβ αβσ σ δ′= − p . Interestingly, if we would assume the fluid to be an ideal gas in 

equilibrium ( = eqf f  the Maxwell-Boltzmann distribution Eq. 1.6), evaluating the integral 
3

α β ξ∫∫∫ eqv v f d  results in αβρ δRT  which is equal to the pressure. Therefore, for an ideal gas 

in equilibrium, αβ αβσ δ=−p . As a consequence, viscous stresses are the result of non-

equilibrium effects.  
 

Viscous stresses are modelled in terms of fluid deformation: γβα
αβ αβ

β α γ

σ µ ζδ
  ∂∂∂  ′ = + + ∂ ∂ ∂ 

uuu

x x x
 

where  and µ ζ  are (material-related) coefficients. It is more common to write this as  
 

 2
3

γ γβα
αβ αβ αβ

β α γ γ

σ µ δ µ δ
 ∂ ∂∂∂  ′ = + − + ∂ ∂ ∂ ∂ 

b

u uuu

x x x x
 (1.17) 

 
The term with the coefficient µ  (which is viscosity) is a traceless stress tensor (deviatoric 

stress); the term with µb  (which is called bulk viscosity) contains normal viscous stresses due 
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to volume changes (expansion and contraction). It should be clear that the bulk viscosity µb  is 

related to the parameters  and µ ζ : 2
3µ µ ζ= +b . 

 
With the notions regarding the stress tensor (its division in pressure and viscous stress, the 
latter divided in a deviatoric part and a normal part) the Cauchy momentum equation (Eq. 
1.16) can be written as the Navier-Stokes equation: 
 

 
( )

( )2
3

α β γβα α
αβ α

β α β β α γ

ρρ
µ µ µ δ
  ∂ ∂∂∂ ∂∂ ∂  + =− + + + − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

b

u u uuu up
F

t x x x x x x
 (1.18) 

 
In most fluids related research at the School of Engineering of UAberdeen, fluids are 
incompressible, i.e. have constant density. This implies that the continuity (Eq. 1.14) reduces 

to 0β

β

∂
=

∂

u

x
. As a consequence, the incompressible Navier-Stokes equation is a bit simpler 

than its general form: 
 

 βα α α
β α

β α β β α

ρ ρ µ
  ∂∂ ∂ ∂∂ ∂  + =− + + +  ∂ ∂ ∂ ∂ ∂ ∂   

uu u up
u F

t x x x x x
 (1.19) 

 
In the next set of Lecture Notes (LN02) the above notions from kinetic theory will proof 
useful for understanding the lattice-Boltzmann method. An important take-home message is 
that viscous stresses relate to fluids being off-equilibrium. A potentially confusing issue is 
compressibility. In the lattice-Boltzmann method, fluids are compressible. The main 
application of the method is, however, for incompressible fluids. This and more will be 
discussed in the upcoming lectures.  
 
 
 
 


