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Abstract 

Bridges and Holler (2007) have provided a useful reminder that normative data are 

fallible.  Unfortunately, however, their paper misleads neuropsychologists as to the 

nature and extent of the problem.  We show that the uncertainty attached to the 

estimated z score and percentile rank of a given raw score is much larger than they 

report and that it varies as a function of the extremity of the raw score.  Methods for 

quantifying the uncertainty associated with normative data are described and used to 

illustrate the issues involved.  A computer program is provided that, on entry of a 

normative sample mean, standard deviation and sample size, provides point and 

interval estimates of percentiles and z scores for raw scores referred to these 

normative data.  The methods and program provide neuropsychologists with a means 

of evaluating the adequacy of existing norms and will be useful for those planning 

normative studies. 

 

 

Keywords: norms; confidence limits; sample size; normative comparisons 
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INTRODUCTION 

Bridges and Holler (2007) have recently provided neuropsychologists with a useful 

reminder that normative data can be highly fallible when it is obtained from modestly 

sized samples.  They attempted to quantify the degree of uncertainty surrounding the 

standing of a raw score as a function of the size of the normative sample.  The aims 

were to provide neuropsychologists with a principled means of evaluating the 

adequacy of existing normative data and to provide guidance for those planning a 

normative study.  Unfortunately the methods they adopt are not fit for purpose.  

However, the aims are laudable and so in the present paper we clarify the issues 

involved and provide appropriate methods to achieve these aims.  

 

The Bridges and Holler (2007) approach 

The Bridges and Holler approach is based on calculating a two-sided 95% confidence 

interval on the normative population mean using the standard formula 

 0.95 0.025CI sx t
n

⎛ ⎞= ± ⎜ ⎟
⎝ ⎠

, (1) 

where x  is the normative sample mean, s is the sample standard deviation, n is the 

sample size, and 0.025t  is the critical value for t on 1n −  df. 

To quantify the uncertainty associated with the standing of a given raw score 

they propose substituting the lower and upper limits on the mean into the formula for 

a z score in place of the sample mean.  That is  

 ( )Lower 95% confidence limit on ' ' /Uz x x s= − , (2) 

and 

 ( )Upper 95% confidence limit on ' ' /Lz x x s= − , (3) 
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where x is a given raw score, and Ux and Lx  are the upper and lower limits on the 

mean obtained using formula (1).  They suggest that this method gives a 95% 

confidence interval on the z score corresponding to a given raw score (we place 

inverted commas around z in the formula because, as will be shown, it is not justified 

to denote this quantity as a z score).  They also convert the lower and upper limits on z 

to percentiles to obtain lower and upper limits on the percentile for the raw score. 

To illustrate, take the worked example set out by Bridges and Holler of 

Johnny, a nine year old boy, who obtained a raw score of 18 on the Hooper Visual 

Organization Test.  The normative sample for nine year old boys consisted of 20 

persons and the normative sample mean and standard deviation was 23.23 and 3.16 

respectively (Demsky, Carone, Burns, & Sellers, 2000).  Thus Johnny’s z score was 

1.66−  and the score is estimated to be at the 5th percentile.  The lower and upper 95% 

limits on the normative mean are 21.75 and 24.71.  Substituting these into the formula 

for z, that is, applying equations (2) and (3), gives a supposed lower limit on z of 

2.12−  and an upper limit of 1.19−  (note that is it the upper limit on the mean that is 

used to obtain the lower limit on z).  Using a table of areas under the normal curve the 

lower limit on z corresponds to the 2nd percentile and the upper limit to the 12th 

percentile. 

These results suggest that, when attempting to quantify the standing of a raw 

score, there is a worryingly high degree of uncertainty associated with the use of 

normative data based on modestly sized samples.  In this example, it is possible that a 

raw score of 18 could be more than two standard deviations below the normative 

population mean (i.e., very extreme) or just over one standard deviation below the 

mean (low, but not unusual).  As we will see, however, the uncertainty is often 

considerably greater than even these figures suggest. 
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Bridges and Holler present tables and graphs of the width of these confidence 

limits for published pediatric normative data on four neuropsychological tests – the 

Boston Naming Test, (BNT`; Kirk, 1992a) the Rey Auditory-Verbal Learning Test 

(RAVLT`; Bishop, Knights, & Stoddart, 1990), the Rey-Osterreith Complex Figure 

Test (ROCFT`; Kirk, 1992b), and the Hooper Visual Organization Test (HVOT`; 

Demsky, Carone, Burns, & Sellers, 2000).  They also use their results to develop 

guidelines for the “optimal” size of normative samples in neuropsychology. 

 

The core problem with the Bridges and Holler approach 

As is common, Bridges and Holler assume that the scores of a normative sample are 

drawn from a normal distribution.  They state, “population distributions are assumed 

to be normal” (p. 537).  The problem is that they then proceed as if this ensures that 

all quantities derived from these scores will also have a normal distribution; this is 

erroneous.  In Appendix 1 we show, using basic algebra, that the equations for 

Bridges and Holler’s confidence limits (equations 2 and 3) reduce to 

 0.025Lower 95% confidence limit on ' ' .tx xz
s n
− ⎛ ⎞⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (4) 

and 

 0.025Upper 95% confidence limit on ' ' .tx xz
s n
− ⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (5) 

The quantities obtained from (4) and (5) have no obvious distribution and, despite 

denoting them as z, Bridges and Holler give no reason for us to believe they are 

quantiles from a standard normal distribution.  Indeed, in one special case, we can 

determine the nature of the distributional form of these quantities and it is not 

standard normal.  When a score is at the mean of the normative sample the first term 
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in the right hand side of (4) and (5) drops out and we have 

 0.025Lower 95% confidence limit on ' ' / .z t n= −  (6) 

and 

 0.025Upper 95% confidence limit on ' ' / .z t n=  (7) 

It can be seen that, in this special case, the quantities are simply quantiles from a 

scaled t distribution with a variance determined by the normative sample size.  A 

standard t distribution has a variance of ( )/ 2v v −  if it has v degrees of freedom.  As n 

increases, /t n  will tend to a normal distribution but its variance will tend to 1/ n .  

Thus the normal distribution to which it tends is not the standard normal distribution 

and so, even asymptotically, the quantity should not be called a z score. 

