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We suppose a case is to be compared with controls on the basis of a test that gives a single discrete
score. The score of the case may tie with the scores of one or more controls. However, scores relate to an
underlying quantity of interest that is continuous and so an observed score can be treated as the rounded
value of an underlying continuous score. This makes it reasonable to break ties. This paper addresses
the problem of forming a confidence interval for the proportion of controls that have a lower underlying
score than the case. In the absence of ties, this is the standard task of making inferences about a binomial
proportion and many methods for forming confidence intervals have been proposed. We give a general
procedure to extend these methods to handle ties, under the assumption that ties may be broken at random.
Properties of the procedure are given and an example examines its performance when it is used to extend
several methods. A real example shows that an estimated confidence interval can be much too small if the
uncertainty associated with ties is not taken into account. Software implementing the procedure is freely
available.

Keywords: coverage; Clopper–Pearson interval; credible interval; discrete distribution; multiple ties;
Wald interval

1. Introduction

The problem that motivated the present research arises commonly in the practice of medicine,
psychology and education. Scores y1, . . . , yn are obtained for a random sample of n people
from a population of controls. A case has a score y# and the case is to be compared with the
controls. Scores are discrete so y# may equal one or more of the yi . However, the scores relate
to an underlying quantity-of-interest that is continuous so an observed score can be treated as
the rounded value of some underlying continuous score. This means that it is reasonable and
desirable to break ties. For example, on a memory test or on an anxiety scale a case’s score may
equal the scores of some controls, while the case’s underlying memory ability or anxiety level
does not exactly equal the memory ability or anxiety level of any control, as both these constructs
are assumed to be continuous variables. The task we address is to make inferences about the

∗Corresponding author. Email: p.h.garthwaite@open.ac.uk

ISSN 0266-4763 print/ISSN 1360-0532 online
© 2011 Taylor & Francis
DOI: 10.1080/02664763.2010.537649
http://www.informaworld.com

D
ow

nl
oa

de
d 

by
 [

O
pe

n 
U

ni
ve

rs
ity

] 
at

 0
4:

07
 0

3 
A

ug
us

t 2
01

1 



1916 P.H. Garthwaite and J.R. Crawford

proportion of controls, p say, who have a lower underlying score than the case. In the absence of
ties, this task is essentially the standard problem of making inferences for a binomial proportion:
inferences are to be made about the probability of success (p) on the basis of n trials, where the
ith trial is a success if yi is less than y# and it is a failure if yi is greater than y#.

To make inferences about p when ties are present, some assumption (or assumptions) about ties
is necessary. We make the assumption that, in breaking ties, all possible results from tie-breaking
are equally likely. Specifically, suppose the score of the case equals that of t controls. If the case
and these controls were given further tests so as to break all ties, then the case and controls could
be ranked from 1 to t + 1. Our assumption is that the case is equally likely to have any one of
these ranks. When this is true, we say that the ties satisfy the random-ranking assumption. More
precisely, let S denote the number of controls in the sample whose scores are less than y# and let
T denote the number whose scores tie with y#. Also, let X denote the (unknown) number whose
underlying score is less than y. Then ties satisfy the random-ranking assumption if

Pr(X = x|S = s, T = t) =
⎧⎨
⎩

1

t + 1
for x = s, s + 1, . . . , s + t.

0 otherwise.
(1)

Typically, this assumption is reasonable unless the case has the joint-lowest (or joint-highest)
score, when it may be clear from circumstances that the case is quite likely to have a more
extreme underlying score than any of the controls. To illustrate the latter, suppose psychological
tests are given to a case because the case has suffered a head injury. If the case gets the minimum
possible score on a test, there may be a distinct possibility that brain injury is affecting the
case’s performance and that the case’s underlying score is well outside the normative range. Even
if a few controls also obtain the minimum possible score, this may still seem likely. In such
situations, the methods proposed here should not be used. Alternative strategies include using
Bayesian methods with informative prior distributions. This approach has been used to handle
zero binomial outcomes [9,16] and might be extended to handle ties.

Difficulties caused by ties have been considered in the context of hypothesis testing, but have not
been addressed in the context of confidence interval estimates. In the hypothesis testing, common
ways of handling ties are either (a) to ignore them and reduce the sample size, or (b) divide the
ties in two, treating half of them as successes and the other half as failures [5,8,11]. Approach (a)
can be sensible, as, for example, in problems where McNemar’s test should be used. However,
it is inappropriate when forming a confidence interval for the proportion of controls who have
a smaller underlying score than the case, or other questions addressed here. Approach (b) is an
over-simplification. It ignores the uncertainty that arises from ties and can lead to confidence
intervals that are too narrow. Our assumption leads to methods that are clearly better than (a) or
(b) for the contexts we consider.

A substantial body of work concerns the sign test and its treatment of ties [4,12,14]. Rather
than p, this work focuses on slightly different parameters: p+, p0 and p−, where these denote
the probability of a success, the probability of a tie, and the probability of a failure, respec-
tively. The aim has been to test whether p+ equals p−, rather than to make inferences about
p = p+ + (1/2)p0, focusing on the asymptotic efficiencies of different test procedures. The
work uses approaches (a) and (b) for handling ties and also various other approaches. For exam-
ple, Woodbury et al. [17] suppose that a sequence of paired trials are conducted to compare two
treatments. The result of each trial may favour one of the treatments or it may be a tie, and each
tie is broken at random. If there are t ties, then this situation has t separate ties where each tie
involves two items, rather than the situation we consider, where there is a multiple tie between t

controls and a case. This latter situation does not seem to have been considered before.
We address the task of forming confidence interval for a binomial proportion when there are

ties and these ties satisfy the random-ranking assumption. The simpler case in which there are
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Journal of Applied Statistics 1917

no ties has attracted much attention. This is largely because problems of discreteness result
in confidence intervals that seldom have the nominal coverage probability. That is, confidence
intervals for a binomial proportion whose nominal coverage probability is, say, 0.95 (i.e. 95%
confidence intervals) seldom have an actual coverage probability of 0.95. Some of the methods
that have been proposed for forming confidence intervals can guarantee having a coverage that
is no smaller than the nominal probability. However, these methods have been criticized as being
too conservative, erring too heavily on the side of caution. Other methods may not guarantee
being conservative, but may be conservative for most values of p and may typically give coverage
probabilities that are close to the nominal value. Good reviews of methods are given by Agresti
and Coull [1], Newcombe [10] and Brown et al. [2].

To cover a number of methods of forming confidence intervals relatively succinctly, we group
them as Wald-form methods, exact-form methods, score-form methods and Bayesian methods.
In the absence of ties, Wald-form methods include the Wald method (with and without a conti-
nuity correction) and Agresti–Coull intervals. Exact-form methods include the Clopper–Pearson
intervals and mid-p intervals, while score-form methods include the Wilson score method (with
and without a continuity correction). Bayes methods require a prior distribution that is usually
assumed to be a beta distribution, which is the conjugate distribution. We describe these methods,
extend them to handle ties, and examine their coverage.

