Lecture Notes- Lattice-Boltzmann Method Jos Derkser PGR Course UAberdeen 2018

0. General introduction to the course

The lattice-Boltzmann method (LBM) is an interegtuway of doing simulations of fluid flow
and related transport processes and a useful aaditimore mainstream computational fluid
dynamics (CFD) methods based on finite volumedgfidifferences or finite elements. There
are many reasons for using LBM, and many reasansadiousing it, mainly dependent on the
applications you are interested in. An understagdirthe LBM will help you in deciding if
your application could benefit from it and — if savill hopefully get you a quick start.

The course will be divided in five two-hour lectaré-or each lecture | will compile a set of
Lecture Notes. The current notéNQ1) deal with kinetic theory which forms the basigloé
LBM. LNO2explain the LBM in quite some detdilNO3 discuss practical aspects such as
boundary conditions, how to translate real (phy¥itew systems in an LBM simulation, and
what an actual LBM code could look likéNO4 andLNO5discuss a number of more
specialized topics: collision operators, body feragemersed boundary method,
implementations for multiphase flow and for turinde.

After | completed a first draft of all five sets loécture Notes | realized that the first two sets
are quite theoretical / mathematical. Please b&arme in the first two lectures if your main
interest is applying the LBM, the last three leetuwill be much more applied.

These course notes are partly based on the book tdttice Boltzmann method — principles
and practice” by Kruger et al (Springer, ISBN 97&8389-44647-9). | decided not to provide
literature references in the lecture notes. Eightycent can be found back in the above book
(albeit sometimes in different notation); feel fteeconsult me for the remaining twenty
percent.

1. Kinetic theory

1.1 Introduction

Matter consists of molecules. In a gas they flyuatbthereby colliding with one another. In a
classical molecular dynamics description of a gagallow individual molecules by solving
their Newtonian equations of motion that includeriaction forces between the molecules.
Simulating this on a computer is called MoleculgnBmics (MD). In a continuum approach
the discrete (molecular) nature of matter is abarddo make place for a description in terms
of functions describing properties (pressure, dgngelocity, temperature) that continuously
depend on (three-dimensional) location in spacetiamel Kinetic theory is a description in
between molecular and continuousnasoscopidescription.

1.2 Distribution function

Starting point of kinetic theory is the notion ofligtribution function Since distribution
functions are also fundamental to the lattice-Boldnn method it is worthwhile to go over
some of the concepts and results from kinetic thebw keep things relatively simple, we will
consider a dilute, monoatomic gas with the molexhkving no internal degrees of freedom
(such as vibration or rotation) and the molecutdBding elastically.

The distribution function is denoted d5x,&,t) with x space vector velocity vector, and
time. It can be seen as a generalization of theityep(x,t), now also taking into account
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velocity. It is the density of molecules in phydispace as well as welocity spaceThe Sl

units of the distribution function ar[ef ] = kg-iso—l. Density, momentum and energy
m

(m/s)
follow from integrations over velocity space:
p(x.t)= [f[ f(x,&t)d* (1.2)
p(xt)u(x, )szf&f (x&1)d% 12)
p(XE(X, ) =2 [[[[e]* f(x,&,t)d% (1.3)

As we will see, it is useful to make a distinctimetween random thermal motion (with
velocity v(x,t)) and bulk motion of molecules (with velocityx,t) as identified in Eq. 1.2):

v(x,t)=&(x,t)—u(x,t). The energy associated ¥gx,t) is

p(x,t)e(x 1fff|v| (x,8,t) d°¢ (1.4)

is called internal energy. We note that only tratishal kinetic energy is considered in the
above expressions. This is due to us dealing widhoatomic gases that do not have
rotational or vibrational degrees of freedom.

A quick way of finding an expression for pressuoegvia the ideal gas law and the
equipartition theorem. The latter relates inteerargy per translational degree of freedom
with temperatureg,, = 4 RT for each degree of freedom. With three degredseetiom this

gets pe= 2 pRT. The usual way of writing the ideal gas law indldynamics isp= pRT
so that

p=pRT=4pe=4[[f M f(x& § de 1.5)

It is useful to check units at this stage. Whenwiiee p= pRT thenRis not the (universal)
molar based gas constaRt,,, =8.31 J( mol K ; instead,R= R,/ ™ with mthe molar

mass of the gas. Molar mass has units kg/mol ¢dRthas unitsJ/( kg- K) = mz/(sZ~ K)

which should be givere= 3 RT ande having unitsm?/s* (the latter from the wagis
defined in Eq. 1.4).