This special case is particularly important because it is used in Tables 1 to 4 

and Figures 1 and 2 of Bridges and Holler (2007) to illustrate the uncertainty 

surrounding scores referred to the normative data sets for the AVLT, BNT, Hooper 

and Rey-Osterreith figure.  Note that, in this special case (equations 6 and 7), the 

upper and lower limits do not depend upon the sample data at all, apart from the 

sample size.  Thus, when Bridges and Holler point to the “remarkable similarity” (p. 

532) between results for the Boston Naming Test and the AVLT, this similarity is in 

no way remarkable but simply reflects the fact that the sample sizes are similar across 

the two sets of normative data.  Specifically, in each of Tables 1 to 4 of Bridges and 

Holland, columns 7 and 8 can be obtained simply by calculating 0.025 /t n  and the 

last two columns are then obtained using standard normal tables where, as before, 

0.025t is the critical value for t on 1n −  df.  
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The effect of error in estimating the normative population standard deviation 

Bridges and Holler’s attempt to allow for error in estimating the normative population 

mean in order to capture the uncertainty over the standing of a raw score.  The 

approach they adopt does not achieve their aims but, in any case, there is a further 

problem.  In order to quantify the uncertainties arising from using a normative sample 

to estimate the population standing of a score, it is necessary to allow for error in 

estimating the normative population mean and standard deviation.   

The need to allow for error in estimating the population standard deviation can 

be illustrated by a simple thought experiment.  Suppose that normative data for a 

neuropsychological test were obtained from a modestly sized sample (say n = 20) of 

nine year old children and that the normative sample mean and standard deviation 

were 40 and 10 respectively.  Suppose also that interest is in the standing of a raw 

score of 25.  The raw score converts to a z score of 1.5−  and so the score is estimated 

to be exactly one and a half standard deviations below the population mean; using a 

table of areas under the normal curve, the score is therefore estimated to be at the 6.7th 

percentile.  Further suppose that, by chance (unlikely though it is), the sample mean 

exactly matched the population mean, i.e., the true mean for nine year olds on this test 

is 40.  With a normative sample of this size there is going to be a high degree of 

uncertainty surrounding the population standard deviation of the test.  Based on the 

sample n and standard deviation, the 95% confidence interval on the population 

standard deviation is from 7.6 to 14.6 (the sampling distribution of the variance 

follows a chi-square distribution on 1 n df−  and this allows us to set confidence 

limits on the population variance or standard deviation). 

Suppose that the true population standard deviation for this test was 12, which 

is well within the bounds of possibility given the confidence interval.  Converting the 
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raw score of 25 to a z-score based on this population standard deviation yields a score 

of 1.25− .  Thus the raw score is much less extreme than the normative sample 

indicates; 10.6 % percent of the normative population are expected to obtain a lower 

score (i.e., the score is at the 10.6th percentile).  Conversely, suppose that the 

population standard deviation was only 8 (again this is well within the bounds of 

possibility).  Then the z score for the raw score of 25 is 1.875− and in this scenario the 

score is much more extreme than is indicated using the normative sample data, it is at 

the 3rd percentile. 

Another consequence of error in estimating the population standard deviation 

from a sample standard deviation is that the uncertainty over the standing of raw 

scores will increase as a function of the distance of the raw score from the mean.  This 

can also be illustrated without recourse to statistical theory by another thought 

experiment.  Suppose that, as in the previous example, the mean and standard 

deviation for a normative sample on a neuropsychological test is 40 and 10 

respectively and again, for simplicity, let us assume that the sample mean equals the 

population mean.  Take a score close to the mean, say 38, and an extreme score, say 

20.  Then the z scores corresponding to these raw scores are 0.2−  and 2.0−  

respectively.  Now suppose that the population standard deviation is 11, i.e., the 

sample standard deviation is an underestimate of the true standard deviation.  Then, 

using the population standard deviation, the z score corresponding to raw scores of 38 

and 20 are 0.18−  and 1.82− .  In both cases the use of the sample standard deviation 

in place of the population standard deviation would lead us to believe that individuals 

obtaining these raw scores were performing more poorly than is in fact the case.  

However, it can be seen that the effects are much more marked on the more extreme 

score.  If the population standard deviation is smaller then the sample standard 
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deviation, say 9, then the level of performance will be artificially inflated.  Again, 

however, the effects are more marked on the extreme scores (in this latter scenario the 

z scores calculated using the population standard deviation as the divisor are 

0.22− and 2.22− ). 

In summary, the fallibility of normative data leads to much greater uncertainty 

over extreme scores than over scores close to the mean.  It follows that a method, such 

as that proposed by Bridges and Holler (2007) that does not account for this effect 

cannot quantify the uncertainty. 

 

Simultaneously allowing for error in estimating the normative mean and standard 

deviation 

The foregoing examples make it clear that, in order to estimate the uncertainty 

surrounding the standing of a given raw score (i.e., its z score or percentile rank), the 

error in estimating the population standard deviation must be taken into account.  

However, in these examples the error in estimating the population mean was ignored, 

which is clearly inappropriate.  To solve the problem at hand, we need to 

simultaneously allow for the error associated with estimating the population mean and 

standard deviation.   

Fortunately, statistical methods developed by Crawford and Garthwaite (2002) 

can be used to tackle this problem.  In commenting on these methods Bridges and 

Holler (2007) state that they “are the equivalent of applying statistical Band-Aids ® to 

our problem… Calculating confidence intervals around an examinee’s score does 

nothing to address the use of the normative sample mean as a perfect parameter, 

rather than a sample estimate” (p. 538).  This statement is unfortunate because the 

methods developed in Crawford and Garthwaite (2002) are exactly those required to 
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address the problem at hand.  That is, the methods quantify the uncertainty introduced 

when statistics from a normative sample are used to estimate the standing of a raw 

score either in terms of its standard deviation units from the population mean (i.e. a z 

score) or in terms of the score’s percentile rank.   

The methods are based on non-central t-distributions and, in their original 

form, provide 95% confidence limits on the percentage of the population expected to 

obtain a score lower than a given score.  Crawford and Garthwaite (2002) refer to 

these limits as “confidence limits on the abnormality of a score” but it can be seen 

that this is just an alternative way of referring to confidence limits on the percentile 

rank of a score.  It would also be useful to express the uncertainty on a z score metric 

as Bridges and Holler attempt to do.  Crawford, Lynch and Garthwaite (submitted) 

have recently addressed this problem and shown that limits on z can readily be 

obtained as an intermediate step in calculating Crawford and Garthwaite’s (2002) 

limits on a score’s percentile rank.  For the convenience of the reader, Appendix 2 

brings together the derivation of the limits provided by Crawford and Garthwaite 

(2002) with information on the calculations involved and the further observations 

made by Crawford et al. (submitted).   