In Section 2, we give a general procedure for extending a method of forming confidence intervals
so that it can handle ties that satisfy the random-ranking assumption. We also give conditions under
which the procedure is no more liberal than the method it extends. In Section 3, we briefly review
methods of forming interval estimates for a binomial proportion and extend them to handle ties
by applying our procedures. In Section 4, we examine the coverage probabilities of intervals and
compare our procedure when ties are present with the equivalent method when ties are absent.
We find that intervals are typically more conservative when ties are present. In Section 5, we give
a practical example in which we compare our procedure for handling ties with naive alternative
methods. The proposed procedure has been implemented in freely available software and details
are provided in Section 6. Some concluding comments are given in Section 7. The work reported
here underpins methods of forming confidence intervals that are proposed in Crawford et al. [7]
and Crawford et al. [6].

2. General procedure

Throughout we assume that an equal-tailed 100(1 − 2α)% confidence interval is required. Thus
if l and u are the lower and upper confidence limits, then (0, u) and (l, 1) are both 100(1 − α)%
confidence intervals for p. We refer to these as the upper-tailed and lower-tailed 100(1 − α)%
confidence intervals, respectively. The reason for introducing these one-tailed intervals is that
they are defined for 0 ≤ α ≤ 1, while equal-tailed intervals are only defined for 0 ≤ α ≤ 0.5. To
handle ties, we will consider confidence intervals that have many different levels of confidence,
even though we only construct 100(1 − 2α)% confidence intervals.

In most statistical applications where confidence intervals are used, first a nominal confidence
level is specified (say 95%) and then the confidence limits are determined. Here, in contrast, for
the upper limit we wish to specify a value u and ask:

What confidence level should be associated with the interval (0, u)? That is, for what value of γ is (0, u) an upper-tailed
100(1 − γ )% confidence interval?

Let γ (x, u) denote the answer to this question. For the lower confidence limit, l, we equivalently
defineη(x, l) to be the value ofη for which (l, 1) is a 100(1 − η)% lower-tailed confidence interval.
The quantities γ (x, u) and η(x, l) form the building blocks of our procedure for handling ties.
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1918 P.H. Garthwaite and J.R. Crawford

The procedure requires ties to satisfy the random-ranking assumption. Also, the methods of
forming confidence intervals that we extend to handle ties must satisfy the following regularity
conditions.

(a) Suppose there are no ties and (l1, u1) and (l2, u2) are equal-tailed confidence intervals with
confidence levels of 100(1 − 2α1) and 100(1 − 2α2), respectively. We require l1 ≤ l2 and
u2 ≤ u1 if α1 < α2.

(b) Some standard methods of forming confidence intervals can give upper limits that are above
1 if they are not reduced to equal 1, and lower limits that are below 0 if they are not increased
to 0. For these methods, γ (x, u) and η(x, l) are not uniquely defined when u = 1 and l = 0,
respectively. However, we assume that γ (x, u) is uniquely defined when u �= 1 and that
η(x, l) is uniquely defined when l �= 0. For definiteness, we put γ (x, u) = 0 when u = 1 and
η(x, l) = 0 when l = 0.

(c) We further assume that, for any x, γ (x, u) is a continuous function of u for u ∈ [0, 1) and
η(x, l) is a continuous function of l for l ∈ (0, 1].

The procedure is as follows. When s successes and t ties have been observed, but x is unknown,
we set the upper limit of the confidence interval equal to u∗, where u∗ is the smallest value that
satisfies

∑s+t
x=s γ (x, u∗)/(t + 1) ≤ α.As γ (x, u) is continuous for u ∈ [0, 1), this uniquely defines

γ (x, u∗) and
s+t∑
x=s

γ (x, u∗)
t + 1

= α, (2)

if u∗ �= 1. The intuitive idea is that x is equally likely to take any of the values s, . . . , s + t and
α is the average of γ (x, u∗) as x ranges over these values. For the lower limit, we set l∗ equal to
the largest value that satisfies

∑s+t
x=s η(x, l∗)/(t + 1) ≤ α. For l∗ �= 0,

s+t∑
x=s

η(x, l∗)
t + 1

= α. (3)

Then (l∗, u∗) is the 100(1 − 2α)% confidence interval. A separate search is conducted for each
limit. We adopt a simple search strategy in which the range that contains the limit is repeatedly
halved (twenty times), so the limit is estimated to an accuracy of 0.520. Each search is very fast
on a computer. To tailor our procedure to a given method of forming confidence intervals only
requires γ (x, u) and η(x, l) to be specified.

In the remainder of this section, we examine properties of the coverage of our procedure. In
the absence of ties, the definition of a confidence interval means that, in principle,

γ (x, u) = P(X ≤ x|p = u). (4)

Several methods of forming confidence intervals will only satisfy Equation (4) approximately,
either because they use asymptotic approximations or because they aim for better coverage overall
by being a little liberal for some values of p. (The discreteness of X does not prevent Equation
(4) from holding as, given x, γ (x, u) is a continuous function of u.) We define ψ(x, u) by

ψ(x, u) = γ (x, u) − P(X ≤ x|p = u). (5)

If we were seeking a 100(1 − α)% upper-tailed confidence interval and α = γ (x, u), then
1 − P(X ≤ x|p = u) would be the actual coverage of the method of forming confidence intervals
when p = u. Also, ψ(x, p) would be the difference between the nominal and actual coverages.
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When ties are present, let U ∗ be the random variable that denotes the upper limit of the 100(1 −
α)% upper-tailed confidence interval given by our procedure. U ∗ depends on S and T . For any
given p, by definition the coverage is P(U ∗ ≥ p). The following proposition relates this coverage
to the ψ(x, u). A proof of the proposition is given in the appendix.

Proposition 1 Given p and T = t, let s∗(t) denote the largest value of S such that

s∗(t)+t∑
x=s∗(t)

γ (x, p)

t + 1
≤ α. (6)

Also, let m denote the largest value taken by s∗(t) + t as t varies and suppose P(S = s|t) ≥
P(S = s − 1|t) for all s ≤ m and any t . If ties satisfy the random-ranking assumption, then

P(U ∗ ≥ p) ≥ (1 − α) +
n∑

t=0

s∗(t)+t∑
x=s∗(t)

P (T = t) · ψ(x, p) + h(x, t)

t + 1
, (7)

where Equation (2) gives the value of u∗ that is taken by U ∗ when S = s and T = t , and

h(x, t) = P(X ≤ x) − P(X ≤ x|t). (8)

It is difficult to construct a situation where P(S = x|T ) ≥ P(S = x − 1|T ) for some x ≤ m,
as m is almost inevitably in the lower tail of the distribution of S. (Exceptions arise when n is
very large and either p or 1 − p is very small.) Hence the conditions of the proposition generally
hold if ties satisfy the random-ranking assumption. An equivalent result to Proposition 1 holds
for the lower limit.