1.3 Equilibrium distribution function

If a gas is left alone for sufficiently long timadmolecules have undergone many collisions
thereby exchanging momentum one can imagine teadigtribution of velocities of the
molecules reaches an equilibrium. This equilibrisrexpected to be isotropic in velocity
space. We assume — without lack of generality —dterage velocity equal to zero so that

v(x,t)=&(x,t). Isotropy in velocity space then means that omételocity magnitude (not

the direction) matters for the equilibrium distrilaun function: feq(x,|v| ,t). An important
result of statistical mechanics is that the equiim distribution has the following form:



1 )
f e (X,|V| ,t) = p[ﬁ eﬁM /(ZRT> (16)

Equation 1.6 goes by the name Maxwell-Boltzmantritigtion. It shows, as an example, that
increasing temperature will get you a wider digttibn function.

1.4 Evolution of distribution function
If we take the total derivative of the distributitmction with respect to time we get

df _of dt of dx  of d,
dt otdt ox, dt ¢, dt

(1.7)

Where we use index notation for the location)(and velocity €,) vector components and
the summation convention: sum over repeated Grabkas (for example

d dx d¢,
o 2% :ﬂ%+ﬂﬂ+ﬂﬂz . In Eq. 1.7,E:1, —L—¢, a5, is an acceleration
ox, dt  dxdt Jdydt 9z di dt de 7 dt
d F
per unit volume and therefor%gt—g:—g. Collisions are a reason for change of the
P

distribution function since they re-distribute marhen. Combining these notions leads to the
Boltzmann equation

of of F; of
ot g X,  p 0, (F) (18)
WhereQ( f) is the collision operator. It depends on the ttistion function, i.e. on the way

mass is distributed over physical and velocity spdtie Boltzmann equations (Eqg. 1.8) can
be interpreted as an advection equation with foarekcollisions as source terms. In a
molecular collision, mass is not lost so that gprty of the collision operator is

Jfra(f)de=o0 (1.9)

If we also assume that total momentum and totaiggnie conserved in collisions this
implies.

JIree(f)d’¢=0 (1.10)
JIf1Ee(f)d% =0 (1.11)

A lot of physics goes into the collision operatsrisinvolves a wide spectrum of collision
scenarios and intermolecular forces. To avoid fhaech) complexity, simple heuristic
approaches have been proposed that prove remarksddiyl. Respect for conservation laws
and the notion that collisions will eventually dria system to equilibrium have led to the
Bhatnagar, Gross & Krook (BGK) collision operator:



Q(f)=—=(f—1) (1.12)

The time constant determines how fast we relax to equilibrium; éog.a force-free,
homogeneous systerfi(§,t) = f (§)+[f Et=0—f ef*(g)] e . As expected and as we

will see when discussing the lattice-Boltzmann rodih- determines the transport
coefficients, most importantly — for fluid mechasie the viscosity. Thinking of a heat
transfer example, if we have a volume of gas wah-aniform temperature and leave it
alone, temperature differences will even out areh&ally the temperature will become
uniform. In a physical sense, the time scales oiclntinis happens will depend on the thermal
diffusion coefficient (symbao&) and the size of the system. In a BGK sense thikypev
determined by the relaxation time Hence the connection betweenanda.

1.5 Transport equations

It is time to relate the somewhat esoteric conoépiistribution function with concepts more
familiar to fluid dynamics. This we do by derivitrgnsport equations from the Boltzmann
equation (Eq. 1.8).

In the first place, we integrate Eq. 1.8 over vitjospace:
F.
fof fd3§+ifff§5 fd3§+—*’fffi d¢ = [[/Q( f) d. We quickly realize that (Eq.
ot 0%, “ P 9E,
1.1) [[[ fd°¢ = p; also (Eq. 1.2)[[[ ¢, fd°¢ = pu,; and (Eq. 1.9)[[Q(f)d’¢ =0. The
F
term with the force{ifff%d%) is a little less straightforward. We argue thnas term is
p 53
equal to zero based on integration by parts. Asyander, consider two functiomsandg that
have derivatives’ andg’. Then [hg’= hg™_— [ H g. Applying this

fffl-idsg =1 f[°_— 0= 0. As a result, integration of the Boltzmann equatiwer
0, -
velocity space gets us the continuity equation:

@+8<puﬂ)

=0 1.14
ot X, ( )

(one more time: we are here using the summatiouaesdion so that Eq. 1.14 actually reads

dp d(pu,) 8(puy) d(pu,)
8t+ OX * oy T 0z

=0)

A momentum balance equation is obtained when weiphuthe Boltzmann equation by,
and then integrate over velocity space:

0 5., O 3 i of s 3 :
5fff€afd é“—i-axﬂfffﬁagﬂfdg—i- , Ufg“agﬂ d¢ = [[[£.9( f) d%. First term on the

left-hand side:ag% ; the integral in the second term we will call + feasons that will



hopefully become clear later — the momentum flwste: 11, = [[[ ¢,&, fd°¢ so that the

oIl . . : ,
second term gets—~ ; the integral in the third term is
X
\3

ffffaa—gﬂd §=¢, 1

(6,5 =1lifa=p;6,,=01ifa= 5). The right-hand side is zero given Eq. 1.10 (miotwe
conservation in collisions). Eventually the momentoalance has the form

—fff & fd’¢ = —pé,, with §,, the Kronecker delta

o(I,
opu, , 9 “f’):Fa (1.15)
ot X,

(for the last time: Eqg. 1.15 uses the summatiorvention; writing out thex-component of
dpu 8(HXX) 8(HXY> 8(HXZ)
Eq. 1.15:—=> + + +
a ot OX oy 0z

~F)

In Section 1.2 we hinted at splitting the velo@fymolecules in average and thermal
velocities:§(x,t) =u(x,t)+v(x,t), component wise¢, =u, +V,. Then

= [ (u, v ) () fle= wyfff fde+ ufff v &+ pfff v &+ [ vy f
cuu [ ff¢=pu u; u, [ffv, fd°¢=0; u, [f[ v, fd°¢=0. The last term we define as the

stress tensorf[[ v, v, fd°¢ = —o,_,. Putting this all together results in what is kmoas the
Cauchy momentum equation

d(pu,u. 0
8pua + (,0 o J) _ O-aﬁ + Fa
at axﬁ 8Xﬂ

(1.16)

The stress tensor is usually written as the suwisobus stress and pressure:
0,; =0.;— Pb,, . Interestingly, if we would assume the fluid todreideal gas in

equilibrium (f = f* the Maxwell-Boltzmann distribution Eq. 1.6), evaling the integral
[f[ v, v, f°¢ results inpRTS,, which is equal to the pressure. Therefore, foidaal gas
in equilibrium, o, =
equilibrium effects.

—pé, ;- As a consequence, viscous stresses are the oésolh-

ou

@t o, +¢6
ox, ox,| >

where 1 and( are (material-related) coefficients. It is morencoon to write this as

8u7

Viscous stresses ameodelledin terms of fluid deformations’ ; = 1 3
‘ X

ou ou ou ou
I a_l__ﬁ_g(s‘,_W . & 1.17
a-oz‘d 2! 8X5 8)% 3 Yas a / bYas 8){/ ( )

The term with the coefficient. (which is viscosity) is a traceless stress tefdeviatoric
stress); the term withy, (which is called bulk viscosity) contains normélaous stresses due

5



to volume changes (expansion and contractionhdulsl be clear that the bulk viscosity is
related to the parametersand(: p, =2p+¢.

With the notions regarding the stress tensor (itssidn in pressure and viscous stress, the
latter divided in a deviatoric part and a normat)the Cauchy momentum equation (Eq.
1.16) can be written as the Navier-Stokes equation:

L i) __op b 28, SR (118

In most fluids related research at the School a@jiigering of UAberdeen, fluids are
incompressible, i.e. have constant density. Thidies that the continuity (Eqg. 1.14) reduces

to a—*’ =0. As a consequence, the incompressible Navier-Stegaation is a bit simpler
XS

than its general form:

ou, ou, op 9| |du  Ou,
ey + pu. a + (43 -+ ! + F 1.19

In the next set of Lecture Notes (LN02) the abooams from kinetic theory will proof
useful for understanding the lattice-Boltzmann rodthAn important take-home message is
that viscous stresses relate to fluids being offdarium. A potentially confusing issue is
compressibility. In the lattice-Boltzmann methddjds are compressible. The main
application of the method is, however, for inconggible fluids. This and more will be
discussed in the upcoming lectures.