 

The uncertainty over the standing of a raw score as a function of sample size and 

extremity of the score 

As a first illustration of the correct method of quantifying the uncertainty over 

the standing of a raw score we return to the case example of Johnny.  Recall that 

Johnny’s raw score of 18 was estimated to be 1.66 standard deviations below the 

population mean (i.e., a raw score of 18 converts to a z score of 1.66− ).  Bridges and 

and Holler’s 95% confidence interval on z was from 2.12−  to 1.19− , with 
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corresponding confidence limits on the percentile of from the 2nd to 12th percentile.  

Applying the methods set out in Appendix 2, the correct 95% confidence interval on z 

is from 2.33− to 0.96−  and the limits on the percentile are from the 1st to 17th 

percentile.  It can be seen that the interval on z is considerably wider than that 

provided by Bridges and Holler’s method: the interval spans 1.39 standard deviations 

as opposed to 0.93 standard deviations.  It can also be seen that the correct interval is 

very wide in absolute terms; with normative samples of this size (n = 20 in the 

example) there is considerable uncertainty over the standing of a raw score.  

Tables 1a to 1c were constructed to compare further the two sets of confidence 

limits.  These tables record the width of limits on z and the percentile rank for a raw 

score as a function of the size of the normative sample (the sample n is varied from 5 

to 500) and as a function of the extremity of the raw score.  Table 1a records the 

limits for a score at the normative mean, Table 1b for scores one standard deviation 

below the mean, and Table 1c for scores two standard deviations below the mean.  

Note that, because Bridges and Holler’s (2007) method do not vary with the extremity 

of the score, the entries for the width of their confidence limits are identical across the 

three tables.  It can be seen from Table 1a that, when the score is at the mean of the 

normative sample, Bridges and Holler’s intervals are wider than the correct intervals 

obtained using Crawford and Garthwaite’s method when the normative sample is 

modest in size.  As the sample size increases their limits converge on the correct 

limits so that, when the normative sample n is 500, they are, for all intents and 

purposes, indistinguishable from the latter. 

For a score one standard deviation below the sample mean (Table 1b), Bridges 

and Holler’s limits are too narrow (the exception being for a very modest normative 

sample size of 5 where they remain too wide).  It can also be seen that their limits 
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differ from the correct limits even for large samples.  The discrepancies between 

Bridges and Holler’s limits and the correct limits become even more pronounced with 

more extreme scores, as is illustrated in Table 1c which records the limits for a score 

1.5 standard deviations below the normative sample mean.  In this scenario the limits 

are too narrow, even for a normative sample of 5.  

The formula for confidence intervals proposed by Bridges and Holler is not 

derived through rigorous mathematics so properties of the method were not 

immediately transparent. However, the results in Table 1a show that their confidence 

intervals are too wide when the raw score equals the mean of the normative sample. 

Also, as Tables 1a to 1c illustrate, the widths of their intervals do not change as the 

raw score deviates from the normative sample mean. This happens because their 

method fails to account for the uncertainty in estimating the normative population’s 

standard deviation from a normative sample.  Confidence intervals should become 

wider as the difference between the raw score and the normative sample mean 

increases.  Tables 1b and 1c show that, as the difference between the raw score and 

the normative sample mean increases, the correct width of a confidence interval soon 

exceeds the widths of the intervals given by Bridges and Holler, unless the sample 

size is very small.  In a later section we report simulations where we fix the difference 

between the raw score and the normative population mean, rather than the normative 

sample mean.  We find that, for any sample size, the coverage of the intervals given 

by Bridges and Holler is too small, on average, for any non-zero difference between 

the raw score and the normative population mean. 

__________________________ 

Insert Tables 1a to 1c about here 
_________________________ 
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Point estimates of the percentile rank for a given raw score or z score 

The aim of Bridges and Holler’s paper was to quantify the uncertainty associated with 

the use of normative sample data.  This is also the primary aim of the present paper 

and so, up to this point, the focus has been on interval estimates of the true standing 

(i.e. the true percentile rank or z score) for a given raw score.  However, it is also 

appropriate to discuss the issue of point estimates of the percentile rank for a given 

raw score.  In Bridges and Holler’s paper the point estimate for the percentile rank of 

a raw score is given as the probability for the score following its conversion to a z 

score.  Thus, for example, if a normative sample has a mean of 50 and standard 

deviation of 10, the z score for a raw score of 40 is 1.0−  and a table of the areas under 

a normal curve can be used to convert this quantile to a probability.  Multiplying the 

probability by 100 gives a point estimate of the percentile rank for the raw score: in 

this case the percentile rank is 15.9 (i.e., 15.9% of the population are expected to 

obtain a score lower than 40). 

Although widely used, the foregoing point estimate is not the optimal estimate 

of the percentile rank for a given raw score.  When a z score obtained using a sample 

mean and standard deviation is referred to a table of areas under the normal curve to 

obtain a probability the mean and standard deviation are treated as though they were 

the population mean and standard deviation; the result is that the percentile rank will 

more often than not be exaggerated (scores above the mean will be estimated to have 

a higher percentile rank, scores below the mean will be estimated to have a lower 

percentile rank).  This occurs largely because errors in estimating the standard 

deviation do not have a symmetric effect on the percentile rank. (It is also the case 

that the sampling distribution of the variance is not symmetric.) To help understand 

this, suppose the estimate of the percentile rank is 2.5.  Error in the standard deviation 



 13

may mean that this is an overestimate, but it cannot be overestimated by more than 

2.5, as a percentile rank cannot be negative. In contrast, it could be underestimated by 

as much as 97.5 (A percentile rank must be less than 100.) 

To obtain the optimal point estimate for the percentile rank for a given raw 

score requires use of a (central) t-distribution rather than z.  When a raw score is 

subtracted from a sample mean and divided by a sample standard deviation the 

resultant quantity is a t-variate rather than a z; it is distributed as t on 1 dfn − , where 

n is the size of the sample used to provide the normative mean and standard deviation 

(Crawford & Howell, 1998). 