It is helpful to explore further the relationship given by Equation (7). For i ≤ t , let Ai =∑i
j=1 P [S = s∗(t) − i + j |t] and Bi = ∑t+1

j=1 P [S = s∗(t) − i + j |t]{i/(t + 1)}. If s∗(t) + t is
in the lower tail of the distribution of S, then Bi will usually be greater than Ai unless t = 0.
Typically, the difference is noticeable for non-zero t and increases with t . The relevance of Ai and
Bi is that they determine the tightness of the inequality in Equation (7): by modifying the proof
of Proposition 1 it can be shown that P(U ∗ ≥ p) exceeds the right-hand side of Equation (7) by
at least

n∑
t=0

{
P(T = t)

t∑
i=1

(Bi − Ai)

}
. (9)

In contrast, Equation (8) suggests that h(x, t) will generally be small. Coupled with the fact that∑n
t=0

∑s∗(t)+t

x=s∗(t) P (T = t)h(x, t) = 0, it follows that

n∑
t=0

s∗(t)+t∑
x=s∗(t)

P (T = t)h(x, t)

t + 1
(10)

is likely to be very small. Usually then, the quantity in Equation (9) will be positive and non-trivial
in size while the quantity in Equation (10) is likely to be small (and it may well be negative).
Whenever the quantity in Equation (9) is greater than the quantity in Equation (10),

P(U ∗ ≥ p) ≥ (1 − α) +
n∑

t=0

s∗(t)+t∑
x=s∗(t)

P (T = t) · ψ(x, p)

t + 1
. (11)

We believe that Equation (11) will typically hold, although it does depend on the distribution
of the number of ties. To illustrate that it need not hold, suppose that the number of ties is almost
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1920 P.H. Garthwaite and J.R. Crawford

certain to exceed 1/α and that p is very close to 1. Then the ties give a probability of more
than 1 − α that X is less than n. Hence P(U ∗ ≥ p) is less than 1 − α, since p ≈ 1 and the
upper confidence interval is less than 1 whenever X is less than n. If the method chosen to form
confidence intervals in the absence of ties is never liberal, then P(U ∗ ≥ p) < 1 − α implies that
Equation (11) does not hold. The key feature of this situation is that there are a large number of
ties and the value of p is extreme. In such situations, the assumption that ties should be broken at
random (the random-ranking assumption) will usually be suspect.

When Equation (11) does hold, it clarifies the relationship between the coverage of a method of
forming confidence intervals (in the absence of ties) and the coverage of the procedure constructed
from that method in order to handle ties. It gives the following results, which are proved in the
appendix.

Proposition 2 Suppose Equation (11) holds and that a given method for forming confidence
intervals (when there are no ties) is conservative for all confidence levels. Then the proposed
procedure for forming confidence intervals from that method when ties are present is also
conservative.

Proposition 3 Suppose Equation (11) holds and we have constants λ1 and λ2, with λ2 ≥
0, such that ψ(x, p) ≥ λ1 − λ2γ (x, p) for all x and p. Then the proposed procedure for
forming a 100(1 − α)% upper-tailed confidence interval has coverage that is no less than
(1 − α) + λ1 − λ2α.

Propositions 2 and 3 suggest that the procedure for forming confidence intervals in the presence
of ties will tend to have a greater average coverage than the method from which it is derived. The
coverage will also tend to increase as the number of ties increases (from Equation (9)). The
examples in Section 4 will illustrate this. Proposition 3 does not hold for negative values of λ2

because of the discreteness of a binomial distribution. Given p, if for every value of t there existed
an integer s∗(t) for which

∑s∗(t)+t

x=s∗(t) γ (x, p)/(t + 1) = α (rather than the inequality in Equation
(6)), then the proposition would hold for all λ2. Discreteness should only have a marginal effect,
so Proposition 3 will not be far from holding for all λ2.

The procedure described here is useful, not only when sampling is from a binomial distribution,
but in other situations where there are multiple ties that can be broken at random. Moreover, the
proofs of Propositions 1–3 make little use of the precise form of the sampling model, so that
they hold more generally (e.g. in forming confidence intervals for the parameter of a Poisson
distribution).

3. Specific methods

In this section, we review specific methods for forming confidence intervals in the absence of ties
and extend the methods to handle ties by giving explicit formulae for γ (x, u) and η(x, l).

3.1 Wald-form methods

Let zα denote the 1 − α quantile of a standard normal distribution. Suppose there are no ties and x

successes in n trials. Then the 100(1 − 2α)% confidence interval given by Wald-form methods is

p̃ ±
[
zα

{
p̃(1 − p̃)

ñ

}1/2

+ c1

]
, (12)

where p̃ is a point estimate of p and 0 ≤ c1 < 1. In the simple Wald method (the standard
method taught in most elementary statistics textbooks), ñ = n, p̃ = x/n and c1 = 0. A continuity
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correction is added by setting c1 = 1/(2ñ). For 95% confidence intervals, Agresti and Coull
[1] suggest adding two to both the number of successes and the number of failures (i.e. put
ñ = n + 4 and p̃ = (x + 2)/ñ), as this improves the coverage probability of intervals. This could
also prove useful for other levels of coverage, as the pathological cases where x = 0 or x = n

may have a smaller adverse impact on coverage if two is added to the number of successes and
the number of failures. For other levels of confidence, Brown et al. [2] generalize the Agresti–
Coull interval by setting ñ = n + z2

α , p̃ = (x + z2
α/2)/ñ and c1 = 0. The formula in Equation

(12) can yield confidence limits that are outside the feasible range of [0, 1], so they may require
truncation. However, the Agresti–Coull method in particular gives 95% confidence intervals that
have reasonably accurate coverage for moderately large n; Brown et al. [2] recommend its use
for n ≥ 40. At the same time though, results in Tuyl et al. [13] suggest that adding two successes
and two failures is not helpful when x = 0.

To extend the Wald-form methods to handle ties, we define γ (x, u∗) by

u∗ = p̃ +
[
zγ (x,u∗)

{
p̃(1 − p̃)

ñ

}1/2

+ c1

]
(13)

when p̃(1 − p̃) �= 0. To handle pathologies, when p̃(1 − p̃) = 0 put

γ (x, u∗) =
{

0 if u∗ < p̃ + c1 or if u∗ = p̃ + c1 and p̃ = 1

1 if u∗ > p̃ + c1 or if u∗ = p̃ + c1 and p̃ = 0.

With these choices, if u∗ �= p̃ + c1, then γ (x, u∗) is continuous as p̃(1 − p̃) → 0 while, if u∗ =
p̃ + c1, then γ (x, u∗) takes its minimal value when u∗ takes its maximal value, and vice versa.
For the lower limit, define η(x, l∗) by

l∗ = p̃ −
[
zη(x,l∗)

{
p̃(1 − p̃)

ñ

}1/2

+ c1

]
(14)

when p̃(1 − p̃) �= 0 and, when p̃(1 − p̃) = 0, put

η(x, l∗) =
{

1 if l∗ < p̃ − c1 or if l∗ = p̃ − c1 and p̃ = 1

0 if l∗ > p̃ − c1 or if l∗ = p̃ − c1 and p̃ = 0.

Then, when there are s successes and t ties, the confidence limits are obtained via our general
procedure, using Equations (2) and (3).

An advantage of Wald-form methods is their simplicity, though this benefit is largely lost with
our procedure when ties are present, as searches are needed to find the confidence limits. Wald-
form methods can have poor coverage, so the main reason for using them when there are ties,
rather than using alternative methods, would be their greater familiarity to most people.