Based on the foregoing, Crawford and Howell (1998) proposed a significance 

test, in the form of a modified t-test, for comparison of an individual to a normative 

sample.  That is, their method can be used to test whether an individual’s score is 

sufficiently low such that the null hypothesis that it is an observation from the 

normative distribution can be rejected.  However, the one-tailed p value for this test is 

also a point estimate of the abnormality of a patient’s score.  Thus, if the p value was 

say 0.030 then it is estimated that (p100=) 3% of the normative population would 

obtain a lower score; that is, the score is estimated to be at the 3rd percentile.  A brief 

mathematical proof of this statement can be found in Crawford and Garthwaite 

(2006).  In addition, as the original formula presented by Crawford and Howell (1998) 

was couched in terms of a significance test, we set out a variant on the formula below 

that is explicitly framed in terms of obtaining a point estimate of the percentile rank 

corresponding to a given raw score: 

 
2

Estimated percentile rank for 100 Pr
1

x

x xx t
ns

n

⎛ ⎞
⎜ ⎟

−⎜ ⎟= × >⎜ ⎟+⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (8) 
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where x is the raw score, x  is the normative sample mean, xs  is the normative sample 

standard deviation, n the size of the normative sample, and the probability, Pr( ) is the 

one-tailed probability for t on 1 dfn − . 

This method of estimating the percentile rank of a given raw score is 

technically correct regardless of the size of the normative sample because all 

normative data in neuropsychology are based on samples rather than on the whole of 

the relevant population (that is, we work with normative sample statistics rather than 

population parameters).  However, when the normative data are obtained from large 

samples, such as is the case with Wechsler tests for example, it is acceptable to treat 

the normative sample statistics as population parameters because the former will give 

very accurate estimates of the latter.  Thus using z to estimate the percentile rank of a 

given raw score will give results that are, for all practical intents and purposes, 

indistinguishable from the technically correct method based on t-distributions (a 

t-distribution on large df approaches z). 

For example, suppose a normative sample mean and standard deviation was 

100 and 15 respectively, that the normative sample consisted of 300 persons and we 

want to estimate the percentile rank for a score of 80.  Using Crawford and Howell’s 

test to compare this score to the normative sample yields a t of 1.331−  on 299 df; the 

one-tailed probability for this t is 0.0921 and thus the score is estimated to be at the 

9.21th percentile.  Expressing the score as a z score ( 1.333− ) and referring to a table 

of the areas under the normal curve the score is estimated to be at the 9.12th 

percentile, this is only trivially different from the optimal estimate.    

The problem is that, as Bridges and Holler have illustrated, the size of samples 

used to establish norms in neuropsychology are often fairly modest in size. (Note that, 

because norms are normally stratified by age and determined separately for each age 
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group, it is the sample size used for each age band that is relevant here, not the overall 

size of the normative sample).  For example, the mean, median and modal sample size 

for the 54 normative samples considered by Holler and Bridges were 27.8, 23, and 20 

respectively.  

We suggest that with normative samples of this size it is not justifiable to use z 

as a means of obtaining a point estimate of the percentile rank of a score since, as 

noted, this involves treating the sample statistics as population parameters.  Instead 

Crawford and Howell’s method should be employed.  To illustrate the difference 

between the two point estimates we again return to the hypothetical case of Johnny 

employed by Bridges and Holler.  Johnny’s raw score on the Hooper Visual 

Organization test was 18; this raw score converts to a z score of 1.655−  based on the 

normative sample mean and standard deviation of 23.23 and 3.16.  As noted by Holler 

and Bridges, it is thus estimated that this score is just below the 5th percentile (4.98th).  

Using Crawford and Howell’s method the score is estimated to be at the 6.14th 

percentile; it can be seen that the use of z to estimate the percentile has overestimated 

the abnormality of the score.   

 

An empirical comparison of confidence limits on z derived from non-central 

t-distributions with Holler & Bridges (2007) method using Monte Carlo simulation 

Having discussed the issue of obtaining a point estimate of the percentile rank 

of a given score we now return to the main focus of the present paper: that of 

obtaining interval estimates to quantify the uncertainty associated with the use of 

normative data.  In the foregoing sections a series of specific examples and thought 

experiments were used to illustrate the issues surrounding the quantification of these 

uncertainties.  In the present section Monte Carlo simulations are used to provide a 
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more detailed and systematic examination of the problem. 

These simulations are useful for a number of reasons.  First, in comparing the 

two sets of limits, we have been referring to the limits obtained using Crawford and 

Garthwaite’s method as the “correct” limits.  It would be useful to verify the validity 

of these methods empirically for readers who have little interest in, or background 

knowledge of, the underlying statistical theory set out in Appendix 2.  Second, using 

Crawford and Garthwaite’s (2002) methods, the estimates of the degree of uncertainty 

associated with the use of normative data are very substantial unless the normative 

sample is very large.  The degree of uncertainty may strike many neuropsychologists 

as surprising, perhaps even unbelievable and so, again, an empirical demonstration 

may be more compelling than the formal derivation.   

Third, we have noted that the Bridges and Holler (2007) method yields 

quantities with no obvious distribution (except for the special case in which the score 

is at the normative mean).  The simulations will quantify the degree to which the 

limits used by Bridges and Holler fail to capture the true degree of uncertainty.  

Fourth, it has been noted that the degree of uncertainty associated with use of 

normative data will vary as a function of the extremity of the score.  Crawford and 

Garthwaite’s method allows for this variability and therefore their confidence limits 

should capture the true z score (hereafter designated as z∗ ) 95% of the time, 

regardless of the extremity of the score.  In contrast, Bridges and Holler’s method 

does not account for this variability and the effects of this can be quantified in the 

simulation: that is, the number of times Bridges and Holler’s limits capture z∗  should 

decrease as the extremity of z∗  increases. 

In the first of two simulations we repeatedly drew n observations from a 

standard normal distribution (mean = 0; standard deviation =1): the standard normal 
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distribution represents the population and the n observations represent the test scores 

of a normative sample of size n.  On each trial we also drew an additional observation 

from the same distribution: this represents an additional test score, z∗ ; it is this value 

that the confidence limits calculated using the normative sample statistics attempt to 

capture.  On each trial the sample mean was subtracted from z∗  and the result divided 

by the sample standard deviation.  This created a z based on the sample statistics on 

that trial. 

The methods set out in Appendix 2 were then applied to calculate a 95% 

confidence interval on z∗ .  Bridges and Holler’s (2007) method of setting confidence 

intervals was also applied.  That is, on each Monte Carlo trial, the 95% confidence 

interval on the mean was computed using the normative sample statistics and the 

endpoints of this interval were entered as the mean in the formula for z (together with 

z∗  and the sample standard deviation for that trial), thereby obtaining a (supposed) 

95% confidence interval on z∗ .  The number of trials in which these two sets of 

confidence intervals captured z∗  was recorded.  If the methods are valid, then the 

percentage of trials on which this occurred should be 95%, save for Monte Carlo 

variation.  Eight different normative sample ns were used ranging from 5 through 10, 

25, 50, 200, and 300 to 500.  One hundred thousand trials were run for each of these 

sample sizes. 

The results of the simulation are set out in Table 2.  Considering Crawford and 

Garthwaite’s limits first, it can be seen that, in line with the theory set out in 

Appendix 2, the confidence limits captured z∗ (the true z score) on 95% of trials, 

regardless of the size of the normative sample (the small deviations from 95% are of 

the order expected solely from Monte Carlo variation). 

In contrast, it can be seen that using Bridges and Holler’s (2007) method, the 
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percentage of trials in which the limits captured z∗  was below 95% regardless of the 

size of the normative sample: their limits captured z∗  on only 89 to 90% of trials.  

That is Bridges and Holler’s method consistently underestimated the uncertainty 

arising from using normative sample data to estimate the true standing of a score (the 

limits are too narrow).  This first simulation quantifies the overall performance of the 

two methods of capturing the uncertainty in estimating the true standing of a score 

using normative sample data.  

In the second simulation we quantified the performance of the two methods as 

a function of the extremity of a score.  Seven population values of z (i.e., z∗ ) were 

selected, ranging from 0 (representing a score exactly at the mean of the population) 

through 0.253−  (representing a score only slightly below the population mean, i.e. 

40% of the control population would obtain a lower score) through sz∗  of 

0.675− (25%), 1.036−  (15%), 1.282− (10%), and 1.960−  (2.5%), to a z∗  of -2.326 

(representing a very low score; only 1% of the control population would obtain a 

lower score).  We examine only negative z scores because (a) the results for positive z 

scores would simply be a mirror image of the results for negative scores, and (b) 

neuropsychologists will typically be more concerned with evaluating scores that 

potentially indicate cognitive problems.  For each of these z∗ , one hundred thousand 

Monte Carlo trials were run in which a normative sample of size n was drawn from 

the population distribution (a standard normal distribution).  The eight sample sizes 

were the same as those used in the first simulations.  

Thereafter the procedure was the same as that used in the first simulation; that 

is, on each trial a z was calculated based on the normative sample statistics and the 

two different methods of setting confidence intervals were applied.  As in the first 

simulation, the number of trials in which these two sets of confidence intervals 
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captured z∗  was recorded.  If the methods are valid, then the percentage of trials on 

which this occurred should be 95%, save for Monte Carlo variation. 

The results of the second simulation are set out in Table 3.  Considering 

Crawford and Garthwaite’s limits first, it can be seen that, in line with the theory set 

out in Appendix 2, the confidence limits captured z∗ (the population z score) on 95% 

of trials, regardless of the size of the normative sample and the extremity of the score 

(the small deviations from 95% are of the order expected solely from Monte Carlo 

variation). 

In contrast, it can be seen that using Bridges and Holler’s (2007) method, the 

percentage of trials in which the limits captured z∗ (the true z score) was below 95% 

in all scenarios studied, except where the score was exactly at the population mean, 

i.e., when z∗ was zero.  It can be seen that the performances of the two methods are 

identical in this latter scenario.  This is because both methods give confidence 

intervals that include 0 (the true value of  z∗ ) if and only if x exceeds 0.025 / .t s n  

When x is less than 0.025 /t s n  the confidence interval of Bridges and Holler will be 

wider than that of Crawford and Garthwaite, while when x exceeds 0.025 /t s n   it 

will be narrower. 

It can be seen that the performance of Bridges and Holler limits worsen 

appreciably as z∗  becomes more extreme.  For example, with a sample size of 50, the 

limits captured z∗ on only 89% of trials for a score at the 15th percentile (i.e., 

1.036z∗ = − ) and this figure falls to 80.1% for a score at the 5th percentile 

( 1.645z∗ = − ).  This feature is clearly illustrated in Figure 1 which plots the 

percentage of trials on which the two methods captured z∗ as a function of the 

extremity of the score (in this latter figure the size of the normative sample is held 
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constant at an intermediate value of 50).  It will be appreciated that the worsening 

performance of the Bridges and Holler’s limits as scores become more extreme is 

problematic as neuropsychologists routinely work with test scores that are well below 

a normative sample mean. 

In summary, the simulation results confirm that Crawford and Garthwaite’s 

method can be used to quantify the uncertainty associated with the use of normative 

samples to establish the population z score (or equivalently, the percentile rank in the 

population) corresponding to a given raw score.  The simulation results also show 

that, in contrast, the work reported in Bridges and Holler has the potential to mislead 

neuropsychologists as to the degree of uncertainty associated with the use of 

normative data: the uncertainty will be greater than they acknowledge except when 

scores are close to the normative population mean.    

________________________ 

Insert Tables 2 and 3 about here 
________________________ 

 

Computer program for quantifying the fallibility of normative data 

 A computer program for PCs (written in the Delphi programming language) is 

available that implements the methods covered in the present paper.  The program, 

QUAND.exe (Quantifying the Uncertainty Attached to Normative Data), has two 

options.  The first allows neuropsychologists to evaluate existing normative data.  The 

user enters the size of the normative sample, the normative mean and standard 

deviation for the test, and the minimum and maximum obtainable raw scores.  

Working through the range of raw scores (from minimum to maximum and applying 

the assumption that raw scores are integers), the program converts each score to z and 

calculates the 95% confidence limits on z.  It also lists the absolute width of the 



 21

confidence interval (thus, if the lower limit on z is –1.30 and the upper limit is +0.70, 

then the absolute width of the interval is 2.0; e.g., the interval spans two standard 

deviations).  The program also lists two point estimates of the percentile for each raw 

score.  The first of these is obtained by finding the probability corresponding to z and 

multiplying by 100. Thus, if the z for a raw score is –1.645, then the score is estimated 

to be at the 5th percentile.  As noted in a previous section, this point estimate is not the 

optimal estimate (although widely used).  The other point estimate of the percentile 

rank is the optimal estimate and is obtained by application of Crawford and Howell’s 

(1998) method (see formula 5).  Finally, 95% confidence limits on the percentile are 

reported. 

The results reported for this option allow neuropsychologists to quantify the 

uncertainty associated with normative data they either use already or are considering 

for use.  Although this program option quantifies the uncertainty for a specific set of 

normative data, we believe that its use may also serve a more general purpose of 

countering any tendency to reify normative data.  Furthermore, a demonstration of the 

alarming degree of uncertainty associated with normative based on modest samples 

may also serve as a tipping point for those who have been considering abandoning a 

favorite test for a similar test with more adequate norms.   