Extending the method of Brown et al. [2] to handle ties is messy. With their method, the
adjustments that give ñ and p̃ depend upon the confidence level, while the confidence level
depends upon ñ and p̃. Hence an additional layer of iteration is required. We will not consider
Brown et al.’s method further here, as it is not widely used when there are no ties, and ties stop it
from being a comparatively simple method to use.
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1922 P.H. Garthwaite and J.R. Crawford

3.2 Score-form methods

The 100(1 − 2α)% confidence interval for p given by score-form methods consists of all θ that
satisfy

|θ − (x/n)| − c2

{θ(1 − θ)/n}1/2
≤ zα, (15)

where 0 ≤ c2 < 1. Setting c2 = 0 gives the Wilson [15] score-form method and putting c2 =
1/(2n) gives a continuity correction to the score-form method. Confidence limits can be found by
inverting Equation (15) to give bounds on the value of θ [9]. The theoretical appeal of the Wilson
interval is that it is equivalent to an equal tail score test of the hypothesis H0 : p = θ . Assuming
the normal approximation to the binomial is used, H0 is rejected at the 2α significance level if
and only if θ is within the 100(1 − 2α)% confidence interval. Equivalence is retained if both
the hypothesis test and confidence interval method use a continuity correction. (Score tests are
based on the log likelihood at the value of the parameter under the null hypothesis, whereas Wald
tests are based on the log likelihood at the parameter’s maximum-likelihood estimate.) Although
score form methods of forming confidence intervals are not strictly conservative, their coverage
probability tends to be close to the nominal value even for very small sample sizes [8]. Their use
is widely recommended because of their good coverage [9,10].

To extend the methods to handle ties requires γ (x, u∗) and η(x, l∗). They are defined by

zγ (x,u∗) = u∗ − (x/n) − c2

{u∗(1 − u∗)/n}1/2
if u∗(1 − u∗) �= 0.

and

zη(x,l∗) = (x/n) − l∗ − c2

{l∗(1 − l∗)/n}1/2
if l∗(1 − l∗) �= 0.

If u∗(1 − u∗) = 0, then

γ (x, u∗) =

⎧⎪⎨
⎪⎩

0 if u∗ <
x

n
+ c2 or if u∗ = x

n
+ c2 and

x

n
+ c2 = 1

1 if u∗ >
x

n
+ c2 or if u∗ = x

n
+ c2 and

x

n
+ c2 = 0.

If l∗(1 − l∗) = 0, then

η(x, l∗) =

⎧⎪⎨
⎪⎩

1 if l∗ <
x

n
− c2 or if l∗ = x

n
− c2 and

x

n
+ c2 = 1

0 if l∗ >
x

n
− c2 or if l∗ = x

n
− c2 and

x

n
+ c2 = 0.

3.3 Exact-form methods

When there are x successes and no ties, the equal-tailed 100(1 − 2α)% confidence interval given
by exact-form methods is (l, u) where u is the largest value in [0, 1] for which

c3P(X ≤ x|p = u) + (1 − c3)P (X ≤ x − 1|p = u) ≥ α (16)

and l is the smallest value in [0, 1] for which

c3P(X ≥ x|p = l) + (1 − c3)P (X ≥ x + 1|p = l) ≥ α, (17)

where 1 ≥ c3 > α. Setting c3 = 1 gives the Clopper–Pearson method and putting c3 = 1/2 gives
the mid-p method. The Clopper–Peason method is guaranteed to be conservative and is com-
monly treated as the gold-standard method [1]. It inverts the hypothesis test H0 : p = θ where
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the test uses exact binomial probabilities; θ is within the Clopper–Pearson interval if and only
if H0 is not rejected at the 2α level of significance. Since the Clopper–Pearson interval inverts
a test of the same hypothesis as the Wilson interval but uses exact probabilities, rather than a
normal approximation, the Clopper–Pearson interval might be expected to be preferable to the
Wilson interval, other than for reasons of computational convenience. However, unlike the Wilson
method, the Clopper–Pearson method is widely regarded as being too conservative. For exam-
ple, Agresti and Coull [1, p. 119], comment that its ‘…actual coverage probability can be much
larger than the nominal confidence level unless n is quite large, and we believe it is inappro-
priate to treat this approach as optimal for statistical practice’. In comparison, mid-p intervals
are better regarded as they give coverage probabilities that are generally close to the nominal
value; Brown et al. [2, p. 115], comment that ‘they are known to have good coverage and length
performance’.

Tail-areas of a binomial distribution and a beta distribution are related. If fB(ξ ; a, b) is the
probability density function of a beta distribution with parameters a and b, then Equations (16)
and (17) can be expressed as

c3

∫ 1

u

fB(ξ ; x + 1, n − x) dξ + (1 − c3)

∫ 1

u

fB(ξ ; x, n − x + 1) dξ ≥ α (18)

and

c3

∫ l

0
fB(ξ ; x, n − x + 1) dξ + (1 − c3)

∫ l

0
fB(ξ ; x + 1, n − x) dξ ≥ α, (19)

respectively. These expressions are useful for computation and also help compare exact-form
confidence intervals with Bayesian credible intervals.

To extend exact-form methods to handle ties, we simply put

γ (x, u∗) = c3

∫ 1

u∗
fB(ξ ; x + 1, n − x) dξ + (1 − c3)

∫ 1

u∗
fB(ξ ; x, n − x + 1) dξ

and

η(x, l∗) = c3

∫ l∗

0
fB(ξ ; x, n − x + 1) dξ + (1 − c3)

∫ l∗

0
fB(ξ ; x + 1, n − x) dξ.

3.4 Bayesian credible intervals

Bayesian credible intervals may be regarded as confidence intervals when estimating a binomial
proportion. They probably will not meet the strict definition of a confidence interval, in that
their actual coverage for a given p may sometimes be less than their nominal coverage, but
this is true of many well-recommended methods of forming confidence intervals for a binomial
proportion.

For a Bayesian analysis, a prior distribution for p must be specified. Most commonly, it is
assumed that the prior distribution is a beta distribution as this is the conjugate distribution for
binomial sampling: if the prior distribution is beta(a, b) and x successes and no ties are observed
in n trials, then the posterior distribution is another beta distribution, beta(x + a, n − x + b).
Then (l, u) is the equal-tailed 100(1 − 2α)% credible interval for p if u is the largest value in
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1924 P.H. Garthwaite and J.R. Crawford

[0, 1] for which ∫ 1

u

fB(p; x + a, n − x + b) dp ≥ α.

and l is the smallest value in [0, 1] for which∫ l

0
fB(p; x + a, n − x + b) dp ≥ α.

Values of a and b are generally chosen to be non-informative, with either a = b = 1/2, or
a = b = 0, or a = b = 1. Setting a and b equal to 1/2 gives Jeffreys’ prior and with this choice
the endpoints of the credible interval are usually very close to the endpoints of the mid-p confidence
interval (obtained when c3 = 1/2 in Equations (18) and (19)). The mean of a beta(x + a, n −
x + b) distribution is (x + a)/(n + a + b), so setting a = b = 0 gives a posterior mean that
equals the sample mean, conducive with a non-informative prior distribution. At the same time,
putting a = b = 1 gives the uniform distribution whose flat shape might also be considered
non-informative. In the literature on forming interval estimates for binomial proportions though,
Jeffreys’ prior is generally used.