The second option is aimed at those planning to run a normative study.  This 

option allows the user to examine the uncertainty attached to z and the percentile rank 

as a function of sample size.  The only input required is the sample size for the 

proposed normative sample.  The program computes confidence limits (and the 

absolute width of the confidence interval) on z and confidence limits on the 

percentiles for values of z ranging from –3.0 through to +3.0.  This allows 

investigators to quantify the likely uncertainty associated with scores that vary in 
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terms of their deviation (in standard deviation units) from a normative sample mean.  

The program can be run with a range of potential sample ns so that the 

neuropsychologist can select a sample size that strikes the desired balance between 

precision and practical constraints.  If the practical constraints (time, money) are 

severe, such that the maximum achievable sample n is relatively modest, the lack of 

precision may be judged to be unacceptable.  In such circumstances the appropriate 

decision would either be not to run the study or, more positively, to seek collaborators 

or further funding so that a larger sample can be obtained. 

Although the calculations required to generate the confidence limits are 

computationally intensive, the output from both of the options described above is 

available in a matter of seconds.  The program output can be viewed on screen, 

printed, and saved to a file.  There is also the option of adding User Notes (e.g., to 

keep a record of the source of the normative data); these notes are reproduced in the 

output from the program.  A compiled version of the program can be downloaded (as 

a zip file) from the following website address: 

www.abdn.ac.uk/~psy086/dept/QUAND.htm. 

 

The optimal size for normative samples in neuropsychology 

Based on the width of confidence limits on normative sample means, Bridges 

and Holler’s analysis led them to produce guidelines on the optimal sample sizes for 

normative studies in neuropsychology.  They suggested that the uncertainty associated 

with the standing of a given raw score would be unacceptably large for norms based 

on samples of 50 or less and that samples of between 50 and 70 represented the 

optimal size for normative samples in neuropsychology.  They argued that recruiting 

samples larger than 70 would be subject to diminishing returns, i.e., the increase in 
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precision over the true standing of a given raw score would be modest.  In contrast, 

our view is that the “one size fits all” approach is inappropriate.  On the one hand, 

useful work has been done with far smaller sample sizes than 50 when the raw score 

of a case has been quite unusual. On the other hand, when frequent use is to be made 

of the information gained from a normative sample, we believe that every effort 

should be expended to make the sample just as large as practical constraints allow.  

With sample sizes above 70 there will still be considerable uncertainty over the 

standing of a raw score, particularly for scores that are not close to the mean.  For 

example, from Tables 1b and 1c it can be seen that, with a normative sample size of 

100, the confidence interval on z for a score one standard deviation below a normative 

sample mean essentially spans half a standard deviation (0.481) and that, for a score 

one and a half standard deviations below the mean, the interval spans well over half a 

standard deviation (0.57).  With knowledge of this degree of uncertainty, we would 

imagine that many neuropsychologists would be uncomfortable using such normative 

data.  

 

Confidence limits quantifying the uncertainty associated with normative samples 

versus limits based on measurement error 

The present paper is solely concerned with quantifying the uncertainty in 

evaluating the standing of a given score as a function of the use of normative sample 

data to estimate population parameters.  The confidence limits presented should 

therefore not be confused with confidence limits based on classical test theory that 

attempt to quantify the effects of measurement error in a neuropsychological 

instrument on scores; these latter intervals are of course widely used and featured in 

most test manuals. 
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The latter limits do not allow for error in estimating the normative population 

parameters from sample data.  It is worth noting that these confidence limits also treat 

the reliability of the test as a known, fixed quantity when, in reality, it is subject to 

error like any other statistic.  The uncertainty attached to Cronbach’s alpha can be 

considerable when the sample used to calculate it is modest in size, particularly when 

the test contains relatively few items (Crawford, 2004; Feldt, 1965). 

Thus, when using these latter limits, the neuropsychologist is posing the 

question “ignoring the error in estimating the population mean, standard deviation and 

reliability of the test, how much uncertainty is there in an individual’s score as a 

function of measurement error in the instrument?”  In contrast, when using the limits 

presented in the present paper, the concern is solely with the score in hand.  The more 

concrete question posed is “for a given (i.e., obtained or potentially obtainable) raw 

score, how much uncertainty is there in its standing as a function of error in using a 

normative sample to estimate the parameters of a normative population.  To avoid 

potential misunderstanding, it is not the case that these limits assume no measurement 

error.  The limits are concerned with observed scores (which are effected by an 

amalgam of true score variance and measurement error variance) and the method does 

not need to “know” the relative contributions of these two sources of variance: the 

intervals automatically become wider by exactly the right amount to compensate for 

the presence of measurement error and thus the intervals are exactly correct.  

Therefore the method allows for the presence of measurement error in the normative 

data and in individual’s scores referred to these norms but is solely concerned with 

the score in hand.  It does not address the issue of what score an individual might 

obtain on another occasion, but simply quantifies (with confidence limits) the 

proportion of the normative population who would obtain a score as extreme as the 
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individual obtained.    

The two types of limits therefore provide useful but different information.  

The limits quantifying the effects of measurement error on an individual’s score are 

not relevant when evaluating the adequacy of normative data, although the reliability 

coefficient used in their calculation is clearly highly relevant in evaluating the 

neuropsychological instrument itself.  If an instrument has low reliability, then it 

should be avoided; therefore the issue of the adequacy of existing normative data for 

the test should not arise, nor should there be much interest in planning a normative 

study. 

 

A caveat and some other considerations 

In neuropsychology it is still common for norms to be presented as raw means and 

standard deviations (for example, all of the normative data sets considered by Bridges 

and Holler were of this form).  When the standing of a raw score is estimated by 

expressing it as a z score, or by using Crawford and Howell’s method (1998), it is 

assumed that the normative data are drawn from an underlying normal distribution.  If 

this assumption is violated the resultant point estimates will be biased.  For example, 

if many members of the normative population score at or close to ceiling on a test, the 

distribution of raw scores will have high negative skew (and will also be leptokurtic, 

i.e., more peaked than a normal distribution).  The effect will be that z scores (and 

Crawford and Howell’s t values) will underestimate the rarity of scores above the 

mean and overestimate the rarity of scores below the mean (Crawford & Garthwaite, 

2005; Crawford, Garthwaite, Azzalini, Howell, & Laws, 2006). 

The interval estimates (i.e., confidence limits) on the standing of a score 

presented here are also based on the assumption that scores are drawn from a normal 
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distribution (as are Bridges and Holler’s limits although, as noted, they make further 

unjustified assumptions).  It follows that, if this assumption is violated, the confidence 

limits on the standing of raw scores will not capture the true standing of the scores 

95% of the time.  Thus, although the limits on the standing of a score are wide 

(particularly when normative samples are modest and the scores under consideration 

are extreme), these limits can be seen as representing a best case scenario. 

The effect of departures from normality on the ability of these limits to capture 

the true standing of a score will be greater when normative samples are large.  When 

skew is present the intervals will be misaligned (i.e., centered around the wrong 

quantity) and this will have a more pronounced effect as the calculated limits become 

narrower with increasing sample size.  On the other hand, when normative samples 

are large, it is more likely that the scores will be expressed on some form of standard 

metric (i.e., as T scores or IQ scores etc).  When this is the case it should be safe to 

assume that the distribution of raw scores will have been examined and a normalizing 

transformation applied if required. 

Having raised the topic of norms expressed on a standard metric it is worth 

making explicit that the methods presented here are just as applicable to normative 

data that is in such a form; i.e. they are not limited to normative data in the form of 

raw means and standard deviations.  That is, although norms expressed on standard 

metrics tend to be based on larger samples than norms expressed as raw means and 

standard deviations, there are still many normative data sets of the former type that 

are based on relatively modest samples.  Moreover, even with normative samples that 

would be considered large, it can be seen from Tables 1a to 1c there is still 

appreciable uncertainty over the population standing of a score, particularly for 

extreme scores. 
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Finally, it should be stressed that the size of a normative sample is only one of 

many factors that should be considered when evaluating or using normative data.  For 

example, potential consumers of normative data need to consider how closely matched 

the normative sample is in terms of demographic variables to the population they are 

intended to represent.  Moreover, one should be confident that the exclusion criteria 

used were rigorous enough to exclude potential participants who are cognitively 

impaired.  For more detailed discussion of these and other related issues see Cicchetti 

(1994), Mitrushina, Boone, Razani and D'Elia, (2005), or Strauss, Sherman and 

Spreen (2006).   
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Table 1a.  Confidence limits on z and on its corresponding percentile rank calculated using the methods of Bridges and Holler (2007) and 

Crawford and Garthwaite (2002): results for raw scores at the normative sample mean (i.e., z = 0, percentile = 50th ) 

 Confidence limits on z  Confidence limits on percentile 

 Lower limit  Upper limit  Width of interval  Lower limit  Upper limit 

 BH CG  BH CG  BH CG  BH CG  BH CG 

               

5 -1.242 -0.877  1.242 0.877  2.483 1.753  10.72 19.04  89.28 80.96 

10 -0.715 -0.620  0.715 0.620  1.431 1.240  23.72 26.77  76.28 73.23 

25 -0.413 -0.392  0.413 0.392  0.826 0.784  33.99 34.75  66.01 65.25 

50 -0.284 -0.277  0.284 0.277  0.568 0.554  38.81 39.08  61.19 60.92 

100 -0.198 -0.196  0.198 0.196  0.397 0.392  42.14 42.23  57.86 57.77 

200 -0.139 -0.139  0.139 0.139  0.279 0.278  44.46 44.49  55.55 55.51 

300 -0.114 -0.113  0.114 0.113  0.227 0.226  45.48 45.50  54.52 54.51 

500 -0.088 -0.088  0.088 0.088  0.176 0.175  46.50 46.51  53.50 53.49 
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Table 1b.  Confidence limits on z and on its corresponding percentile rank calculated using the methods of Bridges and Holler (2007) and Crawford and 

Garthwaite (2002): results for raw scores one standard deviation below the normative sample mean (i.e., z = -1, percentile = 15.8th) 

 Confidence limits on z  Confidence limits on percentile 

 Lower limit  Upper limit  Width of interval  Lower limit  Upper limit 

 BH CG  BH CG  BH CG  BH CG  BH CG 

               

5 -2.242 -2.067  0.242 0.138  2.483 2.204  1.25 1.94  59.55 55.48 

10 -1.715 -1.751  -0.285 -0.214  1.431 1.538  4.31 4.00  38.80 41.54 

25 -1.413 -1.476  -0.587 -0.511  0.826 0.965  7.89 7.00  27.85 30.48 

50 -1.284 -1.337  -0.716 -0.656  0.568 0.681  9.95 9.06  23.71 25.58 

100 -1.198 -1.239  -0.802 -0.758  0.397 0.481  11.54 10.77  21.14 22.42 

200 -1.139 -1.169  -0.861 -0.829  0.279 0.340  12.73 12.12  19.47 20.35 

300 -1.114 -1.138  -0.886 -0.861  0.227 0.277  13.27 12.75  18.77 19.47 

500 -1.088 -1.107  -0.912 -0.892  0.176 0.215  13.83 13.41  18.09 18.61 
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Table 1c.  Confidence limits on z and on its corresponding percentile rank calculated using the methods of Bridges and Holler (2007) and 

Crawford and Garthwaite (2002): results for raw scores 1.5 SDs below the normative sample mean (i.e., z = -1.5, percentile = 6.7th) 

 Confidence limits on z  Confidence limits on percentile 

 Lower limit  Upper limit  Width of interval  Lower limit  Upper limit 

 BH CG  BH CG  BH CG  BH CG  BH CG 

               

5 -2.48 -2.80  -0.26 -0.14  2.48 2.66  0.31 0.26  39.81 44.55 

10 -2.22 -2.40  -0.78 -0.56  1.43 1.84  1.34 0.81  21.63 28.76 

25 -1.91 -2.07  -1.09 -0.92  0.83 1.15  2.79 1.93  13.85 17.97 

50 -1.78 -1.90  -1.22 -1.09  0.57 0.81  3.72 2.86  11.20 13.78 

100 -1.70 -1.78  -1.30 -1.21  0.40 0.57  4.47 3.72  9.65 11.28 

200 -1.64 -1.70  -1.36 -1.30  0.28 0.40  5.06 4.44  8.68 9.73 

300 -1.61 -1.66  -1.39 -1.33  0.23 0.33  5.33 4.80  8.28 9.11 

500 -1.59 -1.63  -1.41 -1.37  0.18 0.26  5.62 5.18  7.90 8.51 
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Table 2.  Results of a Monte Carlo simulation comparing two methods of capturing 

the uncertainty associated with the use of normative data to estimate z∗  (the z that 

would be obtained for a given raw score had we access to the normative population 

mean and standard deviation); the size of the normative sample is varied from 5 to 