Coverage is only a frequentist property and not a Bayesian concept. However, if a method is
to be judged by the simple average of its coverage as p ranges over its possible values, then the
Bayesian method that uses a uniform prior will seem perfect, with an average coverage exactly
equal to the nominal confidence level. This is because a uniform prior is equivalent to letting
p range over its possible values, with each value equally likely, precisely as in the method of
determining average coverage. Credible intervals derived from Jeffreys’ prior typically also have
good coverage. This is perhaps unsurprising as a Jeffreys’ prior and a uniform prior will usually
lead to similar posterior distributions and, in addition, credible intervals for Jeffreys’ prior are
similar to mid-p intervals. Using Bayesian methods with Jeffrey’s prior is widely recommended
as a means of forming interval estimates [2,3].

When there is a multiple tie, our general method for forming confidence intervals can be applied.
If the prior distribution is beta(a, b), we put

γ (x, u∗) =
∫ 1

u∗
fB(ξ ; x + a, n − x + b) dξ

and

η(x, l∗) =
∫ l∗

0
fB(ξ ; x + a, n − x + b) dξ.

4. Coverage probabilities

We wish to examine the performance of our procedures for handling ties and to compare different
methods of forming confidence intervals in the presence of ties. The primary measure of per-
formance is the coverage of confidence intervals. Ideally, the coverage should exactly equal the
nominal confidence level for every value of p, with equal coverage in each tail, as the intention
is to form equal-tailed confidence intervals. When the coverage does not equal its nominal level
then:

(a) It is better for the coverage to be too large rather than too small, as that is consistent with the
definition of a confidence interval.

(b) The length of the confidence interval is of interest, as much narrower confidence intervals
might be considered reasonable compensation for intervals that are too liberal for some values
of p.
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Given p and n, let L and U be random variables that denote the lower and upper confidence
limits. Their values depend on X (if there are no ties) or S and T (if there are ties) and the coverage
probability, Cn(p), is given by

Cn(p) = Pr(L ≤ p ≤ U).

Ideally, Cn(p) should equal 1 − 2α for 100(1 − 2α)% confidence intervals. In the literature,
interest has focused on Cn(p) but here we also consider Pr(p < L) and Pr(p > U), referring to
these probabilities as the lower-tail coverage and the upper-tail coverage. These tail coverages
should each equal α. We consider tail coverage because the effect of ties on the coverage of one
tail is more transparent than their effect on the coverage of an interval.

As is well known, for almost any fixed value of p, coverage probabilities will not equal their
nominal value for any of the methods of forming confidence intervals considered in Section 3,
even when there are no ties. To illustrate, we consider Wilson’s method (without a continuity
correction). From Equation (15), the upper-tail coverage for a given n and p, UCn(p) say, is
given by

UCn(p) =
∫ 1

p

fB(ξ ; x + 1, n − x) dξ,

where x is the largest integer for which (x/n − p){p(1 − p)/n}−1/2 ≤ zα . The upper graph in
Figure 1 plots UCn(p) against p for the case where there are twenty trials (i.e. n = 20), no
ties are possible and α = 0.025. The jagged appearance of the plot arises because the number of
successes has only 21 possible values (there are 20 spikes in the plot), so there are only 21 possible
confidence intervals, each of which has a positive probability of occurring. Coverage changes as
p moves from just inside a confidence limit to just outside it. For example, when there are six
successes in 20 trials, the Wilson confidence interval for p is (0.1455, 0.5190). When p = 0.5190
(the upper limit), the probability of six successes is 0.0269. Hence the upper tail coverage is
0.0269 greater when p = 0.5189 than when p = 0.5191, as the former point is within the interval
(0.1455, 0.5190) while the latter point is outside it.

The top graph also shows that the upper-tail coverage is zero for small values of p. This is
because the upper confidence limit is 0.1611 when there are no successes so the upper limit
always exceeds p for p < 0.1611. The dashed horizontal line in the graph marks the nominal
coverage of α = 0.025. The line shows that, with Wilson’s method, the upper-tail coverage tends
to be too small for p < 0.5 and too large for p > 0.5. The converse is true for lower tail coverage,
of course. These tend to counteract each other when calculating the coverage of a confidence
interval and the coverage of a Wilson confidence interval is generally good, sometimes much
better than would be anticipated from the coverage in one tail.

Ties affect the coverage of intervals. In particular, when ties are present there are more possible
outcomes as an outcome now includes the number of ties, as well as the numbers of successes
and failures. Hence, there are more values that confidence limits can take. This means that there
are more spikes in a plot of coverage against p, but the sizes of spikes tend to be smaller. To give
an example involving ties, we must specify a joint distribution for S and T . For p ≥ 0.5, we put

Pr(S = s, T = t) = λs

(
n

t

)
θ t (1 − θ)n−t .

(
n − t

s

)
ps(1 − p)n−t−s , (20)

for s + t = 0, . . . , n, where s and t are integers, 0 ≤ θ ≤ 1, and λ0, . . . , λs are positive constants.
If λs = 1 for all s, then Equation (20) would imply that the marginal distribution of T is bin(n, θ)

and the conditional distribution S|T = t would be bin(n − t, p). (The joint distribution of S,
T and the number of failures would be multinomial.) Thus, Equation (20) with λs ≡ 1 seems
a reasonable first-approximation to the joint distribution of S and T and is the motivation for
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1926 P.H. Garthwaite and J.R. Crawford

defining their joint distribution by Equation (20). We choose θ to control the distribution of the
number of ties. The λi must be chosen so that the distribution of X is binomial when ties are
broken at random. If X ∼ bin(n, p), then from Equation (1),

x∑
s=0

n−s∑
t=x−s

1

t + 1
Pr(S = s, T = t) =

(
n

x

)
px(1 − p)n−x, (21)

for x = 0, . . . , n. This determines the λi . Setting x = 0 in Equation (20) gives λ0; after λ0, . . . , λi

have been calculated (i < n), λi+1 is determined by setting x = i + 1 in Equation (20). In the
cases we consider, the λi are always positive provided p > 0.5. For p < 0.5 we interchange the
roles of success and failure. That is, we substitute F for S, f for s, and 1 − p for p in Equations
(20) and (21), where F is the number of failures. Calculation yields Pr(F = f, T = t) and we
put Pr(S = s, T = t)Pr(F = n − s − t, T = t). This gives a symmetric relationship between
success and failure in their coverage probabilities, which is as it should be, as the labels success
and failure are often assigned arbitrarily to the possible outcomes of a trial. We refer to this
example (defined by Equations (20) and (21)) as the ‘sampling-with-ties example’.