500 (if the methods are sound the intervals should capture z∗ on 95% of Monte Carlo 

trials) 

     

Sample n  Holler & Bridges (%)  Crawford & Garthwaite (%) 

     

5  90.47  95.14 

10  90.06  94.99 

25  89.76  95.00 

50  89.65  94.95 

100  89.44  94.96 

200  89.83  95.09 

300  89.67  95.12 

500  89.73  95.09 
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Table 3.  Results of a Monte Carlo simulation comparing two methods of capturing the uncertainty associated with the use of normative data to 

estimate z∗  (the z that would be obtained for a given raw score had we access to the normative population mean and standard deviation) as a 

function of the extremity of z∗ ; the size of the normative sample is varied from 10 to 500 (if the methods are sound the intervals should capture 

z∗ on 95% of Monte Carlo trials) 

  Bridges & Holler (%)  Crawford & Garthwaite (%) 

z∗  (percentile)  10 25 50 100 200 500  10 25 50 100 200 500 

  0.0 (50th)  95.02 94.96 95.04 95.01 95.02 95.03  95.02 94.96 95.04 95.01 95.02 95.03 

-0.253 (40th)  94.64 94.58 94.68 94.84 94.65 94.79  94.98 94.99 95.07 95.15 94.95 95.00 

-0.675 (25th)  92.25 92.40 92.34 92.43 92.33 92.38  95.02 95.00 94.97 95.07 95.00 95.09 

-1.036 (15th)  89.04 89.08 88.68 88.68 88.59 88.57  94.95 95.03 94.96 94.99 95.01 94.92 

-1.282 (10th)  86.71 85.73 85.87 85.29 85.29 85.34  95.03 95.05 95.04 94.90 94.95 95.02 

-1.645 (5th)  81.83 80.77 79.96 80.20 80.13 79.93  94.86 94.91 94.80 95.04 95.01 95.06 

-1.960 (2.5th)  77.64 75.90 75.06 74.97 74.87 75.07  94.83 95.08 94.94 94.97 95.01 94.98 

-2.326 (1st)  72.50 70.21 69.88 69.56 69.23 69.33  95.07 94.90 94.98 95.12 95.05 95.02 
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Appendix 1 

Algebraic manipulation of Bridges and Holler’s equations for confidence intervals on 

z 

As set out in equation (3), Bridges and Holler’s method for obtaining the 95% 

two-sided upper limit on z for a raw score referred to normative data is 

 ( )Upper 95% confidence limit on ' ' /Lz x x s= −  

However, from equation (1) we have 

 0.025L
sx x t
n

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 

and so the right hand side of equation (3) can be expressed as 

 
0.025

sx x t
n

s

⎛ ⎞− −⎜ ⎟
⎝ ⎠ , 

and this can be simplified to 

 0.025tx x
s n
− ⎛ ⎞⎛ ⎞ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

, 

which is reproduced in the text as equation (5).  The same procedure yields the 

equation for the lower limit on z (equation 4). 

 

Appendix 2 

Derivation of confidence intervals on z and percentiles 

The confidence intervals used in the present paper to quantify the uncertainty 

associated with the use of normative samples to estimate the z and percentile rank 

corresponding to a given raw score are derived from a non-central t-distribution.  

They are based on theory developed by Crawford and Garthwaite (2002).  At some 

points we change the terminology from that used by Crawford and Garthwaite (2002) 
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to render it consistent with the terminology and intended uses of these limits as set out 

in the present paper.  The non-central t-distribution is defined by 

 ( ) ( ) / /T Z Yν δ δ ν= + , 

where Z has a normal distribution with a mean of zero and variance 1, and Y is 

independent of Z with a chi-square distribution on ν  degrees of freedom.  δ  is 

referred to as the non-centrality parameter.   

For a specified value 0x  (i.e., a given raw test score), where ( )2N ,x µ σ∼ , we 

require ( )100 1 %α−  confidence intervals on z∗  and the percentile rank (P*), based 

on normative sample data x  and 2s , where ( )2N , /x nµ σ∼  and ( )2 2 2/sν σ χ ν∼ .  

(In the present case 1nν = − ).  Crawford and Garthwaite (2002) originally set out the 

method for P* only but, as pointed out by Crawford, Lynch and Garthwaite 

(submitted), it is very straightforward to also obtain limits on z∗  en route to obtaining 

these former limits.  Put 

 ( )0 ,
x x

z
s
−

=  (9) 

Let ( )0 /z x µ σ∗ = − .  Then z is an estimate of z∗ .  That is, z computed using the 

sample mean and standard deviation, is an estimate of the z, here denoted z∗ , that we 

would obtain were the mean and standard deviation of the normative population 

known.  Now 

 ( ) ( ) 2
0

2/
x n x n sz n

µ µ
σ σ σ

⎛ ⎞− −
= +⎜ ⎟⎜ ⎟
⎝ ⎠

, 

so z n  has a non-central t-distribution with non-centrality parameter z nδ ∗=  and 

ν  degrees of freedom.  The ( )100 / 2 %α  and ( )100 1 / 2 %α−  points of this 
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distribution will depend on the value of δ .  Let Lδ  denote the value of δ  for which 

the ( )100 1 / 2 %α−  point is z n .  Similarly, let Lδ  denote the value of δ  for which 

the ( )100 / 2 %α  point is z n .  Then ( )/ , /L Un nδ δ  is a ( )100 1 %α−  confidence 

interval for z∗ . 

To obtain confidence limits on P*, the percentile rank of a given raw score, 

define ( / 2; ; 1)h zα ν + and (1 / 2; ; 1)h zα ν− +  by 

 ( / 2; ; 1) Pr ( / ) 100Lh z Z Nα ν δ+ = < ⋅  

and 

 (1 / 2; ; 1) Pr ( / ) 100Uh z Z Nα ν δ− + = < ⋅  

where Z is the standard normal variate [i.e. N(0,1)].Z ∼   Then a 100(1-α)% 

confidence interval for the percentile rank (P*) is 

( ( / 2; ; 1), (1 / 2; ; 1)).h z h zα ν α ν+ − +  
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Figure 1. 

Percentage of trials in which the two methods of setting confidence limits captured 

the population z score as a function of the extremity of the population z score; results 

are for a (intermediate) normative sample size of 50; C&G = Crawford & Garthwaite 

(2002) method, B&H = Bridges & Holler (2007).  
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