To examine the coverage of a method for this example, we determined the confidence (credible)
interval that the method gives for each feasible combination of S, T . Then the upper-tail coverage
for a given value of p is

UCn(p) = Pr({s, t} ∈ 	),

where 	 is the set of {s, t} combinations for which p is above the upper confidence limit.
Lower-tail coverage has an equivalent definition and the coverage of a confidence interval is
1 − (lower-tail coverage + upper-tail coverage). The lower graph in Figure 1 gives the upper-tail
coverage for Wilson’s method when θ , the parameter in Equation (20) that controls the proportion
of ties, is set equal to 0.2p(1 − p). (With this choice of θ, the number of ties does not swamp
the number of successes or the number of failures.) Comparison of the two graphs in Figure 1
illustrates that spikes are smaller but more numerous when there are ties (lower graph) than when
there are are no ties (upper graph).

Without ties
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Figure 1. Upper-tail coverage for Wilson’s method when there are no ties (upper graph) and for the
sampling-with-ties example (lower graph).
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Figure 2. Upper-tail coverage for the Agresti–Coull, Clopper–Pearson, Mid-p, Jeffreys and Bayes(1,1)
methods when there are no ties (left-hand graphs) and for the sampling-with-ties example (right-hand
graphs).

Equivalent graphs for five other well-recommended methods are given in Figure 2. Each of
them again shows that there are smaller, but more numerous spikes when there are ties (right-
hand graphs) than when there are no ties (left-hand graphs). Figures 1 and 2 also both suggest that
coverage tends to be more conservative in the presence of ties. However, there are differences in
the coverage patterns of the methods. The Agresti–Coull method has a similar pattern to Wilson’s
method (Figure 1), with the coverage tending to be lower for p < 0.5 than for p > 0.5. This
is also the case for the Bayes(1,1) method when ties are present but not when ties are absent.
The other three methods have coverages that show almost no trend, with the mid-p and Jeffreys
methods giving a similar level of coverage while the coverage for Clopper–Perason is noticeably
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1928 P.H. Garthwaite and J.R. Crawford

Table 1. Average interval coverage and average exceedance of coverage for 95%
confidence intervals formed by various methods: results for 20 and 50 trials, both
when ties are absent (θ = 0) and when ties are present (θ > 0).

No ties (θ = 0) θ = 0.1p(1 − p) θ = 0.2p(1 − p)

Aver. Aver. Aver. Aver. Aver. Aver.
Method cover. exceed. cover. exceed. cover. exceed.

n = 20
Standard Wald 0.846 0.1042 0.856 0.0942 0.866 0.0843
Standard (cc)a 0.870 0.0844 0.878 0.0775 0.886 0.0728
Agresti–Coull 0.961 0.0015 0.965 0.0001 0.970 0.0000
Wilson 0.953 0.0054 0.958 0.0019 0.963 0.0010
Wilson (cc)a 0.976 0.0000 0.979 0.0000 0.982 0.0000
Clopper–Pearson 0.977 0.0000 0.980 0.0000 0.983 0.0000
Mid-p 0.961 0.0027 0.966 0.0003 0.970 0.0000
Bayes(0, 0)b 0.859 0.0931 0.868 0.0830 0.878 0.0759
Jeffreys(0.5, 0.5)b 0.951 0.0076 0.956 0.0031 0.962 0.0014
Bayes(1, 1)b 0.950 0.0083 0.955 0.0053 0.960 0.0044
n = 50
Standard Wald 0.901 0.0497 0.910 0.0405 0.920 0.0345
Standard (cc)a 0.919 0.0358 0.927 0.0320 0.935 0.0299
Agresti–Coull 0.958 0.0013 0.963 0.0000 0.970 0.0000
Wilson 0.952 0.0034 0.958 0.0006 0.965 0.0004
Wilson (cc)a 0.969 0.0000 0.974 0.0000 0.979 0.0000
Clopper–Pearson 0.969 0.0000 0.974 0.0000 0.979 0.0000
Mid-p 0.955 0.0023 0.961 0.0002 0.968 0.0000
Bayes(0, 0)b 0.910 0.0414 0.919 0.0339 0.928 0.0308
Jeffreys(0.5, 0.5)b 0.950 0.0049 0.957 0.0011 0.964 0.0005
Bayes(1, 1)b 0.950 0.0048 0.956 0.0021 0.964 0.0018

Notes: aStandard Wald/Wilson method with a continuity correction.
bBayesian credible interval where the numbers in brackets are the parameters of the beta prior.

more conservative, especially in the presence of ties. The Clopper–Pearson method, of course, is
the only one of the methods that guarantees to give a coverage that is not liberal.

Table 1 gives the average coverage of ten methods as p varies from 0 to 1, including the
methods shown in Figures 1 and 2. Methods were used to construct 95% confidence intervals.
Three situations are considered: (i) no ties, and the sampling-with-ties-example with either (ii)
θ = 0.01p(1 − p) or (iii) θ = 0.02p(1 − p). With (ii), when p is small just under 10% of the
controls whose underlying score is less than the case are expected to get the same actual score as
the case. With (iii) the proportion doubles to 20%.

Both for n = 20 and n = 50, the average coverage of intervals is greater for each method
when there are ties than when there are no ties, and it is greatest for the larger proportion of ties.
When there are no ties, the standard Wald method (with or without a continuity correction) gives
poor average coverage that is well below the nominal level of 0.95, and the same is true of the
Bayes credible interval when a beta(0, 0) distribution is taken as the prior. The average coverage
of these methods improves in the presence of ties. Other methods in the table give a reasonable
average coverage when there are no ties: the Bayesian credible interval from a uniform prior has an
average coverage of exactly 0.95 while the average coverages of other methods are a little higher.
Hence, as the probability of a tie increases, the average coverages of these methods worsen with
our procedure for handling ties. However, the decrease in performance is not dramatic. Indeed,
even for θ = 0.2p(1 − p), the average coverages of the Wilson, mid-p, Jeffreys and Bayes(1, 1)
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Table 2. Average interval coverage and average exceedance of coverage for 99%
confidence intervals formed by various methods: results for 50 trials, both when ties
are absent (θ = 0) and when ties are present (θ > 0).

No ties (θ = 0) θ = 0.1p(1 − p) θ = 0.2p(1 − p)

Aver. Aver. Aver. Aver. Aver. Aver.
Method cover. exceed. cover. exceed. cover. exceed.

Standard Wald 0.940 0.0500 0.946 0.0443 0.951 0.0396
Standard (cc)a 0.946 0.0429 0.952 0.0390 0.956 0.0362
Agresti–Coull 0.992 0.0002 0.993 0.0000 0.995 0.0000
Wilson 0.989 0.0017 0.991 0.0008 0.993 0.0006
Wilson (cc)a 0.994 0.0001 0.995 0.0001 0.996 0.0000
Clopper–Pearson 0.994 0.0000 0.996 0.0000 0.997 0.0000
Mid-p 0.992 0.0004 0.993 0.0000 0.995 0.0000
Bayes(0, 0)b 0.950 0.0399 0.954 0.0364 0.958 0.0345
Jeffreys(0.5, 0.5)b 0.990 0.0011 0.992 0.0002 0.994 0.0001
Bayes(1, 1)b 0.990 0.0012 0.992 0.0006 0.994 0.0005

Notes: aStandard Wald/Wilson method with a continuity correction.
bBayesian credible interval where the numbers in brackets are the parameters of the beta prior.

intervals are better than the average coverage of the ‘gold-standard’ Clopper–Pearson method
when there are no ties. In the main, Agresti–Coull intervals also have slightly better coverage in
the presence of ties than Clopper–Pearson intervals when ties are absent.

By definition, confidence intervals are meant to be conservative rather than liberal, with a
coverage that at least equals its nominal value for every value of p. Figures 1 and 2 show that
many methods give a one-tail coverage that is sometimes liberal and they suggest that coverage
is less liberal with our procedure when ties are present. To quantify the extent to which a method
is liberal, we define the exceedance of an interval by

exceedance =
{

nominal level − coverage if nominal level > coverage

0 otherwise.

The average exceedance as p varies from 0 to 1 was determined for each method and these values
are also given in Table 1. The standard Wald methods and Bayes(0, 0) show average exceedances
that are large regardless of whether or not ties are present. This is to be expected as these methods
are markedly liberal when judged by average coverage. However, their average exceedances are
noticeably better (i.e. smaller) when ties are present. Other methods also show clearly better
average exceedances when ties are present, except when there was no room for improvement
because, even with no ties, average exceedances were virtually zero.

The work reported in Table 1 was repeated, but with the nominal confidence level set at 0.99
rather than 0.95. Results for n = 50 are reported in Table 2. Patterns are similar to those found for a
nominal coverage of 0.95. The coverage of the confidence intervals increases as the proportion of
ties increases. The standard Wald methods and Bayes with a beta(0, 0) prior again give very liberal
coverage while the other methods are conservative. As with 95% nominal coverage, the degrees
of conservatism with the Agresti–Coull method, the Wilson methods, and the mid-p method were
not excessive when there was a moderate proportion of ties, being similar to the level of the
Clopper–Pearson method when there are no ties. The same is true of the Bayes methods with
beta(0.5, 0.5) or beta(1, 1) as the prior. Taking both average coverage and average exceedance
into consideration, these Bayes methods outperformed alternatives for forming 99% confidence
intervals.
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Table 3. Average length of 95% confidence intervals formed by various methods: results for
20 and 50 trials, both when ties are absent (θ = 0) and when ties are present (θ > 0).

n = 20 n = 50

Method θ = 0 θ = θ0.1
a θ = θ0.2

a θ = 0 θ = θ0.1
a θ = θ0.2

a

Standard Wald 0.316 0.321 0.327 0.211 0.215 0.220
Standard (cc)b 0.354 0.359 0.365 0.229 0.233 0.237
Agresti–Coull 0.337 0.341 0.345 0.218 0.221 0.225
Wilson 0.325 0.330 0.334 0.213 0.216 0.221
Wilson (cc)b 0.366 0.370 0.375 0.231 0.235 0.239
Clopper–Pearson 0.366 0.370 0.375 0.231 0.234 0.238
Mid-p 0.335 0.339 0.343 0.215 0.219 0.223
Bayes(0, 0)c 0.310 0.322 0.334 0.209 0.216 0.223
Jeffreys(0.5, 0.5)c 0.323 0.327 0.332 0.212 0.215 0.219
Bayes(1, 1)c 0.327 0.331 0.335 0.213 0.216 0.221

Notes: aθ0.1 = 0.1p(1 − p); θ0.2 = 0.2p(1 − p).
bStandard Wald/Wilson method with a continuity correction.
cBayesian credible interval where the numbers in brackets are the parameters of the beta prior.

After coverage, the lengths of confidence intervals is the next most important feature of methods
to construct them. The average length of confidence intervals was determined for each level of
ties and each method. Results for 95% confidence/credible intervals are given in Table 3. The
average width of intervals changed very little when ties were introduced or the proportion of ties
increased. This is the case both for 20 and 50 trials. It suggests that our method does not usually
increase the average size of intervals dramatically in order to make due allowance for the added
uncertainty caused by a moderate number of ties.

5. A practical example

We have not constructed examples in which a large proportion of ties are present. In such cases,
the assumptions that are made about the distribution of ties will affect results. Instead, we give an
example based on a real database. For the Depression scale of the DASS-21 scale, the database
of Crawford et al. [6] has 1421 controls with a score lower than 2, another 337 controls with a
score of 2, and 1171 controls with a score greater than 2. Suppose a case scores 2 and a 95%
confidence interval for the proportion of people with a lower underlying level of depression than
the case is required.

Many controls have a score that ties with the case’s. A naive approach is to treat half of them as
having a lower level of depression than the case and half as having a higher level of depression.
This incorrectly removes the uncertainty as to the precise number of controls that have a lower
underlying depression level. It leads to a 95% confidence interval of (0.525, 0.561), using the mid-
p method. In contrast, if our procedure is used in conjunction with the mid-p method, then a 95%
confidence interval of (0.483, 0.602) is obtained. [This interval was calculated using the computer
software described in the next section.] Hence, ignoring the uncertainty that arises from ties leads
to an interval that is less than one-third of the width of an interval that takes this uncertainty into
account. Moreover, our procedure (used in conjunction with the mid-p method) estimates that
32% is the appropriate confidence level to associate with the interval of (0.525, 0.561), rather than
its nominal level of 95%. Almost identical differences are seen if the mid-p method is replaced
by other reasonable methods of forming confidence intervals for a binomial proportion, such as
Wilson’s method or a Bayes method with a Jeffreys or beta(1,1) prior.
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Another approach for handling ties is to simply discard them. This reduces the sample to 1421
controls with a score lower than the case and 1171 controls with a higher score. The mid-p method
gives (0.529, 0.567) as the 95% confidence interval from this reduced sample. As with the other
method that removes the uncertainty arising from ties, this interval is less than one-third of the
width of the interval given by our procedure. Our procedure estimates its confidence level to be
only 34%, rather than 95%. Obviously the uncertainty caused by ties should not be ignored, so
using a procedure such as ours seems essential in this real example if a realistic confidence interval
is to be formed.

6. Computer software

Calculating the confidence intervals that are given by our procedure would be a laborious task
without a computer, even for only a modest number of ties. Hence a computer program has been
written to accompany this paper. The program runs on PCs and can be freely accessed from the
second author’s web page at www.abdn.ac.uk/∼psy086/dept/Binomial_Ties_CIs.htm. It can be
downloaded (either as an uncompressed executable or as a zip file) or its executable form may be
run without saving any files. The program implements all the methods described here for handling
ties. It prompts the user to specify the number of successes, failures and ties that were observed
and asks the user to state the confidence level that is required. The preferred method for forming
confidence intervals must also be selected. Also, there are some ‘user-tailored’ methods that add
flexibility by allowing the user to specify parameter values. The program outputs a point estimate
of the binomial proportion and an equal-tailed confidence interval for that proportion.

To give more detail, the methods available are the standard Wald, Agresti–Coull and tailored
Wald-form methods, Wilson’s method and the tailored score-form method, the Clopper–Pearson,
mid-p and tailored exact-form methods, and Bayesian credible interval using Jeffrey’s prior, a
beta(0,0) or beta(1,1) prior, or a tailored beta prior. With some methods, an optional continuity
correction is offered and with the ‘tailored’ methods the user specifies parameter values. In par-
ticular, with the tailored Wald-form method, the user is prompted to specify the nominal sample
size (ñ), the nominal number of successes (s̃) and the continuity correction c1. The roles of (ñ)

and c1 are defined in Equation (12) and p̃ = s̃/ñ defines s̃. Usually the user should set c1 equal
to 0 (for no continuity correction) or 1/(2ñ) (for the standard correction factor), but the choice is
not restricted to these values. The tailored score-form method allows the user to specify the value
of c2 in Equation (15) and the tailored exact-form method allows the user to specify the value of
c3 in Equations (18) and (19). For Bayesian credible intervals, the form of the prior distribution
is taken as a beta distribution and the user specifies its two parameters.

7. Concluding comments

The work in this paper shows that the proposed procedure is a viable means of extending methods
of forming confidence intervals for binomial proportions so that the methods can handle ties.
A variety of methods were considered in Section 3 and this showed that the procedure is widely
applicable and generally straightforward to use. Formula for applying the procedure to the common
methods of forming equal-tailed confidence intervals were given. Results presented in Table 3
suggest that the average width of confidence intervals will not increase greatly with our procedure
when the proportion of ties is modest. However, the width must increase substantially if due
allowance is to be made for a large proportion of ties.

As the binomial proportion increases from 0 to 1, the coverage of a method of forming confidence
intervals repeatedly rises and falls. The changes are quite substantial when there are no ties. When
ties are present, coverage is much more stable if our procedure is used – ties multiply the number
of rises and falls but the drops from a peak to a trough are much smaller. This is illustrated very
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clearly in the figures in Section 4. These figures also suggest that a method which is sometimes
quite liberal in the absence of ties will lead to a procedure that is appreciably less liberal when ties
are present: in the figures, coverage crosses the nominal confidence level much less frequently
when there are ties and, when the coverage does exceed its nominal level, it exceeds it by less.

In any numeric example, assumptions must be made about the distribution of the number of ties
and only one form of distribution was considered in our examples. However, implications from the
examples seem likely to generalize. In particular, the theoretical results given in Section 2 suggest
that our procedure will generally be less liberal/more conservative than the method that it extends.
This has relevance to the choice of method for forming a confidence interval for a proportion. In
the absence of ties, the Clopper–Pearson method is often referred to as the gold-standard method
because its coverage is always conservative and never liberal. Other less conservative methods
have been proposed that aim to give a better average coverage without being too liberal too often.
In the presence of ties, our procedure tends to make methods more conservative and reduce any
tendency to be liberal. This increases the disadvantage of the Clopper–Pearson method while
making several other methods (such as the mid-p, Jeffreys and Wilson methods) more attractive,
with Jeffreys and Bayes(1,1) perhaps the methods of choice.

A computer program that implements the procedure proposed in this paper has been described
in Section 5. The program is free and makes the procedure easy to use. A more targeted imple-
mentation of the procedure has also been produced that is useful to neuropsychologists and other
medical workers [6]. That implementation has a database that contains scores for large samples of
controls on five common mood scales, such as the Depression and Anxiety Stress Scales (DASS).
The score of a case can be entered for one of the mood scales and, using the database, the computer
program will estimate the proportion of controls with a smaller underlying value on that scale –
typically there will be some controls whose scores tie with that of the case and it is assumed that
these scores should be broken at random. A confidence interval for the proportion is determined
using the procedure proposed in this paper. This application area is just one of many in medical,
psychological and educational testing, where normative data contain a large number of multiple
ties, so we believe that the methods developed in this paper have wide applicability.
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Appendix

Proof of Proposition 1 Given t , by assumption
∑s+t

x=s γ (x, p)/(t + 1) > α for s = s∗(t) +
1, . . . , n − t . Hence, if u < p, then

∑s+t
x=s γ (x, u)/(t + 1) > α for s = s∗(t) + 1, . . . , n − t .

Equation (2) gives
∑s+t

x=s γ (x, u∗)/(t + 1) = α so, if u∗ < p, then s must be smaller than
s∗(t + 1). Consequently,

P(U ∗ < p|t) ≤ P(S ≤ s∗(t)|t). (A1)

Now, X ≤ s∗(t) implies S ≤ s∗(t), so P [{S ≤ s∗(t)} ⋂{X ≤ s∗(t)}|t] = P [X ≤ s∗(t)|t].
Also, P [{S ≤ s∗(t)} ⋂{X > s∗(t)}|t] = ∑t

j=1 P [S = s∗(t) − t + j |t].P [X > s∗(t)|S = s∗(t)
− t + j, t] = ∑t

j=1 P [S = s∗(t) − t + j |t].(j/(t + 1)) = ∑t
i=1

∑i
j=1 P [S = s∗(t) − i + j |t]/

(t + 1). Hence,

P [S ≤ s∗(t)|t] = P [X ≤ s∗(t)|t] +
t∑

i=1

i∑
j=1

P [S = s∗(t) − i + j |t]/(t + 1). (A2)

By assumption P(S = s|t) ≥ P(S = s − 1|t) for s ≤ s∗(t) + t , so
∑i

j=1 P [S = s∗(t) − i +
j |t] ≤ ∑t+1

j=1 P [S = s∗(t) − i + j |t](i/(t + 1)) = iP [X = s∗(t) − i + t + 1|t]. Substituting in
Equation (A2),

P [S ≤ s∗(t)|t] ≤ P [X ≤ s∗(t)|t] +
t∑

i=1

iP [X = s∗(t) − i + t + 1|t]
(

1

t + 1

)

=
s∗(t)+t∑
x=s∗(t)

P (X ≤ x|t)
t + 1

.

Hence, from Equation (A1), P(U ∗ < p|t) ≤ ∑s∗(t)+t

x=s∗(t) P (X ≤ x|t)/(t + 1), so from Equations
(5) and (8)

P(U ∗ ≤ p|t) ≤
s∗(t)+t∑
x=s∗(t)

γ (x, p) − ψ(x, p) − h(x, t)

t + 1

≤ α −
s∗(t)+t∑
x=s∗(t)

ψ(x, p) + h(x, t)

t + 1
.

As P(U ∗ ≥ p) = 1 − P(U ∗ < p) = 1 − ∑n
t=0 P(T = t).P (U ∗ ≤ p|t), Proposition 1 follows.
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Proof of Propositions 2 and 3 Suppose that ψ(x, p) ≥ λ1 − λ2γ (x, p) for all x and p,
with λ2 ≥ 0. Then

∑n
t=0

∑s∗(t)+t

x=s∗(t) P (T = t).ψ(x, p)/(t + 1) ≥ λ1
∑n

t=0 P(T = t) − λ2
∑n

t=0

{P(T = t)
∑s∗(t)+t

x=s∗(t) γ (x, p)/(t + 1)} ≥ λ1 − λ2α, from Equation (6). Hence, if Equation (11)
holds,

P(U ∗ ≥ p) ≥ (1 − α) + λ1 − λ2α. (A3)

This proves Proposition 3. When the assumptions underlying Proposition 2 apply, then ψ(x, p) ≥
0 for all x and p, so we may put λ1 = λ2 = 0. Then Equation (A3) gives P(U ∗ ≥ p) ≥ 1 − α,
which is the result given in Proposition 2. �
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